101
|
Xu Y, Cai W, Sang S, Cheng X, Jin B, Zhao X, Zhong C. The Dynamic SUMOylation Changes and Their Potential Role in the Senescence of APOE4 Mice. Biomedicines 2023; 12:16. [PMID: 38275378 PMCID: PMC10813299 DOI: 10.3390/biomedicines12010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The ε4 allele of apolipoprotein E (APOE4) and aging are the major risk factors for Alzheimer's disease (AD). SUMOylation is intimately linked to the development of AD and the aging process. However, the SUMOylation status in APOE4 mice has not been uncovered. In this study, we investigated SENP1 and SUMOylation changes in the brains of aged APOE3 and APOE4 mice, aiming to understand their potential impact on mitochondrial metabolism and their contribution to cellular senescence in APOE4 mice. Concurrently, SUMO1-conjugated protein levels decreased, while SUMO2/3-conjugated protein levels increased relatively with the aging of APOE4 mice. This suggests that the equilibrium between the SUMOylation and deSUMOylation processes may be associated with senescence and longevity. Our findings highlight the significant roles of SENP1 and SUMOylation changes in APOE4-driven pathology and the aging process.
Collapse
Affiliation(s)
- Yangqi Xu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenwen Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Boru Jin
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiangteng Zhao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
102
|
Malvaso A, Gatti A, Negro G, Calatozzolo C, Medici V, Poloni TE. Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells 2023; 12:2824. [PMID: 38132144 PMCID: PMC10742050 DOI: 10.3390/cells12242824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Malvaso
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Alberto Gatti
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Giulia Negro
- Department of Neurology, University of Milano Bicocca, 20126 Milan, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Valentina Medici
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| |
Collapse
|
103
|
Zhang X, Chen X, Zhang L, Sun Y, Liang Y, Li H, Zhang Y. Role of trigger receptor 2 expressed on myeloid cells in neuroinflammation-neglected multidimensional regulation of microglia. Neurochem Int 2023; 171:105639. [PMID: 37926352 DOI: 10.1016/j.neuint.2023.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Neuroinflammation is an inflammatory cascade involved in various neurological disorders, including Alzheimer's disease, multiple sclerosis, and other relevant diseases. The triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane immune receptor that is primarily expressed by microglia in the central nervous system (CNS). While TREM2 is initially believed to be an anti-inflammatory factor in the CNS, increasing evidence suggests that TREM2 plays a more complex role in balancing neuroinflammation. However, the exact mechanism remains unclear. Notably, TREM2 directly regulates microglia inflammation through various signaling pathways. Additionally, studies have suggested that TREM2 mediates microglial phagocytosis, autophagy, metabolism, and microglia phenotypes, which may be involved in the modulation of neuroinflammation. In this review, we aim to discuss the critical role of TREM2 in several microglia functions and the underlying molecular mechanism the modulatory which further mediate neuroinflammation, and elaborate. Finally, we discuss the potential of TREM2 as a therapeutic target in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xue Chen
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Li
- Department of Cardiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
104
|
Wakid M, Almeida D, Aouabed Z, Rahimian R, Davoli MA, Yerko V, Leonova-Erko E, Richard V, Zahedi R, Borchers C, Turecki G, Mechawar N. Universal method for the isolation of microvessels from frozen brain tissue: A proof-of-concept multiomic investigation of the neurovasculature. Brain Behav Immun Health 2023; 34:100684. [PMID: 37822873 PMCID: PMC10562768 DOI: 10.1016/j.bbih.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
The neurovascular unit, comprised of vascular cell types that collectively regulate cerebral blood flow to meet the needs of coupled neurons, is paramount for the proper function of the central nervous system. The neurovascular unit gatekeeps blood-brain barrier properties, which experiences impairment in several central nervous system diseases associated with neuroinflammation and contributes to pathogenesis. To better understand function and dysfunction at the neurovascular unit and how it may confer inflammatory processes within the brain, isolation and characterization of the neurovascular unit is needed. Here, we describe a singular, standardized protocol to enrich and isolate microvessels from archived snap-frozen human and frozen mouse cerebral cortex using mechanical homogenization and centrifugation-separation that preserves the structural integrity and multicellular composition of microvessel fragments. For the first time, microvessels are isolated from postmortem ventromedial prefrontal cortex tissue and are comprehensively investigated as a structural unit using both RNA sequencing and Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Both the transcriptome and proteome are obtained and compared, demonstrating that the isolated brain microvessel is a robust model for the NVU and can be used to generate highly informative datasets in both physiological and disease contexts.
Collapse
Affiliation(s)
- Marina Wakid
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | | | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Elena Leonova-Erko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Vincent Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - René Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Christoph Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
105
|
Bivona G, Iemmolo M, Ghersi G. Cerebrospinal and Blood Biomarkers in Alzheimer's Disease: Did Mild Cognitive Impairment Definition Affect Their Clinical Usefulness? Int J Mol Sci 2023; 24:16908. [PMID: 38069230 PMCID: PMC10706963 DOI: 10.3390/ijms242316908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Despite Alzheimer's Disease (AD) being known from the times of Alois Alzheimer, who lived more than one century ago, many aspects of the disease are still obscure, including the pathogenesis, the clinical spectrum definition, and the therapeutic approach. Well-established biomarkers for AD come from the histopathological hallmarks of the disease, which are Aβ and phosphorylated Tau protein aggregates. Consistently, cerebrospinal fluid (CSF) Amyloid β (Aβ) and phosphorylated Tau level measurements are currently used to detect AD presence. However, two central biases affect these biomarkers. Firstly, incomplete knowledge of the pathogenesis of diseases legitimates the search for novel molecules that, reasonably, could be expressed by neurons and microglia and could be detected in blood simpler and earlier than the classical markers and in a higher amount. Further, studies have been performed to evaluate whether CSF biomarkers can predict AD onset in Mild Cognitive Impairment (MCI) patients. However, the MCI definition has changed over time. Hence, the studies on MCI patients seem to be biased at the beginning due to the imprecise enrollment and heterogeneous composition of the miscellaneous MCI subgroup. Plasma biomarkers and novel candidate molecules, such as microglia biomarkers, have been tentatively investigated and could represent valuable targets for diagnosing and monitoring AD. Also, novel AD markers are urgently needed to identify molecular targets for treatment strategies. This review article summarizes the main CSF and blood AD biomarkers, underpins their advantages and flaws, and mentions novel molecules that can be used as potential biomarkers for AD.
Collapse
Affiliation(s)
- Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Matilda Iemmolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
106
|
Dominguez SL, Laufer BI, Ghosh AS, Li Q, Ruggeri G, Emani MR, Phu L, Friedman BA, Sandoval W, Rose CM, Ngu H, Foreman O, Reichelt M, Juste Y, Lalehzadeh G, Hansen D, Nymark H, Mellal D, Gylling H, Kiełpiński ŁJ, Chih B, Bingol B, Hoogenraad CC, Meilandt WJ, Easton A. TMEM106B reduction does not rescue GRN deficiency in iPSC-derived human microglia and mouse models. iScience 2023; 26:108362. [PMID: 37965143 PMCID: PMC10641752 DOI: 10.1016/j.isci.2023.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Heterozygous mutations in the granulin (GRN) gene are a leading cause of frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Polymorphisms in TMEM106B have been associated with disease risk in GRN mutation carriers and protective TMEM106B variants associated with reduced levels of TMEM106B, suggesting that lowering TMEM106B might be therapeutic in the context of FTLD. Here, we tested the impact of full deletion and partial reduction of TMEM106B in mouse and iPSC-derived human cell models of GRN deficiency. TMEM106B deletion did not reverse transcriptomic or proteomic profiles in GRN-deficient microglia, with a few exceptions in immune signaling markers. Neither homozygous nor heterozygous Tmem106b deletion normalized disease-associated phenotypes in Grn -/-mice. Furthermore, Tmem106b reduction by antisense oligonucleotide (ASO) was poorly tolerated in Grn -/-mice. These data provide novel insight into TMEM106B and GRN function in microglia cells but do not support lowering TMEM106B levels as a viable therapeutic strategy for treating FTD-GRN.
Collapse
Affiliation(s)
- Sara L. Dominguez
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
| | - Benjamin I. Laufer
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
- Department of OMNI Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | | | - Qingling Li
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Gaia Ruggeri
- Department of Biochemistry and Cellular Pharmacology, Genentech, South San Francisco, CA 94080, USA
| | - Maheswara Reddy Emani
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
- Department of Biochemistry and Cellular Pharmacology, Genentech, South San Francisco, CA 94080, USA
| | - Lilian Phu
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Brad A. Friedman
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
- Department of OMNI Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Christopher M. Rose
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Hai Ngu
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Mike Reichelt
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Yves Juste
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
| | - Guita Lalehzadeh
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
| | - Dennis Hansen
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, 2970 Hørsholm, DK, Denmark
| | - Helle Nymark
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, 2970 Hørsholm, DK, Denmark
| | - Denia Mellal
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, 2970 Hørsholm, DK, Denmark
| | - Helene Gylling
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, 2970 Hørsholm, DK, Denmark
| | - Łukasz J. Kiełpiński
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, 2970 Hørsholm, DK, Denmark
| | - Ben Chih
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
- Department of Biochemistry and Cellular Pharmacology, Genentech, South San Francisco, CA 94080, USA
| | - Baris Bingol
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
| | | | | | - Amy Easton
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
107
|
Gaunt JR, Zainolabidin N, Yip AKK, Tan JM, Low AYT, Chen AI, Ch'ng TH. Cytokine enrichment in deep cerebellar nuclei is contributed by multiple glial populations and linked to reduced amyloid plaque pathology. J Neuroinflammation 2023; 20:269. [PMID: 37978387 PMCID: PMC10656954 DOI: 10.1186/s12974-023-02913-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023] Open
Abstract
Alzheimer's disease (AD) pathology and amyloid-beta (Aβ) plaque deposition progress slowly in the cerebellum compared to other brain regions, while the entorhinal cortex (EC) is one of the most vulnerable regions. Using a knock-in AD mouse model (App KI), we show that within the cerebellum, the deep cerebellar nuclei (DCN) has particularly low accumulation of Aβ plaques. To identify factors that might underlie differences in the progression of AD-associated neuropathology across regions, we profiled gene expression in single nuclei (snRNAseq) across all cell types in the DCN and EC of wild-type (WT) and App KI male mice at age 7 months. We found differences in expression of genes associated with inflammatory activation, PI3K-AKT signalling, and neuron support functions between both regions and genotypes. In WT mice, the expression of interferon-response genes in microglia is higher in the DCN than the EC and this enrichment is confirmed by RNA in situ hybridisation, and measurement of inflammatory cytokines by protein array. Our analyses also revealed that multiple glial populations are responsible for establishing this cytokine-enriched niche. Furthermore, homogenates derived from the DCN induced inflammatory gene expression in BV2 microglia. We also assessed the relationship between the DCN microenvironment and Aβ pathology by depleting microglia using a CSF1R inhibitor PLX5622 and saw that, surprisingly, the expression of a subset of inflammatory cytokines was increased while plaque abundance in the DCN was further reduced. Overall, our study revealed the presence of a cytokine-enriched microenvironment unique to the DCN that when modulated, can alter plaque deposition.
Collapse
Affiliation(s)
- Jessica R Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Norliyana Zainolabidin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Alaric K K Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Jia Min Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Aloysius Y T Low
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Albert I Chen
- Center for Aging Research, Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA.
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA, 92037, USA.
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, Singapore, 308232, Singapore.
- School of Biological Science, Nanyang Technological University, Singapore, 63755, Singapore.
| |
Collapse
|
108
|
Hou P, Zielonka M, Serneels L, Martinez-Muriana A, Fattorelli N, Wolfs L, Poovathingal S, T'Syen D, Balusu S, Theys T, Fiers M, Mancuso R, Howden AJM, De Strooper B. The γ-secretase substrate proteome and its role in cell signaling regulation. Mol Cell 2023; 83:4106-4122.e10. [PMID: 37977120 DOI: 10.1016/j.molcel.2023.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/22/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
γ-Secretases mediate the regulated intramembrane proteolysis (RIP) of more than 150 integral membrane proteins. We developed an unbiased γ-secretase substrate identification (G-SECSI) method to study to what extent these proteins are processed in parallel. We demonstrate here parallel processing of at least 85 membrane proteins in human microglia in steady-state cell culture conditions. Pharmacological inhibition of γ-secretase caused substantial changes of human microglial transcriptomes, including the expression of genes related to the disease-associated microglia (DAM) response described in Alzheimer disease (AD). While the overall effects of γ-secretase deficiency on transcriptomic cell states remained limited in control conditions, exposure of mouse microglia to AD-inducing amyloid plaques strongly blocked their capacity to mount this putatively protective DAM cell state. We conclude that γ-secretase serves as a critical signaling hub integrating the effects of multiple extracellular stimuli into the overall transcriptome of the cell.
Collapse
Affiliation(s)
- Pengfei Hou
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Magdalena Zielonka
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Lutgarde Serneels
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Anna Martinez-Muriana
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Nicola Fattorelli
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Leen Wolfs
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Suresh Poovathingal
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium; Single Cell & Microfluidics Expertise Unit, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium
| | - Dries T'Syen
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Sriram Balusu
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Tom Theys
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven 3000, Belgium
| | - Mark Fiers
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium; Center for Human Genetics, KU Leuven, Leuven 3000, Belgium; Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp 2610, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Andrew J M Howden
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 4HN, UK
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium; Center for Human Genetics, KU Leuven, Leuven 3000, Belgium; Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
109
|
Rao A, Chen N, Kim MJ, Blumenfeld J, Yip O, Hao Y, Liang Z, Nelson MR, Koutsodendris N, Grone B, Ding L, Yoon SY, Arriola P, Huang Y. Microglia Depletion Reduces Human Neuronal APOE4-Driven Pathologies in a Chimeric Alzheimer's Disease Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566510. [PMID: 38014339 PMCID: PMC10680610 DOI: 10.1101/2023.11.10.566510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Despite strong evidence supporting the involvement of both apolipoprotein E4 (APOE4) and microglia in Alzheimer's Disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-driven AD pathogenesis remain elusive. Here, we examined such effects utilizing microglial depletion in a chimeric model with human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) induced pluripotent stem cell (iPSC)-derived human neurons into the hippocampus of human APOE3 or APOE4 knock-in mice, and depleted microglia in half the chimeric mice. We found that both neuronal APOE and microglial presence were important for the formation of Aβ and tau pathologies in an APOE isoform-dependent manner (APOE4 > APOE3). Single-cell RNA-sequencing analysis identified two pro-inflammatory microglial subtypes with high MHC-II gene expression that are enriched in chimeric mice with human APOE4 neuron transplants. These findings highlight the concerted roles of neuronal APOE, especially APOE4, and microglia in AD pathogenesis.
Collapse
Affiliation(s)
- Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
| | - Nuo Chen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Zherui Liang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Maxine R. Nelson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
| | - Brian Grone
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Leo Ding
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Patrick Arriola
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
110
|
Jauregui C, Blanco-Luquin I, Macías M, Roldan M, Caballero C, Pagola I, Mendioroz M, Jericó I. Exploring the Disease-Associated Microglia State in Amyotrophic Lateral Sclerosis. Biomedicines 2023; 11:2994. [PMID: 38001994 PMCID: PMC10669775 DOI: 10.3390/biomedicines11112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Neuroinflammation, and specifically microglia, plays an important but not-yet well-understood role in the pathophysiology of amyotrophic lateral sclerosis (ALS), constituting a potential therapeutic target for the disease. Recent studies have described the involvement of different microglial transcriptional patterns throughout neurodegenerative processes, identifying a new state of microglia: disease-associated microglia (DAM). The aim of this study is to investigate expression patterns of microglial-related genes in ALS spinal cord. METHODS We analyzed mRNA expression levels via RT-qPCR of several microglia-related genes in their homeostatic and DAM state in postmortem tissue (anterior horn of the spinal cord) from 20 subjects with ALS-TDP43 and 19 controls donors from the Navarrabiomed Biobank. RESULTS The expression levels of TREM2, MS4A, CD33, APOE and TYROBP were found to be elevated in the spinal cord from ALS subjects versus controls (p-value < 0.05). However, no statistically significant gene expression differences were observed for TMEM119, SPP1 and LPL. CONCLUSIONS This study suggests that a DAM-mediated inflammatory response is present in ALS, and TREM2 plays a significant role in immune function of microglia. It also supports the role of C33 and MS4A in the physiopathology of ALS.
Collapse
Affiliation(s)
- Carlota Jauregui
- Neurology Department, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Mónica Macías
- Neuroepigenetics Laboratory, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Miren Roldan
- Neuroepigenetics Laboratory, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Cristina Caballero
- Department of Pathology, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Inma Pagola
- Neurology Department, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
- Neuromuscular and Neuron Motor Diseases Research Group, Navarrabiomed, IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Maite Mendioroz
- Neurology Department, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
- Neuroepigenetics Laboratory, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Ivonne Jericó
- Neurology Department, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
- Neuromuscular and Neuron Motor Diseases Research Group, Navarrabiomed, IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| |
Collapse
|
111
|
Ricciardelli AR, Robledo A, Fish JE, Kan PT, Harris TH, Wythe JD. The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations. Biomedicines 2023; 11:2876. [PMID: 38001877 PMCID: PMC10669898 DOI: 10.3390/biomedicines11112876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.
Collapse
Affiliation(s)
- Ashley R. Ricciardelli
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Peter T. Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Tajie H. Harris
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joshua D. Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
112
|
Wang X, Liu L, Jiang X, Saredy J, Xi H, Cueto R, Sigler D, Khan M, Wu S, Ji Y, Snyder NW, Hu W, Yang X, Wang H. Identification of methylation-regulated genes modulating microglial phagocytosis in hyperhomocysteinemia-exacerbated Alzheimer's disease. Alzheimers Res Ther 2023; 15:164. [PMID: 37789414 PMCID: PMC10546779 DOI: 10.1186/s13195-023-01311-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Hyperhomocysteinemia (HHcy) has been linked to development of Alzheimer's disease (AD) neuropathologically characterized by the accumulation of amyloid β (Aβ). Microglia (MG) play a crucial role in uptake of Aβ fibrils, and its dysfunction worsens AD. However, the effect of HHcy on MG Aβ phagocytosis remains unstudied. METHODS We isolated MG from the cerebrum of HHcy mice with genetic cystathionine-β-synthase deficiency (Cbs-/-) and performed bulk RNA-seq. We performed meta-analysis over transcriptomes of Cbs-/- mouse MG, human and mouse AD MG, MG Aβ phagocytosis model, human AD methylome, and GWAS AD genes. RESULTS HHcy and hypomethylation conditions were identified in Cbs-/- mice. Through Cbs-/- MG transcriptome analysis, 353 MG DEGs were identified. Phagosome formation and integrin signaling pathways were found suppressed in Cbs-/- MG. By analyzing MG transcriptomes from 4 AD patient and 7 mouse AD datasets, 409 human and 777 mouse AD MG DEGs were identified, of which 37 were found common in both species. Through further combinatory analysis with transcriptome from MG Aβ phagocytosis model, we identified 130 functional-validated Aβ phagocytic AD MG DEGs (20 in human AD, 110 in mouse AD), which reflected a compensatory activation of Aβ phagocytosis. Interestingly, we identified 14 human Aβ phagocytic AD MG DEGs which represented impaired MG Aβ phagocytosis in human AD. Finally, through a cascade of meta-analysis of transcriptome of AD MG, functional phagocytosis, HHcy MG, and human AD brain methylome dataset, we identified 5 HHcy-suppressed phagocytic AD MG DEGs (Flt1, Calponin 3, Igf1, Cacna2d4, and Celsr) which were reported to regulate MG/MΦ migration and Aβ phagocytosis. CONCLUSIONS We established molecular signatures for a compensatory response of Aβ phagocytosis activation in human and mouse AD MG and impaired Aβ phagocytosis in human AD MG. Our discoveries suggested that hypomethylation may modulate HHcy-suppressed MG Aβ phagocytosis in AD.
Collapse
Affiliation(s)
- Xianwei Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Lu Liu
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Xiaohua Jiang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Jason Saredy
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Hang Xi
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Ramon Cueto
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Danni Sigler
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Mohsin Khan
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Sheng Wu
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA.
| |
Collapse
|
113
|
You J, Youssef MMM, Santos JR, Lee J, Park J. Microglia and Astrocytes in Amyotrophic Lateral Sclerosis: Disease-Associated States, Pathological Roles, and Therapeutic Potential. BIOLOGY 2023; 12:1307. [PMID: 37887017 PMCID: PMC10603852 DOI: 10.3390/biology12101307] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Microglial and astrocytic reactivity is a prominent feature of amyotrophic lateral sclerosis (ALS). Microglia and astrocytes have been increasingly appreciated to play pivotal roles in disease pathogenesis. These cells can adopt distinct states characterized by a specific molecular profile or function depending on the different contexts of development, health, aging, and disease. Accumulating evidence from ALS rodent and cell models has demonstrated neuroprotective and neurotoxic functions from microglia and astrocytes. In this review, we focused on the recent advancements of knowledge in microglial and astrocytic states and nomenclature, the landmark discoveries demonstrating a clear contribution of microglia and astrocytes to ALS pathogenesis, and novel therapeutic candidates leveraging these cells that are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Justin You
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Mohieldin M. M. Youssef
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Jhune Rizsan Santos
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jooyun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
114
|
Widjaya MA, Liu CH, Lee SD, Cheng WC. Transcriptomics Meta-Analysis Reveals Phagosome and Innate Immune System Dysfunction as Potential Mechanisms in the Cortex of Alzheimer's Disease Mouse Strains. J Mol Neurosci 2023; 73:773-786. [PMID: 37733230 DOI: 10.1007/s12031-023-02152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
Immune-related pathways can affect the immune system directly, such as the chemokine signaling pathway, or indirectly, such as the phagosome pathway. Alzheimer's disease (AD) is reportedly associated with several immune-related pathways. However, exploring its underlying mechanism is challenging in animal studies because AD mouse strains differentially express immune-related pathway characteristics. To overcome this problem, we performed a meta-analysis to identify significant and consistent immune-related AD pathways that are expressed in different AD mouse strains. Next-generation RNA sequencing (RNA-seq) and microarray datasets for the cortex of AD mice from different strains such as APP/PSEN1, APP/PS2, 3xTg, TREM, and 5xFAD were collected from the NCBI GEO database. Each dataset's quality control and normalization were already processed from each original study source using various methods depending on the high-throughput analysis platform (FastQC, median of ratios, RMA, between array normalization). Datasets were analyzed using DESeq2 for RNA-seq and GEO2R for microarray to identify differentially expressed (DE) genes. Significantly DE genes were meta-analyzed using Stouffer's method, with significant genes further analyzed for functional enrichment. Ten datasets representing 20 conditions were obtained from the NCBI GEO database, comprising 116 control and 120 AD samples. The DE analysis identified 284 significant DE genes. The meta-analysis identified three significantly enriched immune-related AD pathways: phagosome, the complement and coagulation cascade, and chemokine signaling. Phagosomes-related genes correlated with complement and immune system. Meanwhile, phagosomes and chemokine signaling genes overlapped with B cells receptors pathway genes indicating potential correlation between phagosome, chemokines, and adaptive immune system as well. The transcriptomic meta-analysis showed that AD is associated with immune-related pathways in the brain's cortex through the phagosome, complement and coagulation cascade, and chemokine signaling pathways. Interestingly, phagosome and chemokine signaling pathways had potential correlation with B cells receptors pathway.
Collapse
Affiliation(s)
- Michael Anekson Widjaya
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chia-Hsin Liu
- Cancer Biology and Precision Therapeutics Center, China Medical University and Academia Sinica China Medical University, Taichung, 40403, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, PhD program in Healthcare Science, China Medical University, Taichung, 406040, Taiwan.
| | - Wei-Chung Cheng
- Cancer Biology and Precision Therapeutics Center, China Medical University and Academia Sinica China Medical University, Taichung, 40403, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
| |
Collapse
|
115
|
Sun N, Victor MB, Park YP, Xiong X, Scannail AN, Leary N, Prosper S, Viswanathan S, Luna X, Boix CA, James BT, Tanigawa Y, Galani K, Mathys H, Jiang X, Ng AP, Bennett DA, Tsai LH, Kellis M. Human microglial state dynamics in Alzheimer's disease progression. Cell 2023; 186:4386-4403.e29. [PMID: 37774678 PMCID: PMC10644954 DOI: 10.1016/j.cell.2023.08.037] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
Altered microglial states affect neuroinflammation, neurodegeneration, and disease but remain poorly understood. Here, we report 194,000 single-nucleus microglial transcriptomes and epigenomes across 443 human subjects and diverse Alzheimer's disease (AD) pathological phenotypes. We annotate 12 microglial transcriptional states, including AD-dysregulated homeostatic, inflammatory, and lipid-processing states. We identify 1,542 AD-differentially-expressed genes, including both microglia-state-specific and disease-stage-specific alterations. By integrating epigenomic, transcriptomic, and motif information, we infer upstream regulators of microglial cell states, gene-regulatory networks, enhancer-gene links, and transcription-factor-driven microglial state transitions. We demonstrate that ectopic expression of our predicted homeostatic-state activators induces homeostatic features in human iPSC-derived microglia-like cells, while inhibiting activators of inflammation can block inflammatory progression. Lastly, we pinpoint the expression of AD-risk genes in microglial states and differential expression of AD-risk genes and their regulators during AD progression. Overall, we provide insights underlying microglial states, including state-specific and AD-stage-specific microglial alterations at unprecedented resolution.
Collapse
Affiliation(s)
- Na Sun
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yongjin P Park
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Pathology and Laboratory Medicine, Department of Statistics, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Xushen Xiong
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aine Ni Scannail
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noelle Leary
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shaniah Prosper
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Soujanya Viswanathan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xochitl Luna
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carles A Boix
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin T James
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yosuke Tanigawa
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyriaki Galani
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Xueqiao Jiang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ayesha P Ng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Li-Huei Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
116
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 385] [Impact Index Per Article: 192.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
117
|
Mishra P, Silva A, Sharma J, Nguyen J, Pizzo DP, Hinz D, Sahoo D, Cherqui S. Rescue of Alzheimer's disease phenotype in a mouse model by transplantation of wild-type hematopoietic stem and progenitor cells. Cell Rep 2023; 42:112956. [PMID: 37561625 PMCID: PMC10617121 DOI: 10.1016/j.celrep.2023.112956] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/19/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia; microglia have been implicated in AD pathogenesis, but their role is still matter of debate. Our study showed that single systemic wild-type (WT) hematopoietic stem and progenitor cell (HSPC) transplantation rescued the AD phenotype in 5xFAD mice and that transplantation may prevent microglia activation. Indeed, complete prevention of memory loss and neurocognitive impairment and decrease of β-amyloid plaques in the hippocampus and cortex were observed in the WT HSPC-transplanted 5xFAD mice compared with untreated 5xFAD mice and with mice transplanted with 5xFAD HSPCs. Neuroinflammation was also significantly reduced. Transcriptomic analysis revealed a significant decrease in gene expression related to "disease-associated microglia" in the cortex and "neurodegeneration-associated endothelial cells" in the hippocampus of the WT HSPC-transplanted 5xFAD mice compared with diseased controls. This work shows that HSPC transplant has the potential to prevent AD-associated complications and represents a promising therapeutic avenue for this disease.
Collapse
Affiliation(s)
- Priyanka Mishra
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Alexander Silva
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jay Sharma
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jacqueline Nguyen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Donald P Pizzo
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Denise Hinz
- Flow Cytometry Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California, La Jolla, La Jolla, CA, USA; Moores Comprehensive Cancer Center, University of California, La Jolla, La Jolla, CA, USA
| | - Stephanie Cherqui
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
118
|
Lee J, Dimitry JM, Song JH, Son M, Sheehan PW, King MW, Travis Tabor G, Goo YA, Lazar MA, Petrucelli L, Musiek ES. Microglial REV-ERBα regulates inflammation and lipid droplet formation to drive tauopathy in male mice. Nat Commun 2023; 14:5197. [PMID: 37626048 PMCID: PMC10457319 DOI: 10.1038/s41467-023-40927-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease, the most common age-related neurodegenerative disease, is characterized by tau aggregation and associated with disrupted circadian rhythms and dampened clock gene expression. REV-ERBα is a core circadian clock protein which also serves as a nuclear receptor and transcriptional repressor involved in lipid metabolism and macrophage function. Global REV-ERBα deletion has been shown to promote microglial activation and mitigate amyloid plaque formation. However, the cell-autonomous effects of microglial REV-ERBα in healthy brain and in tauopathy are unexplored. Here, we show that microglial REV-ERBα deletion enhances inflammatory signaling, disrupts lipid metabolism, and causes lipid droplet (LD) accumulation specifically in male microglia. These events impair microglial tau phagocytosis, which can be partially rescued by blockage of LD formation. In vivo, microglial REV-ERBα deletion exacerbates tau aggregation and neuroinflammation in two mouse tauopathy models, specifically in male mice. These data demonstrate the importance of microglial lipid droplets in tau accumulation and reveal REV-ERBα as a therapeutically accessible, sex-dependent regulator of microglial inflammatory signaling, lipid metabolism, and tauopathy.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie M Dimitry
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - Jong Hee Song
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute (MTAC@MGI) at Washington University School of Medicine, St. Louis, MO, USA
| | - Minsoo Son
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute (MTAC@MGI) at Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick W Sheehan
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - Melvin W King
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - G Travis Tabor
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute (MTAC@MGI) at Washington University School of Medicine, St. Louis, MO, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Erik S Musiek
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
119
|
Arbabi K, Jiang Y, Howard D, Nigam A, Inoue W, Gonzalez-Burgos G, Felsky D, Tripathy SJ. Investigating microglia-neuron crosstalk by characterizing microglial contamination in human and mouse patch-seq datasets. iScience 2023; 26:107329. [PMID: 37520693 PMCID: PMC10374462 DOI: 10.1016/j.isci.2023.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/25/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Microglia are cells with diverse roles, including the regulation of neuronal excitability. We leveraged Patch-seq to assess the presence and effects of microglia in the local microenvironment of recorded neurons. We first quantified the amounts of microglial transcripts in three Patch-seq datasets of human and mouse neocortical neurons, observing extensive contamination. Variation in microglial contamination was explained foremost by donor identity, particularly in human samples, and additionally by neuronal cell type identity in mice. Gene set enrichment analysis suggests that microglial contamination is reflective of activated microglia, and that these transcriptional signatures are distinct from those captured via single-nucleus RNA-seq. Finally, neurons with greater microglial contamination differed markedly in their electrophysiological characteristics, including lowered input resistances and more depolarized action potential thresholds. Our results generalize beyond Patch-seq to suggest that activated microglia may be widely present across brain slice preparations and contribute to neuron- and donor-related electrophysiological variability in vitro.
Collapse
Affiliation(s)
- Keon Arbabi
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yiyue Jiang
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Derek Howard
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anukrati Nigam
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Wataru Inoue
- Robarts Research Institute, Western University, London, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, 3811 O’Hara Street, Pittsburgh, PA 15213, USA
| | - Daniel Felsky
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Shreejoy J. Tripathy
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
120
|
Kallinen A, Mardon K, Lane S, Montgomery AP, Bhalla R, Stimson DHR, Ahamed M, Cowin GJ, Hibbs D, Werry EL, Fulton R, Connor M, Kassiou M. Synthesis and Preclinical Evaluation of Fluorinated 5-Azaindoles as CB2 PET Radioligands. ACS Chem Neurosci 2023; 14:2902-2921. [PMID: 37499194 DOI: 10.1021/acschemneuro.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Several classes of cannabinoid receptor type 2 radioligands have been evaluated for imaging of neuroinflammation, with successful clinical translation yet to take place. Here we describe the synthesis of fluorinated 5-azaindoles and pharmacological characterization and in vivo evaluation of 18F-radiolabeled analogues. [18F]2 (hCB2 Ki = 96.5 nM) and [18F]9 (hCB2 Ki = 7.7 nM) were prepared using Cu-mediated 18F-fluorination with non-decay-corrected radiochemical yields of 15 ± 6% and 18 ± 2% over 85 and 80 min, respectively, with high radiochemical purities (>97%) and molar activities (140-416 GBq/μmol). In PET imaging studies in rats, both [18F]2 and [18F]9 demonstrated specific binding in CB2-rich spleen after pretreatment with CB2-specific GW405833. Moreover, [18F]9 exhibited higher brain uptake at later time points in a murine model of neuroinflammation compared with a healthy control group. The results suggest further evaluation of azaindole based CB2 radioligands is warranted in other neuroinflammation models.
Collapse
Affiliation(s)
- Annukka Kallinen
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Karine Mardon
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samuel Lane
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | - Muneer Ahamed
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gary J Cowin
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David Hibbs
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roger Fulton
- Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Mark Connor
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
121
|
Wang Y, Wu T, Tsai MC, Rezzonico MG, Abdel-Haleem AM, Xie L, Gandham VD, Ngu H, Stark K, Glock C, Xu D, Foreman O, Friedman BA, Sheng M, Hanson JE. TPL2 kinase activity regulates microglial inflammatory responses and promotes neurodegeneration in tauopathy mice. eLife 2023; 12:e83451. [PMID: 37555828 PMCID: PMC10411973 DOI: 10.7554/elife.83451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Tumor progression locus 2 (TPL2) (MAP3K8) is a central signaling node in the inflammatory response of peripheral immune cells. We find that TPL2 kinase activity modulates microglial cytokine release and is required for microglia-mediated neuron death in vitro. In acute in vivo neuroinflammation settings, TPL2 kinase activity regulates microglia activation states and brain cytokine levels. In a tauopathy model of chronic neurodegeneration, loss of TPL2 kinase activity reduces neuroinflammation and rescues synapse loss, brain volume loss, and behavioral deficits. Single-cell RNA sequencing analysis indicates that protection in the tauopathy model was associated with reductions in activated microglia subpopulations as well as infiltrating peripheral immune cells. Overall, using various models, we find that TPL2 kinase activity can promote multiple harmful consequences of microglial activation in the brain including cytokine release, iNOS (inducible nitric oxide synthase) induction, astrocyte activation, and immune cell infiltration. Consequently, inhibiting TPL2 kinase activity could represent a potential therapeutic strategy in neurodegenerative conditions.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| | - Tiffany Wu
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| | - Ming-Chi Tsai
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| | - Mitchell G Rezzonico
- Department of OMNI Bioinformatics, Genentech IncSouth San FranciscoUnited States
| | - Alyaa M Abdel-Haleem
- Computational Science & Exploratory Analytics, Roche IT, Hoffmann-La Roche LimitedMississaugaCanada
| | - Luke Xie
- Department of Translational Imaging, Genentech IncSouth San FranciscoUnited States
| | - Vineela D Gandham
- Department of Translational Imaging, Genentech IncSouth San FranciscoUnited States
| | - Hai Ngu
- Department of Pathology, Genentech IncSouth San FranciscoUnited States
| | - Kimberly Stark
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| | - Caspar Glock
- Department of OMNI Bioinformatics, Genentech IncSouth San FranciscoUnited States
| | - Daqi Xu
- Department of Immunology, Genentech IncSouth San FranciscoUnited States
| | - Oded Foreman
- Department of Pathology, Genentech IncSouth San FranciscoUnited States
| | - Brad A Friedman
- Department of OMNI Bioinformatics, Genentech IncSouth San FranciscoUnited States
| | - Morgan Sheng
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Jesse E Hanson
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| |
Collapse
|
122
|
Gulen MF, Samson N, Keller A, Schwabenland M, Liu C, Glück S, Thacker VV, Favre L, Mangeat B, Kroese LJ, Krimpenfort P, Prinz M, Ablasser A. cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature 2023; 620:374-380. [PMID: 37532932 PMCID: PMC10412454 DOI: 10.1038/s41586-023-06373-1] [Citation(s) in RCA: 355] [Impact Index Per Article: 177.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/27/2023] [Indexed: 08/04/2023]
Abstract
Low-grade inflammation is a hallmark of old age and a central driver of ageing-associated impairment and disease1. Multiple factors can contribute to ageing-associated inflammation2; however, the molecular pathways that transduce aberrant inflammatory signalling and their impact in natural ageing remain unclear. Here we show that the cGAS-STING signalling pathway, which mediates immune sensing of DNA3, is a critical driver of chronic inflammation and functional decline during ageing. Blockade of STING suppresses the inflammatory phenotypes of senescent human cells and tissues, attenuates ageing-related inflammation in multiple peripheral organs and the brain in mice, and leads to an improvement in tissue function. Focusing on the ageing brain, we reveal that activation of STING triggers reactive microglial transcriptional states, neurodegeneration and cognitive decline. Cytosolic DNA released from perturbed mitochondria elicits cGAS activity in old microglia, defining a mechanism by which cGAS-STING signalling is engaged in the ageing brain. Single-nucleus RNA-sequencing analysis of microglia and hippocampi of a cGAS gain-of-function mouse model demonstrates that engagement of cGAS in microglia is sufficient to direct ageing-associated transcriptional microglial states leading to bystander cell inflammation, neurotoxicity and impaired memory capacity. Our findings establish the cGAS-STING pathway as a driver of ageing-related inflammation in peripheral organs and the brain, and reveal blockade of cGAS-STING signalling as a potential strategy to halt neurodegenerative processes during old age.
Collapse
Affiliation(s)
- Muhammet F Gulen
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Natasha Samson
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Alexander Keller
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Marius Schwabenland
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Chong Liu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Selene Glück
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Vivek V Thacker
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Lucie Favre
- Division of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Bastien Mangeat
- Gene Expression Core Facility, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Lona J Kroese
- Animal Modeling Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul Krimpenfort
- Animal Modeling Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- Institute for Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
123
|
Dolan MJ, Therrien M, Jereb S, Kamath T, Gazestani V, Atkeson T, Marsh SE, Goeva A, Lojek NM, Murphy S, White CM, Joung J, Liu B, Limone F, Eggan K, Hacohen N, Bernstein BE, Glass CK, Leinonen V, Blurton-Jones M, Zhang F, Epstein CB, Macosko EZ, Stevens B. Exposure of iPSC-derived human microglia to brain substrates enables the generation and manipulation of diverse transcriptional states in vitro. Nat Immunol 2023; 24:1382-1390. [PMID: 37500887 PMCID: PMC10382323 DOI: 10.1038/s41590-023-01558-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2023] [Indexed: 07/29/2023]
Abstract
Microglia, the macrophages of the brain parenchyma, are key players in neurodegenerative diseases such as Alzheimer's disease. These cells adopt distinct transcriptional subtypes known as states. Understanding state function, especially in human microglia, has been elusive owing to a lack of tools to model and manipulate these cells. Here, we developed a platform for modeling human microglia transcriptional states in vitro. We found that exposure of human stem-cell-differentiated microglia to synaptosomes, myelin debris, apoptotic neurons or synthetic amyloid-beta fibrils generated transcriptional diversity that mapped to gene signatures identified in human brain microglia, including disease-associated microglia, a state enriched in neurodegenerative diseases. Using a new lentiviral approach, we demonstrated that the transcription factor MITF drives a disease-associated transcriptional signature and a highly phagocytic state. Together, these tools enable the manipulation and functional interrogation of human microglial states in both homeostatic and disease-relevant contexts.
Collapse
Affiliation(s)
- Michael-John Dolan
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Martine Therrien
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Saša Jereb
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tushar Kamath
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Vahid Gazestani
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Trevor Atkeson
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel E Marsh
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aleksandrina Goeva
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neal M Lojek
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah Murphy
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | | | - Julia Joung
- Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Department of Brain and Cognitive Science, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
| | - Bingxu Liu
- Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, USA
| | - Francesco Limone
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Leiden University Medical Center, LUMC, Leiden, the Netherlands
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, USA
- Department of Medicine, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Bradley E Bernstein
- Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital and Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, Sue and Bill Gross Stem Cell Research Center, UCI Institute for Memory Impairments and Neurological Disorders, Institute for Immunology, University of California, Irvine, CA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Department of Brain and Cognitive Science, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
| | | | - Evan Z Macosko
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA.
| | - Beth Stevens
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
124
|
Salvador AFM, Dykstra T, Rustenhoven J, Gao W, Blackburn SM, Bhasiin K, Dong MQ, Guimarães RM, Gonuguntla S, Smirnov I, Kipnis J, Herz J. Age-dependent immune and lymphatic responses after spinal cord injury. Neuron 2023; 111:2155-2169.e9. [PMID: 37148871 PMCID: PMC10523880 DOI: 10.1016/j.neuron.2023.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/13/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
Spinal cord injury (SCI) causes lifelong debilitating conditions. Previous works demonstrated the essential role of the immune system in recovery after SCI. Here, we explored the temporal changes of the response after SCI in young and aged mice in order to characterize multiple immune populations within the mammalian spinal cord. We revealed substantial infiltration of myeloid cells to the spinal cord in young animals, accompanied by changes in the activation state of microglia. In contrast, both processes were blunted in aged mice. Interestingly, we discovered the formation of meningeal lymphatic structures above the lesion site, and their role has not been examined after contusive injury. Our transcriptomic data predicted lymphangiogenic signaling between myeloid cells in the spinal cord and lymphatic endothelial cells (LECs) in the meninges after SCI. Together, our findings delineate how aging affects the immune response following SCI and highlight the participation of the spinal cord meninges in supporting vascular repair.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Taitea Dykstra
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Justin Rustenhoven
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland 1023, New Zealand
| | - Wenqing Gao
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Susan M Blackburn
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kesshni Bhasiin
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael Q Dong
- Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Rafaela Mano Guimarães
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Sriharsha Gonuguntla
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Igor Smirnov
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Jasmin Herz
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
125
|
Schmassmann P, Roux J, Buck A, Tatari N, Hogan S, Wang J, Rodrigues Mantuano N, Wieboldt R, Lee S, Snijder B, Kaymak D, Martins TA, Ritz MF, Shekarian T, McDaid M, Weller M, Weiss T, Läubli H, Hutter G. Targeting the Siglec-sialic acid axis promotes antitumor immune responses in preclinical models of glioblastoma. Sci Transl Med 2023; 15:eadf5302. [PMID: 37467314 DOI: 10.1126/scitranslmed.adf5302] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/13/2023] [Indexed: 07/21/2023]
Abstract
Glioblastoma (GBM) is the most aggressive form of primary brain tumor, for which effective therapies are urgently needed. Cancer cells are capable of evading clearance by phagocytes such as microglia- and monocyte-derived cells through engaging tolerogenic programs. Here, we found that high expression of sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) correlates with reduced survival in patients with GBM. Using microglia- and monocyte-derived cell-specific knockouts of Siglec-E, the murine functional homolog of Siglec-9, together with single-cell RNA sequencing, we demonstrated that Siglec-E inhibits phagocytosis by these cells, thereby promoting immune evasion. Loss of Siglec-E on monocyte-derived cells further enhanced antigen cross-presentation and production of pro-inflammatory cytokines, which resulted in more efficient T cell priming. This bridging of innate and adaptive responses delayed tumor growth and resulted in prolonged survival in murine models of GBM. Furthermore, we showed the combinatorial activity of Siglec-E blockade and other immunotherapies demonstrating the potential for targeting Siglec-9 as a treatment for patients with GBM.
Collapse
Affiliation(s)
- Philip Schmassmann
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Julien Roux
- Bioinformatics Core Facility, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
- Swiss Institute of Bioinformatics, 4031 Basel, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Nazanin Tatari
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Sabrina Hogan
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Jinyu Wang
- Cancer Immunotherapy Lab, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Natalia Rodrigues Mantuano
- Cancer Immunotherapy Lab, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Ronja Wieboldt
- Cancer Immunotherapy Lab, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Sohyon Lee
- Institute of Molecular Systems Biology, ETH Zurich, 8049 Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, 8049 Zurich, Switzerland
| | - Deniz Kaymak
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Tomás A Martins
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Marie-Françoise Ritz
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Tala Shekarian
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Marta McDaid
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Heinz Läubli
- Cancer Immunotherapy Lab, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
- Division of Oncology, Department of Theragnostics, University Hospital of Basel, 4031 Basel, Switzerland
| | - Gregor Hutter
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland
| |
Collapse
|
126
|
Sirkis DW, Warly Solsberg C, Johnson TP, Bonham LW, Sturm VE, Lee SE, Rankin KP, Rosen HJ, Boxer AL, Seeley WW, Miller BL, Geier EG, Yokoyama JS. Single-cell RNA-seq reveals alterations in peripheral CX3CR1 and nonclassical monocytes in familial tauopathy. Genome Med 2023; 15:53. [PMID: 37464408 PMCID: PMC10354988 DOI: 10.1186/s13073-023-01205-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Emerging evidence from mouse models is beginning to elucidate the brain's immune response to tau pathology, but little is known about the nature of this response in humans. In addition, it remains unclear to what extent tau pathology and the local inflammatory response within the brain influence the broader immune system. METHODS To address these questions, we performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from carriers of pathogenic variants in MAPT, the gene encoding tau (n = 8), and healthy non-carrier controls (n = 8). Primary findings from our scRNA-seq analyses were confirmed and extended via flow cytometry, droplet digital (dd)PCR, and secondary analyses of publicly available transcriptomics datasets. RESULTS Analysis of ~ 181,000 individual PBMC transcriptomes demonstrated striking differential expression in monocytes and natural killer (NK) cells in MAPT pathogenic variant carriers. In particular, we observed a marked reduction in the expression of CX3CR1-the gene encoding the fractalkine receptor that is known to modulate tau pathology in mouse models-in monocytes and NK cells. We also observed a significant reduction in the abundance of nonclassical monocytes and dysregulated expression of nonclassical monocyte marker genes, including FCGR3A. Finally, we identified reductions in TMEM176A and TMEM176B, genes thought to be involved in the inflammatory response in human microglia but with unclear function in peripheral monocytes. We confirmed the reduction in nonclassical monocytes by flow cytometry and the differential expression of select biologically relevant genes dysregulated in our scRNA-seq data using ddPCR. CONCLUSIONS Our results suggest that human peripheral immune cell expression and abundance are modulated by tau-associated pathophysiologic changes. CX3CR1 and nonclassical monocytes in particular will be a focus of future work exploring the role of these peripheral signals in additional tau-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Caroline Warly Solsberg
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, 94158, USA
| | - Taylor P Johnson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, USA
| | - Virginia E Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA, 94158, USA
- Trinity College Dublin, Dublin, Ireland
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA, 94158, USA
- Trinity College Dublin, Dublin, Ireland
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Department of Pathology, University of California, San Francisco, CA, 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA, 94158, USA
- Trinity College Dublin, Dublin, Ireland
| | - Ethan G Geier
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Transposon Therapeutics, Inc, San Diego, CA, 92122, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA.
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, 94158, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, USA.
- Global Brain Health Institute, University of California, San Francisco, CA, 94158, USA.
- Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
127
|
Perez-Gianmarco L, Kukley M. Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury. Cells 2023; 12:1842. [PMID: 37508505 PMCID: PMC10377788 DOI: 10.3390/cells12141842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Spinal cord injury (SCI) is a condition that affects between 8.8 and 246 people in a million and, unlike many other neurological disorders, it affects mostly young people, causing deficits in sensory, motor, and autonomic functions. Promoting the regrowth of axons is one of the most important goals for the neurological recovery of patients after SCI, but it is also one of the most challenging goals. A key event after SCI is the formation of a glial scar around the lesion core, mainly comprised of astrocytes, NG2+-glia, and microglia. Traditionally, the glial scar has been regarded as detrimental to recovery because it may act as a physical barrier to axon regrowth and release various inhibitory factors. However, more and more evidence now suggests that the glial scar is beneficial for the surrounding spared tissue after SCI. Here, we review experimental studies that used genetic and pharmacological approaches to ablate specific populations of glial cells in rodent models of SCI in order to understand their functional role. The studies showed that ablation of either astrocytes, NG2+-glia, or microglia might result in disorganization of the glial scar, increased inflammation, extended tissue degeneration, and impaired recovery after SCI. Hence, glial cells and glial scars appear as important beneficial players after SCI.
Collapse
Affiliation(s)
- Lucila Perez-Gianmarco
- Achucarro Basque Center for Neuroscience, 48940 Leioa, PC, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, PC, Spain
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, 48940 Leioa, PC, Spain
- IKERBASQUE Basque Foundation for Science, 48009 Bilbao, PC, Spain
| |
Collapse
|
128
|
Shi C, Gottschalk WK, Colton CA, Mukherjee S, Lutz MW. Alzheimer's Disease Protein Relevance Analysis Using Human and Mouse Model Proteomics Data. FRONTIERS IN SYSTEMS BIOLOGY 2023; 3:1085577. [PMID: 37650081 PMCID: PMC10467016 DOI: 10.3389/fsysb.2023.1085577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The principles governing genotype-phenotype relationships are still emerging(1-3), and detailed translational as well as transcriptomic information is required to understand complex phenotypes, such as the pathogenesis of Alzheimer's disease. For this reason, the proteomics of Alzheimer disease (AD) continues to be studied extensively. Although comparisons between data obtained from humans and mouse models have been reported, approaches that specifically address the between-species statistical comparisons are understudied. Our study investigated the performance of two statistical methods for identification of proteins and biological pathways associated with Alzheimer's disease for cross-species comparisons, taking specific data analysis challenges into account, including collinearity, dimensionality reduction and cross-species protein matching. We used a human dataset from a well-characterized cohort followed for over 22 years with proteomic data available. For the mouse model, we generated proteomic data from whole brains of CVN-AD and matching control mouse models. We used these analyses to determine the reliability of a mouse model to forecast significant proteomic-based pathological changes in the brain that may mimic pathology in human Alzheimer's disease. Compared with LASSO regression, partial least squares discriminant analysis provided better statistical performance for the proteomics analysis. The major biological finding of the study was that extracellular matrix proteins and integrin-related pathways were dysregulated in both the human and mouse data. This approach may help inform the development of mouse models that are more relevant to the study of human late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Cathy Shi
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - W. Kirby Gottschalk
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carol A. Colton
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
- Departments of Mathematics, Computer Science, and Biostatistics & Bioinformatics Duke University, Durham, NC 27708, USA
| | - Michael W. Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
129
|
Androvic P, Schifferer M, Perez Anderson K, Cantuti-Castelvetri L, Jiang H, Ji H, Liu L, Gouna G, Berghoff SA, Besson-Girard S, Knoferle J, Simons M, Gokce O. Spatial Transcriptomics-correlated Electron Microscopy maps transcriptional and ultrastructural responses to brain injury. Nat Commun 2023; 14:4115. [PMID: 37433806 DOI: 10.1038/s41467-023-39447-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/14/2023] [Indexed: 07/13/2023] Open
Abstract
Understanding the complexity of cellular function within a tissue necessitates the combination of multiple phenotypic readouts. Here, we developed a method that links spatially-resolved gene expression of single cells with their ultrastructural morphology by integrating multiplexed error-robust fluorescence in situ hybridization (MERFISH) and large area volume electron microscopy (EM) on adjacent tissue sections. Using this method, we characterized in situ ultrastructural and transcriptional responses of glial cells and infiltrating T-cells after demyelinating brain injury in male mice. We identified a population of lipid-loaded "foamy" microglia located in the center of remyelinating lesion, as well as rare interferon-responsive microglia, oligodendrocytes, and astrocytes that co-localized with T-cells. We validated our findings using immunocytochemistry and lipid staining-coupled single-cell RNA sequencing. Finally, by integrating these datasets, we detected correlations between full-transcriptome gene expression and ultrastructural features of microglia. Our results offer an integrative view of the spatial, ultrastructural, and transcriptional reorganization of single cells after demyelinating brain injury.
Collapse
Affiliation(s)
- Peter Androvic
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Katrin Perez Anderson
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Ludovico Cantuti-Castelvetri
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Hanyi Jiang
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Hao Ji
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lu Liu
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Garyfallia Gouna
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Stefan A Berghoff
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Simon Besson-Girard
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Johanna Knoferle
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Mikael Simons
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
130
|
Pérez-Cabello JA, Silvera-Carrasco L, Franco JM, Capilla-González V, Armaos A, Gómez-Lima M, García-García R, Yap XW, Leal-Lasarte M, Lall D, Baloh RH, Martínez S, Miyata Y, Tartaglia GG, Sawarkar R, García-Domínguez M, Pozo D, Roodveldt C. MAPK/MAK/MRK overlapping kinase (MOK) controls microglial inflammatory/type-I IFN responses via Brd4 and is involved in ALS. Proc Natl Acad Sci U S A 2023; 120:e2302143120. [PMID: 37399380 PMCID: PMC10334760 DOI: 10.1073/pnas.2302143120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease affecting motor neurons and characterized by microglia-mediated neurotoxic inflammation whose underlying mechanisms remain incompletely understood. In this work, we reveal that MAPK/MAK/MRK overlapping kinase (MOK), with an unknown physiological substrate, displays an immune function by controlling inflammatory and type-I interferon (IFN) responses in microglia which are detrimental to primary motor neurons. Moreover, we uncover the epigenetic reader bromodomain-containing protein 4 (Brd4) as an effector protein regulated by MOK, by promoting Ser492-phospho-Brd4 levels. We further demonstrate that MOK regulates Brd4 functions by supporting its binding to cytokine gene promoters, therefore enabling innate immune responses. Remarkably, we show that MOK levels are increased in the ALS spinal cord, particularly in microglial cells, and that administration of a chemical MOK inhibitor to ALS model mice can modulate Ser492-phospho-Brd4 levels, suppress microglial activation, and modify the disease course, indicating a pathophysiological role of MOK kinase in ALS and neuroinflammation.
Collapse
Affiliation(s)
- Jesús A. Pérez-Cabello
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| | - Lucía Silvera-Carrasco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| | - Jaime M. Franco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - Vivian Capilla-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - Alexandros Armaos
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova16152, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Genova16152, Italy
| | - María Gómez-Lima
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - Raquel García-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| | - Xin Wen Yap
- The Medical Research Council Toxicology Unit, University of Cambridge, CambridgeCB1 2QR, United Kingdom
| | - Magdalena Leal-Lasarte
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - Deepti Lall
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Robert H. Baloh
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Salvador Martínez
- Instituto de Neurociencias, Universidad Miguel Hernández de Elche-CSIC, Alicante03550, Spain
| | - Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto606-8501, Japan
| | - Gian G. Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova16152, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Genova16152, Italy
- Department of Biology and Biotechnologies, University Sapienza Rome, Rome00185, Italy
| | - Ritwick Sawarkar
- The Medical Research Council Toxicology Unit, University of Cambridge, CambridgeCB1 2QR, United Kingdom
| | - Mario García-Domínguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
| | - David Pozo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| | - Cintia Roodveldt
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Seville41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville41009, Spain
| |
Collapse
|
131
|
Arber C, Casey JM, Crawford S, Rambarack N, Yaman U, Wiethoff S, Augustin E, Piers TM, Rostagno A, Ghiso J, Lewis PA, Revesz T, Hardy J, Pocock JM, Houlden H, Schott JM, Salih DA, Lashley T, Wray S. Microglia produce the amyloidogenic ABri peptide in familial British dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546552. [PMID: 37425748 PMCID: PMC10327149 DOI: 10.1101/2023.06.27.546552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mutations in ITM2B cause familial British, Danish, Chinese and Korean dementias. In familial British dementia (FBD) a mutation in the stop codon of the ITM2B gene (also known as BRI2 ) causes a C-terminal cleavage fragment of the ITM2B/BRI2 protein to be extended by 11 amino acids. This fragment, termed amyloid-Bri (ABri), is highly insoluble and forms extracellular plaques in the brain. ABri plaques are accompanied by tau pathology, neuronal cell death and progressive dementia, with striking parallels to the aetiology and pathogenesis of Alzheimer's disease. The molecular mechanisms underpinning FBD are ill-defined. Using patient-derived induced pluripotent stem cells, we show that expression of ITM2B/BRI2 is 34-fold higher in microglia than neurons, and 15-fold higher in microglia compared with astrocytes. This cell-specific enrichment is supported by expression data from both mouse and human brain tissue. ITM2B/BRI2 protein levels are higher in iPSC-microglia compared with neurons and astrocytes. Consequently, the ABri peptide was detected in patient iPSC-derived microglial lysates and conditioned media but was undetectable in patient-derived neurons and control microglia. Pathological examination of post-mortem tissue support ABri expression in microglia that are in proximity to pre-amyloid deposits. Finally, gene co-expression analysis supports a role for ITM2B/BRI2 in disease-associated microglial responses. These data demonstrate that microglia are the major contributors to the production of amyloid forming peptides in FBD, potentially acting as instigators of neurodegeneration. Additionally, these data also suggest ITM2B/BRI2 may be part of a microglial response to disease, motivating further investigations of its role in microglial activation. This has implications for our understanding of the role of microglia and the innate immune response in the pathogenesis of FBD and other neurodegenerative dementias including Alzheimer's disease.
Collapse
|
132
|
Yan YW, Qian ES, Woodard LE, Bejoy J. Neural lineage differentiation of human pluripotent stem cells: Advances in disease modeling. World J Stem Cells 2023; 15:530-547. [PMID: 37424945 PMCID: PMC10324500 DOI: 10.4252/wjsc.v15.i6.530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 06/20/2023] Open
Abstract
Brain diseases affect 1 in 6 people worldwide. These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease. Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models, tissue culture models, and epidemiologic patient data that are commonly used to study brain disease. One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells (hPSCs) to neural lineages including neurons, astrocytes, and oligodendrocytes. Three-dimensional models such as brain organoids have also been derived from hPSCs, offering more physiological relevance due to their incorporation of various cell types. As such, brain organoids can better model the pathophysiology of neural diseases observed in patients. In this review, we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models.
Collapse
Affiliation(s)
- Yuan-Wei Yan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Eddie S Qian
- Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Lauren E Woodard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Julie Bejoy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
133
|
Muñoz Herrera OM, Hong BV, Ruiz Mendiola U, Maezawa I, Jin LW, Lebrilla CB, Harvey DJ, Zivkovic AM. Cholesterol, Amyloid Beta, Fructose, and LPS Influence ROS and ATP Concentrations and the Phagocytic Capacity of HMC3 Human Microglia Cell Line. Int J Mol Sci 2023; 24:10396. [PMID: 37373543 PMCID: PMC10299308 DOI: 10.3390/ijms241210396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Research has found that genes specific to microglia are among the strongest risk factors for Alzheimer's disease (AD) and that microglia are critically involved in the etiology of AD. Thus, microglia are an important therapeutic target for novel approaches to the treatment of AD. High-throughput in vitro models to screen molecules for their effectiveness in reversing the pathogenic, pro-inflammatory microglia phenotype are needed. In this study, we used a multi-stimulant approach to test the usefulness of the human microglia cell 3 (HMC3) cell line, immortalized from a human fetal brain-derived primary microglia culture, in duplicating critical aspects of the dysfunctional microglia phenotype. HMC3 microglia were treated with cholesterol (Chol), amyloid beta oligomers (AβO), lipopolysaccharide (LPS), and fructose individually and in combination. HMC3 microglia demonstrated changes in morphology consistent with activation when treated with the combination of Chol + AβO + fructose + LPS. Multiple treatments increased the cellular content of Chol and cholesteryl esters (CE), but only the combination treatment of Chol + AβO + fructose + LPS increased mitochondrial Chol content. Microglia treated with combinations containing Chol + AβO had lower apolipoprotein E (ApoE) secretion, with the combination of Chol + AβO + fructose + LPS having the strongest effect. Combination treatment with Chol + AβO + fructose + LPS also induced APOE and TNF-α expression, reduced ATP production, increased reactive oxygen species (ROS) concentration, and reduced phagocytosis events. These findings suggest that HMC3 microglia treated with the combination of Chol + AβO + fructose + LPS may be a useful high-throughput screening model amenable to testing on 96-well plates to test potential therapeutics to improve microglial function in the context of AD.
Collapse
Affiliation(s)
- Oscar M. Muñoz Herrera
- Department of Nutrition, University of California, Davis, CA 95616, USA; (O.M.M.H.); (B.V.H.)
| | - Brian V. Hong
- Department of Nutrition, University of California, Davis, CA 95616, USA; (O.M.M.H.); (B.V.H.)
| | - Ulises Ruiz Mendiola
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA; (U.R.M.); (I.M.); (L.-W.J.)
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA; (U.R.M.); (I.M.); (L.-W.J.)
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA; (U.R.M.); (I.M.); (L.-W.J.)
| | | | - Danielle J. Harvey
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA;
| | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA; (O.M.M.H.); (B.V.H.)
| |
Collapse
|
134
|
Williams T, Bathe T, Vo Q, Sacilotto P, McFarland K, Ruiz AJ, Hery GP, Sullivan P, Borchelt DR, Prokop S, Chakrabarty P. Humanized APOE genotypes influence lifespan independently of tau aggregation in the P301S mouse model of tauopathy. Acta Neuropathol Commun 2023; 11:99. [PMID: 37337279 DOI: 10.1186/s40478-023-01581-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
Apolipoprotein (APOE) E4 isoform is a major risk factor of Alzheimer's disease and contributes to metabolic and neuropathological abnormalities during brain aging. To provide insights into whether APOE4 genotype is related to tau-associated neurodegeneration, we have generated human P301S mutant tau transgenic mice (PS19) that carry humanized APOE alleles (APOE2, APOE3 or APOE4). In aging mice that succumbed to paralysis, PS19 mice homozygous for APOE3 had the longest lifespan when compared to APOE4 and APOE2 homozygous mice (APOE3 > APOE4 ~ APOE2). Heterozygous mice with one human APOE and one mouse Apoe allele did not show any variations in lifespan. At end-stage, PS19 mice homozygous for APOE3 and APOE4 showed equivalent levels of phosphorylated tau burden, inflammation levels and ventricular volumes. Compared to these cohorts, PS19 mice homozygous for APOE2 showed lower induction of phosphorylation on selective epitopes, though the effect sizes were small and variable. In spite of this, the APOE2 cohort showed shorter lifespan relative to APOE3 homozygous mice. None of the cohorts accumulated appreciable levels of phosphorylated tau compartmentalized in the insoluble cell fraction. RNAseq analysis showed that the induction of immune gene expression was comparable across all the APOE genotypes in PS19 mice. Notably, the APOE4 homozygous mice showed additional induction of transcripts corresponding to the Alzheimer's disease-related plaque-induced gene signature. In human Alzheimer's disease brain tissues, we found no direct correlation between higher burden of phosphorylated tau and APOE4 genotype. As expected, there was a strong correlation between phosphorylated tau burden with amyloid deposition in APOE4-positive Alzheimer's disease cases. Overall, our results indicate that APOE3 genotype may confer some resilience to tauopathy, while APOE4 and APOE2 may act through multiple pathways to increase the pathogenicity in the context of tauopathy.
Collapse
Affiliation(s)
- Tristan Williams
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- Eli Lilly & Company, Indianapolis, IN, 46285, USA
| | - Tim Bathe
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Patricia Sacilotto
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Karen McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
| | - Alejandra Jolie Ruiz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Gabriela P Hery
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | | | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32608, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
135
|
Walgrave H, Penning A, Tosoni G, Snoeck S, Davie K, Davis E, Wolfs L, Sierksma A, Mars M, Bu T, Thrupp N, Zhou L, Moechars D, Mancuso R, Fiers M, Howden AJ, De Strooper B, Salta E. microRNA-132 regulates gene expression programs involved in microglial homeostasis. iScience 2023; 26:106829. [PMID: 37250784 PMCID: PMC10213004 DOI: 10.1016/j.isci.2023.106829] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
microRNA-132 (miR-132), a known neuronal regulator, is one of the most robustly downregulated microRNAs (miRNAs) in the brain of Alzheimer's disease (AD) patients. Increasing miR-132 in AD mouse brain ameliorates amyloid and Tau pathologies, and also restores adult hippocampal neurogenesis and memory deficits. However, the functional pleiotropy of miRNAs requires in-depth analysis of the effects of miR-132 supplementation before it can be moved forward for AD therapy. We employ here miR-132 loss- and gain-of-function approaches using single-cell transcriptomics, proteomics, and in silico AGO-CLIP datasets to identify molecular pathways targeted by miR-132 in mouse hippocampus. We find that miR-132 modulation significantly affects the transition of microglia from a disease-associated to a homeostatic cell state. We confirm the regulatory role of miR-132 in shifting microglial cell states using human microglial cultures derived from induced pluripotent stem cells.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Amber Penning
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Giorgia Tosoni
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Sarah Snoeck
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Bioinformatics Core Facility, 3000 Leuven, Belgium
| | - Emma Davis
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Leen Wolfs
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Annerieke Sierksma
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Mayte Mars
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Taofeng Bu
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Nicola Thrupp
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Lujia Zhou
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Diederik Moechars
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Andrew J.M. Howden
- UK Dementia Research Institute, University of Dundee, Dundee DD1 4HN, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
136
|
Byrnes AE, Dominguez SL, Yen CW, Laufer BI, Foreman O, Reichelt M, Lin H, Sagolla M, Hötzel K, Ngu H, Soendergaard C, Estevez A, Lin HC, Goyon A, Bian J, Lin J, Hinz FI, Friedman BA, Easton A, Hoogenraad CC. Lipid nanoparticle delivery limits antisense oligonucleotide activity and cellular distribution in the brain after intracerebroventricular injection. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:773-793. [PMID: 37346977 PMCID: PMC10280097 DOI: 10.1016/j.omtn.2023.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
Antisense oligonucleotide (ASO) therapeutics are being investigated for a broad range of neurological diseases. While ASOs have been effective in the clinic, improving productive ASO internalization into target cells remains a key area of focus in the field. Here, we investigated how the delivery of ASO-loaded lipid nanoparticles (LNPs) affects ASO activity, subcellular trafficking, and distribution in the brain. We show that ASO-LNPs increase ASO activity up to 100-fold in cultured primary brain cells as compared to non-encapsulated ASO. However, in contrast to the widespread ASO uptake and activity observed following free ASO delivery in vivo, LNP-delivered ASOs did not downregulate mRNA levels throughout the brain after intracerebroventricular injection. This lack of activity was likely due to ASO accumulation in cells lining the ventricles and blood vessels. Furthermore, we reveal a formulation-dependent activation of the immune system post dosing, suggesting that LNP encapsulation cannot mask cellular ASO backbone-mediated toxicities. Together, these data provide insights into how LNP encapsulation affects ASO distribution as well as activity in the brain, and a foundation that enables future optimization of brain-targeting ASO-LNPs.
Collapse
Affiliation(s)
- Amy E. Byrnes
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Sara L. Dominguez
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Chun-Wan Yen
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Benjamin I. Laufer
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Mike Reichelt
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Han Lin
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Meredith Sagolla
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Kathy Hötzel
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Christoffer Soendergaard
- Pharmaceutical Research and Early Development, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Alberto Estevez
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Hsiu-Chao Lin
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Alexandre Goyon
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Juan Bian
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jessica Lin
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Flora I. Hinz
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Brad A. Friedman
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Amy Easton
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | | |
Collapse
|
137
|
Mei T, Li Y, Orduña Dolado A, Li Z, Andersson R, Berliocchi L, Rasmussen LJ. Pooled analysis of frontal lobe transcriptomic data identifies key mitophagy gene changes in Alzheimer's disease brain. Front Aging Neurosci 2023; 15:1101216. [PMID: 37358952 PMCID: PMC10288858 DOI: 10.3389/fnagi.2023.1101216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Background The growing prevalence of Alzheimer's disease (AD) is becoming a global health challenge without effective treatments. Defective mitochondrial function and mitophagy have recently been suggested as etiological factors in AD, in association with abnormalities in components of the autophagic machinery like lysosomes and phagosomes. Several large transcriptomic studies have been performed on different brain regions from AD and healthy patients, and their data represent a vast source of important information that can be utilized to understand this condition. However, large integration analyses of these publicly available data, such as AD RNA-Seq data, are still missing. In addition, large-scale focused analysis on mitophagy, which seems to be relevant for the aetiology of the disease, has not yet been performed. Methods In this study, publicly available raw RNA-Seq data generated from healthy control and sporadic AD post-mortem human samples of the brain frontal lobe were collected and integrated. Sex-specific differential expression analysis was performed on the combined data set after batch effect correction. From the resulting set of differentially expressed genes, candidate mitophagy-related genes were identified based on their known functional roles in mitophagy, the lysosome, or the phagosome, followed by Protein-Protein Interaction (PPI) and microRNA-mRNA network analysis. The expression changes of candidate genes were further validated in human skin fibroblast and induced pluripotent stem cells (iPSCs)-derived cortical neurons from AD patients and matching healthy controls. Results From a large dataset (AD: 589; control: 246) based on three different datasets (i.e., ROSMAP, MSBB, & GSE110731), we identified 299 candidate mitophagy-related differentially expressed genes (DEG) in sporadic AD patients (male: 195, female: 188). Among these, the AAA ATPase VCP, the GTPase ARF1, the autophagic vesicle forming protein GABARAPL1 and the cytoskeleton protein actin beta ACTB were selected based on network degrees and existing literature. Changes in their expression were further validated in AD-relevant human in vitro models, which confirmed their down-regulation in AD conditions. Conclusion Through the joint analysis of multiple publicly available data sets, we identify four differentially expressed key mitophagy-related genes potentially relevant for the pathogenesis of sporadic AD. Changes in expression of these four genes were validated using two AD-relevant human in vitro models, primary human fibroblasts and iPSC-derived neurons. Our results provide foundation for further investigation of these genes as potential biomarkers or disease-modifying pharmacological targets.
Collapse
Affiliation(s)
- Taoyu Mei
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Orduña Dolado
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura Berliocchi
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
138
|
Lorenzini I, Alsop E, Levy J, Gittings LM, Lall D, Rabichow BE, Moore S, Pevey R, Bustos LM, Burciu C, Bhatia D, Singer M, Saul J, McQuade A, Tzioras M, Mota TA, Logemann A, Rose J, Almeida S, Gao FB, Marks M, Donnelly CJ, Hutchins E, Hung ST, Ichida J, Bowser R, Spires-Jones T, Blurton-Jones M, Gendron TF, Baloh RH, Van Keuren-Jensen K, Sattler R. Moderate intrinsic phenotypic alterations in C9orf72 ALS/FTD iPSC-microglia despite the presence of C9orf72 pathological features. Front Cell Neurosci 2023; 17:1179796. [PMID: 37346371 PMCID: PMC10279871 DOI: 10.3389/fncel.2023.1179796] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
While motor and cortical neurons are affected in C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), it remains largely unknown if and how non-neuronal cells induce or exacerbate neuronal damage. We differentiated C9orf72 ALS/FTD patient-derived induced pluripotent stem cells into microglia (iPSC-MG) and examined their intrinsic phenotypes. Similar to iPSC motor neurons, C9orf72 ALS/FTD iPSC-MG mono-cultures form G4C2 repeat RNA foci, exhibit reduced C9orf72 protein levels, and generate dipeptide repeat proteins. Healthy control and C9orf72 ALS/FTD iPSC-MG equally express microglial specific genes and perform microglial functions, including inflammatory cytokine release and phagocytosis of extracellular cargos, such as synthetic amyloid beta peptides and healthy human brain synaptoneurosomes. RNA sequencing analysis revealed select transcriptional changes of genes associated with neuroinflammation or neurodegeneration in diseased microglia yet no significant differentially expressed microglial-enriched genes. Moderate molecular and functional differences were observed in C9orf72 iPSC-MG mono-cultures despite the presence of C9orf72 pathological features suggesting that a diseased microenvironment may be required to induce phenotypic changes in microglial cells and the associated neuronal dysfunction seen in C9orf72 ALS/FTD neurodegeneration.
Collapse
Affiliation(s)
- Ileana Lorenzini
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Eric Alsop
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Jennifer Levy
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Lauren M. Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Deepti Lall
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Regenerative Medicine Institute, Los Angeles, CA, United States
| | - Benjamin E. Rabichow
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Stephen Moore
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Ryan Pevey
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Lynette M. Bustos
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Camelia Burciu
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Divya Bhatia
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Mo Singer
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Justin Saul
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Amanda McQuade
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Makis Tzioras
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Discovery Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas A. Mota
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Regenerative Medicine Institute, Los Angeles, CA, United States
| | - Amber Logemann
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Jamie Rose
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Discovery Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Michael Marks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher J. Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Shu-Ting Hung
- Department of Stem Cell Biology Regenerative Medicine, USC Keck School of Medicine, Los Angeles, CA, United States
| | - Justin Ichida
- Department of Stem Cell Biology Regenerative Medicine, USC Keck School of Medicine, Los Angeles, CA, United States
| | - Robert Bowser
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Tara Spires-Jones
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Discovery Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Robert H. Baloh
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Regenerative Medicine Institute, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
139
|
Cerneckis J, Shi Y. Modeling brain macrophage biology and neurodegenerative diseases using human iPSC-derived neuroimmune organoids. Front Cell Neurosci 2023; 17:1198715. [PMID: 37342768 PMCID: PMC10277621 DOI: 10.3389/fncel.2023.1198715] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
140
|
Kapellos TS, Nawijn MC. Editorial: Molecular mechanisms regulating phenotypic heterogeneity in human inflammatory diseases. Front Immunol 2023; 14:1214255. [PMID: 37266418 PMCID: PMC10231677 DOI: 10.3389/fimmu.2023.1214255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Theodore S. Kapellos
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Martijn C. Nawijn
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
141
|
Marino KM, Squirrell JM, Chacko JV, Watters JW, Eliceiri KW, Ulland TK. Metabolic response of microglia to amyloid deposition during Alzheimer's disease progression in a mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540407. [PMID: 37214940 PMCID: PMC10197659 DOI: 10.1101/2023.05.12.540407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alzheimer's disease (AD) drives metabolic changes in the central nervous system (CNS). In AD microglia are activated and proliferate in response to amyloid β plaques. To further characterize the metabolic changes in microglia associated with plaque deposition in situ, we examined cortical tissue from 2, 4, and 8-month-old wild type and 5XFAD mice, a mouse model of plaque deposition. 5XFAD mice exhibited progressive microgliosis and plaque deposition as well as changes in microglial morphology and neuronal dystrophy. Multiphoton-based fluorescent lifetime imaging microscopy (FLIM) metabolic measurements showed that older mice had an increased amount of free NAD(P)H, indicative of a shift towards glycolysis. Interestingly in 5XFAD mice, we also found an abundant previously undescribed third fluorescence component that suggests an alternate NAD(P)H binding partner associated with pathology. This work demonstrates that FLIM in combination with other quantitative imaging methods, is a promising label-free tool for understanding the mechanisms of AD pathology.
Collapse
Affiliation(s)
- Kaitlyn M. Marino
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jayne M. Squirrell
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jenu V. Chacko
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jyoti W. Watters
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kevin W. Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Departments of Biomedical Engineering and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tyler K. Ulland
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
142
|
Brioschi S, Belk JA, Peng V, Molgora M, Rodrigues PF, Nguyen KM, Wang S, Du S, Wang WL, Grajales-Reyes GE, Ponce JM, Yuede CM, Li Q, Baer JM, DeNardo DG, Gilfillan S, Cella M, Satpathy AT, Colonna M. A Cre-deleter specific for embryo-derived brain macrophages reveals distinct features of microglia and border macrophages. Immunity 2023; 56:1027-1045.e8. [PMID: 36791722 PMCID: PMC10175109 DOI: 10.1016/j.immuni.2023.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/27/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Genetic tools to target microglia specifically and efficiently from the early stages of embryonic development are lacking. We generated a constitutive Cre line controlled by the microglia signature gene Crybb1 that produced nearly complete recombination in embryonic brain macrophages (microglia and border-associated macrophages [BAMs]) by the perinatal period, with limited recombination in peripheral myeloid cells. Using this tool in combination with Flt3-Cre lineage tracer, single-cell RNA-sequencing analysis, and confocal imaging, we resolved embryonic-derived versus monocyte-derived BAMs in the mouse cortex. Deletion of the transcription factor SMAD4 in microglia and embryonic-derived BAMs using Crybb1-Cre caused a developmental arrest of microglia, which instead acquired a BAM specification signature. By contrast, the development of genuine BAMs remained unaffected. Our results reveal that SMAD4 drives a transcriptional and epigenetic program that is indispensable for the commitment of brain macrophages to the microglia fate and highlight Crybb1-Cre as a tool for targeting embryonic brain macrophages.
Collapse
Affiliation(s)
- Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA.
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Patrick Fernandes Rodrigues
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Khai M Nguyen
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Shoutang Wang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Siling Du
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Wei-Le Wang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Jennifer M Ponce
- McDonnell Genome Institute, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Qingyun Li
- Department of Neuroscience, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; Department of Genetics, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - John M Baer
- Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - David G DeNardo
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; Siteman Cancer Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
143
|
Kuchroo M, DiStasio M, Song E, Calapkulu E, Zhang L, Ige M, Sheth AH, Majdoubi A, Menon M, Tong A, Godavarthi A, Xing Y, Gigante S, Steach H, Huang J, Huguet G, Narain J, You K, Mourgkos G, Dhodapkar RM, Hirn MJ, Rieck B, Wolf G, Krishnaswamy S, Hafler BP. Single-cell analysis reveals inflammatory interactions driving macular degeneration. Nat Commun 2023; 14:2589. [PMID: 37147305 PMCID: PMC10162998 DOI: 10.1038/s41467-023-37025-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/27/2023] [Indexed: 05/07/2023] Open
Abstract
Due to commonalities in pathophysiology, age-related macular degeneration (AMD) represents a uniquely accessible model to investigate therapies for neurodegenerative diseases, leading us to examine whether pathways of disease progression are shared across neurodegenerative conditions. Here we use single-nucleus RNA sequencing to profile lesions from 11 postmortem human retinas with age-related macular degeneration and 6 control retinas with no history of retinal disease. We create a machine-learning pipeline based on recent advances in data geometry and topology and identify activated glial populations enriched in the early phase of disease. Examining single-cell data from Alzheimer's disease and progressive multiple sclerosis with our pipeline, we find a similar glial activation profile enriched in the early phase of these neurodegenerative diseases. In late-stage age-related macular degeneration, we identify a microglia-to-astrocyte signaling axis mediated by interleukin-1β which drives angiogenesis characteristic of disease pathogenesis. We validated this mechanism using in vitro and in vivo assays in mouse, identifying a possible new therapeutic target for AMD and possibly other neurodegenerative conditions. Thus, due to shared glial states, the retina provides a potential system for investigating therapeutic approaches in neurodegenerative diseases.
Collapse
Affiliation(s)
- Manik Kuchroo
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | | | - Eric Song
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
| | - Eda Calapkulu
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
| | - Le Zhang
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Maryam Ige
- Yale School of Medicine, New Haven, CT, USA
| | | | - Abdelilah Majdoubi
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
| | - Madhvi Menon
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Alexander Tong
- Department of Computer Science, Yale University, New Haven, CT, USA
| | | | - Yu Xing
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
| | - Scott Gigante
- Computational Biology, Bioinformatics Program, Yale University, New Haven, CT, USA
| | - Holly Steach
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jessie Huang
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Guillaume Huguet
- Mila-Quebec AI institute, Montréal, QC, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
| | - Janhavi Narain
- Department of Computer Science, Rutgers University, New Brunswick, NJ, USA
| | - Kisung You
- Department of Genetics, Yale University, New Haven, CT, USA
| | - George Mourgkos
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
| | | | - Matthew J Hirn
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Mathematics, Michigan State University, East Lansing, MI, USA
| | - Bastian Rieck
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Guy Wolf
- Mila-Quebec AI institute, Montréal, QC, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
| | - Smita Krishnaswamy
- Department of Computer Science, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale University, New Haven, CT, USA.
| | - Brian P Hafler
- Department of Pathology, Yale University, New Haven, CT, USA.
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
144
|
Brase L, You SF, D'Oliveira Albanus R, Del-Aguila JL, Dai Y, Novotny BC, Soriano-Tarraga C, Dykstra T, Fernandez MV, Budde JP, Bergmann K, Morris JC, Bateman RJ, Perrin RJ, McDade E, Xiong C, Goate AM, Farlow M, Sutherland GT, Kipnis J, Karch CM, Benitez BA, Harari O. Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers. Nat Commun 2023; 14:2314. [PMID: 37085492 PMCID: PMC10121712 DOI: 10.1038/s41467-023-37437-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Genetic studies of Alzheimer disease (AD) have prioritized variants in genes related to the amyloid cascade, lipid metabolism, and neuroimmune modulation. However, the cell-specific effect of variants in these genes is not fully understood. Here, we perform single-nucleus RNA-sequencing (snRNA-seq) on nearly 300,000 nuclei from the parietal cortex of AD autosomal dominant (APP and PSEN1) and risk-modifying variant (APOE, TREM2 and MS4A) carriers. Within individual cell types, we capture genes commonly dysregulated across variant groups. However, specific transcriptional states are more prevalent within variant carriers. TREM2 oligodendrocytes show a dysregulated autophagy-lysosomal pathway, MS4A microglia have dysregulated complement cascade genes, and APOEε4 inhibitory neurons display signs of ferroptosis. All cell types have enriched states in autosomal dominant carriers. We leverage differential expression and single-nucleus ATAC-seq to map GWAS signals to effector cell types including the NCK2 signal to neurons in addition to the initially proposed microglia. Overall, our results provide insights into the transcriptional diversity resulting from AD genetic architecture and cellular heterogeneity. The data can be explored on the online browser ( http://web.hararilab.org/SNARE/ ).
Collapse
Affiliation(s)
- Logan Brase
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shih-Feng You
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ricardo D'Oliveira Albanus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Yaoyi Dai
- Baylor College of Medicine, Houston, TX, USA
| | - Brenna C Novotny
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Carolina Soriano-Tarraga
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Taitea Dykstra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John P Budde
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John C Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Greg T Sutherland
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Bruno A Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
145
|
Ponnusamy M, Wang S, Yuksel M, Hansen MT, Blazier DM, McMillan JD, Zhang X, Dammer EB, Collier L, Thinakaran G. Loss of forebrain BIN1 attenuates hippocampal pathology and neuroinflammation in a tauopathy model. Brain 2023; 146:1561-1579. [PMID: 36059072 PMCID: PMC10319775 DOI: 10.1093/brain/awac318] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bridging integrator 1 (BIN1) is the second most prevalent genetic risk factor identified by genome-wide association studies (GWAS) for late-onset Alzheimer's disease. BIN1 encodes an adaptor protein that regulates membrane dynamics in the context of endocytosis and neurotransmitter vesicle release. In vitro evidence suggests that BIN1 can directly bind to tau in the cytosol. In addition, BIN1's function limits extracellular tau seed uptake by endocytosis and subsequent propagation as well as influences tau release through exosomes. However, the in vivo roles of BIN1 in tau pathogenesis and tauopathy-mediated neurodegeneration remain uncharacterized. We generated conditional knockout mice with a selective loss of Bin1 expression in the forebrain excitatory neurons and oligodendrocytes in P301S human tau transgenic background (line PS19). PS19 mice develop age-dependent tau neuropathology and motor deficits and are commonly used to study Alzheimer's disease tau pathophysiology. The severity of motor deficits and neuropathology was compared between experimental and control mice that differ with respect to forebrain BIN1 expression. BIN1's involvement in tau pathology and neuroinflammation was quantified by biochemical methods and immunostaining. Transcriptome changes were profiled by RNA-sequencing analysis to gain molecular insights. The loss of forebrain BIN1 expression in PS19 mice exacerbated tau pathology in the somatosensory cortex, thalamus, spinal cord and sciatic nerve, accelerated disease progression and caused early death. Intriguingly, the loss of BIN1 also mitigated tau neuropathology in select regions, including the hippocampus, entorhinal/piriform cortex, and amygdala, thus attenuating hippocampal synapse loss, neuronal death, neuroinflammation and brain atrophy. At the molecular level, the loss of forebrain BIN1 elicited complex neuronal and non-neuronal transcriptomic changes, including altered neuroinflammatory gene expression, concomitant with an impaired microglial transition towards the disease-associated microglial phenotype. These results provide crucial new information on in vivo BIN1 function in the context of tau pathogenesis. We conclude that forebrain neuronal BIN1 expression promotes hippocampal tau pathogenesis and neuroinflammation. Our findings highlight an exciting region specificity in neuronal BIN1 regulation of tau pathogenesis and reveal cell-autonomous and non-cell-autonomous mechanisms involved in BIN1 modulation of tau neuropathology.
Collapse
Affiliation(s)
- Moorthi Ponnusamy
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Shuai Wang
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Melike Yuksel
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Mitchell T Hansen
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Danielle M Blazier
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Joseph D McMillan
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Xiaolin Zhang
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Lisa Collier
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Gopal Thinakaran
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
146
|
Wishart CL, Spiteri AG, Locatelli G, King NJC. Integrating transcriptomic datasets across neurological disease identifies unique myeloid subpopulations driving disease-specific signatures. Glia 2023; 71:904-925. [PMID: 36527260 PMCID: PMC10952672 DOI: 10.1002/glia.24314] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Microglia and bone marrow-derived monocytes are key elements of central nervous system (CNS) inflammation, both capable of enhancing and dampening immune-mediated pathology. However, the study-specific focus on individual cell types, disease models or experimental approaches has limited our ability to infer common and disease-specific responses. This meta-analysis integrates bulk and single-cell transcriptomic datasets of microglia and monocytes from disease models of autoimmunity, neurodegeneration, sterile injury, and infection to build a comprehensive resource connecting myeloid responses across CNS disease. We demonstrate that the bulk microglial and monocyte program is highly contingent on the disease environment, challenging the notion of a universal microglial disease signature. Integration of six single-cell RNA-sequencing datasets revealed that these disease-specific signatures are likely driven by differing proportions of unique myeloid subpopulations that were individually expanded in different disease settings. These subsets were functionally-defined as neurodegeneration-associated, inflammatory, interferon-responsive, phagocytic, antigen-presenting, and lipopolysaccharide-responsive cellular states, revealing a core set of myeloid responses at the single-cell level that are conserved across CNS pathology. Showcasing the predictive and practical value of this resource, we performed differential expression analysis on microglia and monocytes across disease and identified Cd81 as a new neuroinflammatory-stable gene that accurately identified microglia and distinguished them from monocyte-derived cells across all experimental models at both the bulk and single-cell level. Together, this resource dissects the influence of disease environment on shared immune response programmes to build a unified perspective of myeloid behavior across CNS pathology.
Collapse
Affiliation(s)
- Claire L. Wishart
- Infection, Immunity, Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Sydney Cytometry FacilityThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
| | - Alanna G. Spiteri
- Infection, Immunity, Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Sydney Cytometry FacilityThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
| | - Giuseppe Locatelli
- Theodor Kocher InstituteUniversity of BernBernSwitzerland
- Novartis Institutes for BioMedical ResearchNovartisBaselSwitzerland
| | - Nicholas J. C. King
- Infection, Immunity, Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Sydney Cytometry FacilityThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of Sydney and Centenary InstituteSydneyNew South WalesAustralia
- Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
- Sydney Institute for Infectious Diseases, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- The University of Sydney Nano Institute, Faculty of ScienceThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
147
|
Cashikar AG, Toral-Rios D, Timm D, Romero J, Strickland M, Long JM, Han X, Holtzman DM, Paul SM. Regulation of astrocyte lipid metabolism and ApoE secretionby the microglial oxysterol, 25-hydroxycholesterol. J Lipid Res 2023; 64:100350. [PMID: 36849076 PMCID: PMC10060115 DOI: 10.1016/j.jlr.2023.100350] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Neuroinflammation, a major hallmark of Alzheimer's disease and several other neurological and psychiatric disorders, is often associated with dysregulated cholesterol metabolism. Relative to homeostatic microglia, activated microglia express higher levels of Ch25h, an enzyme that hydroxylates cholesterol to produce 25-hydroxycholesterol (25HC). 25HC is an oxysterol with interesting immune roles stemming from its ability to regulate cholesterol metabolism. Since astrocytes synthesize cholesterol in the brain and transport it to other cells via ApoE-containing lipoproteins, we hypothesized that secreted 25HC from microglia may influence lipid metabolism as well as extracellular ApoE derived from astrocytes. Here, we show that astrocytes take up externally added 25HC and respond with altered lipid metabolism. Extracellular levels of ApoE lipoprotein particles increased after treatment of astrocytes with 25HC without an increase in Apoe mRNA expression. In mouse astrocytes-expressing human ApoE3 or ApoE4, 25HC promoted extracellular ApoE3 better than ApoE4. Increased extracellular ApoE was due to elevated efflux from increased Abca1 expression via LXRs as well as decreased lipoprotein reuptake from suppressed Ldlr expression via inhibition of SREBP. 25HC also suppressed expression of Srebf2, but not Srebf1, leading to reduced cholesterol synthesis in astrocytes without affecting fatty acid levels. We further show that 25HC promoted the activity of sterol-o-acyl transferase that led to a doubling of the amount of cholesteryl esters and their concomitant storage in lipid droplets. Our results demonstrate an important role for 25HC in regulating astrocyte lipid metabolism.
Collapse
Affiliation(s)
- Anil G Cashikar
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
| | - Danira Toral-Rios
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - David Timm
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Johnathan Romero
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael Strickland
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Justin M Long
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA; Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - David M Holtzman
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA; Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Steven M Paul
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
148
|
Huffels CFM, Middeldorp J, Hol EM. Aß Pathology and Neuron-Glia Interactions: A Synaptocentric View. Neurochem Res 2023; 48:1026-1046. [PMID: 35976488 PMCID: PMC10030451 DOI: 10.1007/s11064-022-03699-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) causes the majority of dementia cases worldwide. Early pathological hallmarks include the accumulation of amyloid-ß (Aß) and activation of both astrocytes and microglia. Neurons form the building blocks of the central nervous system, and astrocytes and microglia provide essential input for its healthy functioning. Their function integrates at the level of the synapse, which is therefore sometimes referred to as the "quad-partite synapse". Increasing evidence puts AD forward as a disease of the synapse, where pre- and postsynaptic processes, as well as astrocyte and microglia functioning progressively deteriorate. Here, we aim to review the current knowledge on how Aß accumulation functionally affects the individual components of the quad-partite synapse. We highlight a selection of processes that are essential to the healthy functioning of the neuronal synapse, including presynaptic neurotransmitter release and postsynaptic receptor functioning. We further discuss how Aß affects the astrocyte's capacity to recycle neurotransmitters, release gliotransmitters, and maintain ion homeostasis. We additionally review literature on how Aß changes the immunoprotective function of microglia during AD progression and conclude by summarizing our main findings and highlighting the challenges in current studies, as well as the need for further research.
Collapse
Affiliation(s)
- Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Neurobiology & Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
149
|
Zahaf A, Kassoussi A, Hutteau-Hamel T, Mellouk A, Marie C, Zoupi L, Tsouki F, Mattern C, Bobé P, Schumacher M, Williams A, Parras C, Traiffort E. Androgens show sex-dependent differences in myelination in immune and non-immune murine models of CNS demyelination. Nat Commun 2023; 14:1592. [PMID: 36949062 PMCID: PMC10033728 DOI: 10.1038/s41467-023-36846-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023] Open
Abstract
Neuroprotective, anti-inflammatory, and remyelinating properties of androgens are well-characterized in demyelinated male mice and men suffering from multiple sclerosis. However, androgen effects mediated by the androgen receptor (AR), have been only poorly studied in females who make low androgen levels. Here, we show a predominant microglial AR expression in demyelinated lesions from female mice and women with multiple sclerosis, but virtually undetectable AR expression in lesions from male animals and men with multiple sclerosis. In female mice, androgens and estrogens act in a synergistic way while androgens drive microglia response towards regeneration. Transcriptomic comparisons of demyelinated mouse spinal cords indicate that, regardless of the sex, androgens up-regulate genes related to neuronal function integrity and myelin production. Depending on the sex, androgens down-regulate genes related to the immune system in females and lipid catabolism in males. Thus, androgens are required for proper myelin regeneration in females and therapeutic approaches of demyelinating diseases need to consider male-female differences.
Collapse
Affiliation(s)
- Amina Zahaf
- U1195 Inserm, Paris-Saclay University, Kremlin-Bicêtre, France
| | | | | | - Amine Mellouk
- UMR996 Inserm, Paris-Saclay University, Clamart, France
| | | | - Lida Zoupi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Foteini Tsouki
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | | | - Pierre Bobé
- UMR996 Inserm, Paris-Saclay University, Clamart, France
| | | | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Carlos Parras
- Paris Brain Institute, Sorbonne University, Paris, France
| | | |
Collapse
|
150
|
Escoubas CC, Dorman LC, Nguyen PT, Lagares-Linares C, Nakajo H, Anderson SR, Cuevas B, Vainchtein ID, Silva NJ, Xiao Y, Lidsky PV, Wang EY, Taloma SE, Nakao-Inoue H, Schwer B, Andino R, Nowakowski TJ, Molofsky AV. Type I interferon responsive microglia shape cortical development and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.04.29.441889. [PMID: 35233577 PMCID: PMC8887080 DOI: 10.1101/2021.04.29.441889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microglia are brain resident phagocytes that can engulf synaptic components and extracellular matrix as well as whole neurons. However, whether there are unique molecular mechanisms that regulate these distinct phagocytic states is unknown. Here we define a molecularly distinct microglial subset whose function is to engulf neurons in the developing brain. We transcriptomically identified a cluster of Type I interferon (IFN-I) responsive microglia that expanded 20-fold in the postnatal day 5 somatosensory cortex after partial whisker deprivation, a stressor that accelerates neural circuit remodeling. In situ, IFN-I responsive microglia were highly phagocytic and actively engulfed whole neurons. Conditional deletion of IFN-I signaling (Ifnar1fl/fl) in microglia but not neurons resulted in dysmorphic microglia with stalled phagocytosis and an accumulation of neurons with double strand DNA breaks, a marker of cell stress. Conversely, exogenous IFN-I was sufficient to drive neuronal engulfment by microglia and restrict the accumulation of damaged neurons. IFN-I deficient mice had excess excitatory neurons in the developing somatosensory cortex as well as tactile hypersensitivity to whisker stimulation. These data define a molecular mechanism through which microglia engulf neurons during a critical window of brain development. More broadly, they reveal key homeostatic roles of a canonical antiviral signaling pathway in brain development.
Collapse
Affiliation(s)
- Caroline C. Escoubas
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Leah C. Dorman
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Phi T. Nguyen
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Christian Lagares-Linares
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Haruna Nakajo
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Sarah R. Anderson
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Beatriz Cuevas
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Ilia D. Vainchtein
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Nicholas J. Silva
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Peter V. Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Ellen Y. Wang
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- UCSF SRTP program, University of California, San Francisco, San Francisco, CA
| | - Sunrae E. Taloma
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Hiromi Nakao-Inoue
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Bjoern Schwer
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Tomasz J. Nowakowski
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA
- Chan-Zuckerberg Biohub, San Francisco, CA
| | - Anna V. Molofsky
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA
| |
Collapse
|