101
|
Smirnov IV, Gryazeva IV, Vasileva MY, Krutetskaia IY, Shashkova OA, Samoylovich MP, Stolbovaya AY, Solodovnikova NG, Zazerskaya IE, Sokolov DI, Selkov SA, Klimovich VB. New highly sensitive sandwich ELISA system for soluble endoglin quantification in different biological fluids. Scandinavian Journal of Clinical and Laboratory Investigation 2018; 78:515-523. [DOI: 10.1080/00365513.2018.1516892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ilya Valerevich Smirnov
- Hybridoma Technology Laboratory, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of Russian Federation, Saint Petersburg, Russia
| | - Irina Vladimirovna Gryazeva
- Hybridoma Technology Laboratory, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of Russian Federation, Saint Petersburg, Russia
| | | | - Irina Yurevna Krutetskaia
- Hybridoma Technology Laboratory, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of Russian Federation, Saint Petersburg, Russia
| | - Olga Alexandrovna Shashkova
- Hybridoma Technology Laboratory, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of Russian Federation, Saint Petersburg, Russia
| | - Marina Platonovna Samoylovich
- Hybridoma Technology Laboratory, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of Russian Federation, Saint Petersburg, Russia
| | - Anastasia Yurevna Stolbovaya
- Hybridoma Technology Laboratory, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of Russian Federation, Saint Petersburg, Russia
| | | | | | - Dmitriy Igorevich Sokolov
- Department of Immunology, The Research Institute of Obstetrics Gynecology and Reproductology, Saint Petersburg, Russia
| | - Sergey Alexeevich Selkov
- Department of Immunology, The Research Institute of Obstetrics Gynecology and Reproductology, Saint Petersburg, Russia
| | - Vladimir Borisovich Klimovich
- Hybridoma Technology Laboratory, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health of Russian Federation, Saint Petersburg, Russia
| |
Collapse
|
102
|
Gallardo-Vara E, Tual-Chalot S, Botella LM, Arthur HM, Bernabeu C. Soluble endoglin regulates expression of angiogenesis-related proteins and induction of arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia. Dis Model Mech 2018; 11:dmm.034397. [PMID: 30108051 PMCID: PMC6176985 DOI: 10.1242/dmm.034397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022] Open
Abstract
Endoglin is a transmembrane glycoprotein expressed in vascular endothelium that plays a key role in angiogenesis. Mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1 (HHT1), characterized by arteriovenous malformations (AVMs) in different organs. These vascular lesions derive from abnormal processes of angiogenesis, whereby aberrant vascular remodeling leads to focal loss of capillaries. Current treatments for HHT1 include antiangiogenic therapies. Interestingly, a circulating form of endoglin (also known as soluble endoglin, sEng), proteolytically released from the membrane-bound protein and displaying antiangiogenic activity, has been described in several endothelial-related pathological conditions. Using human and mouse endothelial cells, we find that sEng downregulates several pro-angiogenic and pro-migratory proteins involved in angiogenesis. However, this effect is much reduced in endothelial cells that lack endogenous transmembrane endoglin, suggesting that the antiangiogenic activity of sEng is dependent on the presence of endogenous transmembrane endoglin protein. In fact, sEng partially restores the phenotype of endoglin-silenced endothelial cells to that of normal endothelial cells. Moreover, using an established neonatal retinal model of HHT1 with depleted endoglin in the vascular endothelium, sEng treatment decreases the number of AVMs and has a normalizing effect on the vascular phenotype with respect to vessel branching, vascular density and migration of the vascular plexus towards the retinal periphery. Taken together, these data show that circulating sEng can influence vascular development and AVMs by modulating angiogenesis, and that its effect on endothelial cells depends on the expression of endogenous endoglin. This article has an associated First Person interview with the first author of the paper. Summary: Soluble endoglin regulates vascular development and arteriovenous malformations by modulating angiogenesis, and its effect on endothelial cells depends on expression of endogenous membrane-bound endoglin.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Simon Tual-Chalot
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Luisa M Botella
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Helen M Arthur
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| |
Collapse
|
103
|
Paauwe M, Schoonderwoerd MJA, Helderman RFCP, Harryvan TJ, Groenewoud A, van Pelt GW, Bor R, Hemmer DM, Versteeg HH, Snaar-Jagalska BE, Theuer CP, Hardwick JCH, Sier CFM, Ten Dijke P, Hawinkels LJAC. Endoglin Expression on Cancer-Associated Fibroblasts Regulates Invasion and Stimulates Colorectal Cancer Metastasis. Clin Cancer Res 2018; 24:6331-6344. [PMID: 29945992 DOI: 10.1158/1078-0432.ccr-18-0329] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/23/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer-associated fibroblasts (CAF) are a major component of the colorectal cancer tumor microenvironment. CAFs play an important role in tumor progression and metastasis, partly through TGF-β signaling pathway. We investigated whether the TGF-β family coreceptor endoglin is involved in CAF-mediated invasion and metastasis. EXPERIMENTAL DESIGN CAF-specific endoglin expression was studied in colorectal cancer resection specimens using IHC and related to metastases-free survival. Endoglin-mediated invasion was assessed in vitro by transwell invasion, using primary colorectal cancer-derived CAFs. Effects of CAF-specific endoglin expression on tumor cell invasion were investigated in a colorectal cancer zebrafish model, whereas liver metastases were assessed in a mouse model. RESULTS CAFs specifically at invasive borders of colorectal cancer express endoglin and increased expression intensity correlated with increased disease stage. Endoglin-expressing CAFs were also detected in lymph node and liver metastases, suggesting a role in colorectal cancer metastasis formation. In stage II colorectal cancer, CAF-specific endoglin expression at invasive borders correlated with poor metastasis-free survival. In vitro experiments revealed that endoglin is indispensable for bone morphogenetic protein (BMP)-9-induced signaling and CAF survival. Targeting endoglin using the neutralizing antibody TRC105 inhibited CAF invasion in vitro. In zebrafish, endoglin-expressing fibroblasts enhanced colorectal tumor cell infiltration into the liver and decreased survival. Finally, CAF-specific endoglin targeting with TRC105 decreased metastatic spread of colorectal cancer cells to the mouse liver. CONCLUSIONS Endoglin-expressing CAFs contribute to colorectal cancer progression and metastasis. TRC105 treatment inhibits CAF invasion and tumor metastasis, indicating an additional target beyond the angiogenic endothelium, possibly contributing to beneficial effects reported during clinical evaluations.See related commentary by Becker and LeBleu, p. 6110.
Collapse
Affiliation(s)
- Madelon Paauwe
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Thrombosis & Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Mark J A Schoonderwoerd
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roxan F C P Helderman
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom J Harryvan
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arwin Groenewoud
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Gabi W van Pelt
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Rosalie Bor
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Danielle M Hemmer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henri H Versteeg
- Department of Thrombosis & Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - James C H Hardwick
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,Oncode Institute, the Netherlands
| | - Lukas J A C Hawinkels
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands. .,Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
104
|
Abstract
The egg coat, an extracellular matrix made up of glycoprotein filaments, plays a key role in animal fertilization by acting as a gatekeeper for sperm. Egg coat components polymerize using a common zona pellucida (ZP) "domain" module that consists of two related immunoglobulin-like domains, called ZP-N and ZP-C. The ZP module has also been recognized in a large number of other secreted proteins with different biological functions, whose mutations are linked to severe human diseases. During the last decade, tremendous progress has been made toward understanding the atomic architecture of the ZP module and the structural basis of its polymerization. Moreover, sperm-binding regions at the N-terminus of mollusk and mammalian egg coat subunits were found to consist of domain repeats that also adopt a ZP-N fold. This discovery revealed an unexpected link between invertebrate and vertebrate fertilization and led to the first structure of an egg coat-sperm protein recognition complex. In this review we summarize these exciting findings, discuss their functional implications, and outline future challenges that must be addressed in order to develop a comprehensive view of this family of biomedically important extracellular molecules.
Collapse
Affiliation(s)
- Marcel Bokhove
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
105
|
David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 2018; 19:419-435. [PMID: 29643418 DOI: 10.1038/s41580-018-0007-0] [Citation(s) in RCA: 599] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Few cell signals match the impact of the transforming growth factor-β (TGFβ) family in metazoan biology. TGFβ cytokines regulate cell fate decisions during development, tissue homeostasis and regeneration, and are major players in tumorigenesis, fibrotic disorders, immune malfunctions and various congenital diseases. The effects of the TGFβ family are mediated by a combinatorial set of ligands and receptors and by a common set of receptor-activated mothers against decapentaplegic homologue (SMAD) transcription factors, yet the effects can differ dramatically depending on the cell type and the conditions. Recent progress has illuminated a model of TGFβ action in which SMADs bind genome-wide in partnership with lineage-determining transcription factors and additionally integrate inputs from other pathways and the chromatin to trigger specific cellular responses. These new insights clarify the operating logic of the TGFβ pathway in physiology and disease.
Collapse
Affiliation(s)
- Charles J David
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Tsinghua University School of Medicine, Department of Basic Sciences, Beijing, China
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
106
|
Hill CS. Spatial and temporal control of NODAL signaling. Curr Opin Cell Biol 2018; 51:50-57. [PMID: 29153705 DOI: 10.1016/j.ceb.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
Embryonic development is orchestrated by the activity of signal transduction pathways, amongst which are those downstream of the transforming growth factor β (TGF-β) family. Here I focus on signalling by one of these ligands, NODAL, which is essential for early embryonic axis patterning. I review recent advances in our understanding of how NODAL signalling is transduced from the plasma membrane to the nucleus to regulate the transcription of target genes, and how domains of NODAL activity are established and refined during embryonic development. The duration of signalling is emerging as a key determinant of the specificity of downstream responses in terms of cell fate decisions and I will discuss what is currently known about the underlying mechanisms.
Collapse
Affiliation(s)
- Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
107
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
108
|
Herrera B, Addante A, Sánchez A. BMP Signalling at the Crossroad of Liver Fibrosis and Regeneration. Int J Mol Sci 2017; 19:ijms19010039. [PMID: 29295498 PMCID: PMC5795989 DOI: 10.3390/ijms19010039] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) belong to the Transforming Growth Factor-β (TGF-β) family. Initially identified due to their ability to induce bone formation, they are now known to have multiple functions in a variety of tissues, being critical not only during development for tissue morphogenesis and organogenesis but also during adult tissue homeostasis. This review focus on the liver as a target tissue for BMPs actions, devoting most efforts to summarize our knowledge on their recently recognized and/or emerging roles on regulation of the liver regenerative response to various insults, either acute or chronic and their effects on development and progression of liver fibrosis in different pathological conditions. In an attempt to provide the basis for guiding research efforts in this field both the more solid and more controversial areas of research were highlighted.
Collapse
Affiliation(s)
- Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Annalisa Addante
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
109
|
Roman BL, Hinck AP. ALK1 signaling in development and disease: new paradigms. Cell Mol Life Sci 2017; 74:4539-4560. [PMID: 28871312 PMCID: PMC5687069 DOI: 10.1007/s00018-017-2636-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.
Collapse
Affiliation(s)
- Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA, 15261, USA.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
110
|
Human endoglin as a potential new partner involved in platelet-endothelium interactions. Cell Mol Life Sci 2017; 75:1269-1284. [PMID: 29080903 PMCID: PMC5843676 DOI: 10.1007/s00018-017-2694-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022]
Abstract
Complex interactions between platelets and activated endothelium occur during the thrombo-inflammatory reaction at sites of vascular injuries and during vascular hemostasis. The endothelial receptor endoglin is involved in inflammation through integrin-mediated leukocyte adhesion and transmigration; and heterozygous mutations in the endoglin gene cause hereditary hemorrhagic telangiectasia type 1. This vascular disease is characterized by a bleeding tendency that is postulated to be a consequence of telangiectasia fragility rather than a platelet defect, since platelets display normal functions in vitro in this condition. Here, we hypothesize that endoglin may act as an adhesion molecule involved in the interaction between endothelial cells and platelets through integrin recognition. We find that the extracellular domain of human endoglin promotes specific platelet adhesion under static conditions and confers resistance of adherent platelets to detachment upon exposure to flow. Also, platelets adhere to confluent endothelial cells in an endoglin-mediated process. Remarkably, Chinese hamster ovary cells ectopically expressing the human αIIbβ3 integrin acquire the capacity to adhere to myoblast transfectants expressing human endoglin, whereas platelets from Glanzmann’s thrombasthenia patients lacking the αIIbβ3 integrin are defective for endoglin-dependent adhesion to endothelial cells. Furthermore, the bleeding time, but not the prothrombin time, is significantly prolonged in endoglin-haplodeficient (Eng+/−) mice compared to Eng+/+ animals. These results suggest a new role for endoglin in αIIbβ3 integrin-mediated adhesion of platelets to the endothelium, and may provide a better understanding on the basic cellular mechanisms involved in hemostasis and thrombo-inflammatory events.
Collapse
|
111
|
Ruiz-Llorente L, Gallardo-Vara E, Rossi E, Smadja DM, Botella LM, Bernabeu C. Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. Expert Opin Ther Targets 2017; 21:933-947. [PMID: 28796572 DOI: 10.1080/14728222.2017.1365839] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hereditary Haemorrhagic Telangiectasia (HHT) is as an autosomal dominant trait characterized by frequent nose bleeds, mucocutaneous telangiectases, arteriovenous malformations (AVMs) of the lung, liver and brain, and gastrointestinal bleedings due to telangiectases. HHT is originated by mutations in genes whose encoded proteins are involved in the transforming growth factor β (TGF-β) family signalling of vascular endothelial cells. In spite of the great advances in the diagnosis as well as in the molecular, cellular and animal models of HHT, the current treatments remain just at the palliative level. Areas covered: Pathogenic mutations in genes coding for the TGF-β receptors endoglin (ENG) (HHT1) or the activin receptor-like kinase-1 (ACVRL1 or ALK1) (HHT2), are responsible for more than 80% of patients with HHT. Therefore, ENG and ALK1 are the main potential therapeutic targets for HHT and the focus of this review. The current status of the preclinical and clinical studies, including the anti-angiogenic strategy, have been addressed. Expert opinion: Endoglin and ALK1 are attractive therapeutic targets in HHT. Because haploinsufficiency is the pathogenic mechanism in HHT, several therapeutic approaches able to enhance protein expression and/or function of endoglin and ALK1 are keys to find novel and efficient treatments for the disease.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Eunate Gallardo-Vara
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Elisa Rossi
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - David M Smadja
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - Luisa M Botella
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Carmelo Bernabeu
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| |
Collapse
|