101
|
Kammoun H, Roux X, Raze D, Debrie AS, De Filette M, Ysenbaert T, Mielcarek N, Saelens X, Fiers W, Locht C. Immunogenicity of live attenuated B. pertussis BPZE1 producing the universal influenza vaccine candidate M2e. PLoS One 2013; 8:e59198. [PMID: 23555631 PMCID: PMC3602086 DOI: 10.1371/journal.pone.0059198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/11/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Intranasal delivery of vaccines directed against respiratory pathogens is an attractive alternative to parenteral administration. However, using this delivery route for inactivated vaccines usually requires the use of potent mucosal adjuvants, and no such adjuvant has yet been approved for human use. METHODOLOGY/PRINCIPAL FINDINGS We have developed a live attenuated Bordetella pertussis vaccine, called BPZE1, and show here that it can be used to present the universal influenza virus epitope M2e to the mouse respiratory tract to prime for protective immunity against viral challenge. Three copies of M2e were genetically fused to the N-terminal domain of filamentous hemagglutinin (FHA) and produced in recombinant BPZE1 derivatives in the presence or absence of endogenous full-length FHA. Only in the absence of FHA intranasal administration of the recombinant BPZE1 derivative induced antibody responses to M2e and effectively primed BALB/c mice for protection against influenza virus-induced mortality and reduced the viral load after challenge. Strong M2e-specific antibody responses and protection were observed after a single nasal administration with the recombinant BPZE1 derivative, followed by a single administration of M2e linked to a virus-like particle without adjuvant, whereas priming alone with the vaccine strain did not protect. CONCLUSIONS/SIGNIFICANCE Using recombinant FHA-3M2e-producing BPZE1 derivatives for priming and the universal influenza M2e peptide linked to virus-like particles for boosting may constitute a promising approach for needle-free and adjuvant-free nasal vaccination against influenza.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Bordetella pertussis/genetics
- Bordetella pertussis/immunology
- Humans
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Respiratory System/drug effects
- Respiratory System/immunology
- Respiratory System/virology
- Survival Analysis
- Vaccination
- Vaccines, Synthetic
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
- Virulence Factors, Bordetella/genetics
- Virulence Factors, Bordetella/immunology
Collapse
Affiliation(s)
- Hana Kammoun
- Inserm U1019, Lille, France
- CNRS UMR 8204, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Xavier Roux
- Inserm U1019, Lille, France
- CNRS UMR 8204, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Dominique Raze
- Inserm U1019, Lille, France
- CNRS UMR 8204, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Anne-Sophie Debrie
- Inserm U1019, Lille, France
- CNRS UMR 8204, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Marina De Filette
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tine Ysenbaert
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nathalie Mielcarek
- Inserm U1019, Lille, France
- CNRS UMR 8204, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- University Lille Nord de France, Lille, France
| | - Xavier Saelens
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Walter Fiers
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Camille Locht
- Inserm U1019, Lille, France
- CNRS UMR 8204, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- University Lille Nord de France, Lille, France
| |
Collapse
|
102
|
Kobayashi T, Fukushima K, Sannan T, Saito N, Takiguchi Y, Sato Y, Hasegawa H, Ishikawa K. Evaluation of the effectiveness and safety of chitosan derivatives as adjuvants for intranasal vaccines. Viral Immunol 2013; 26:133-42. [PMID: 23509985 DOI: 10.1089/vim.2012.0057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intranasal immunization is currently used to deliver live virus vaccines such as influenza. However, to develop an intranasal vaccine to deliver inactivated virus, a safe and effective adjuvant is necessary to enhance the mucosal immune response. Here, we demonstrate the effectiveness of a chitosan microparticle (1-20 μm, 50 kDa, degree of deacetylation=85%) and a cationized chitosan (1000 kDa, degree of deacetylation=85%) derived from natural crab shells as adjuvants for an intranasal vaccine candidate. We examined the effectiveness of chitosan derivatives as an adjuvant by co-administering them with ovalbumin (OVA) intranasally in BALB/c mice, polymeric Ig receptor knockout (pIgR-KO) mice, and cynomolgus monkeys (Macaca fascicularis). pIgR-KO mice were used to evaluate S-IgA production on the mucosal surface without nasal swab collection. Administration of OVA with chitosan microparticles or cationized chitosan induced a high OVA-specific IgA response in the serum of pIgR-KO mice and a high IgG response in the serum of BALB/c mice and cynomolgus monkeys. We also found that administration of chitosan derivatives did not have a detrimental effect on cynomolgus monkeys as determined by complete blood count, blood chemistries, and gross pathology results. These results suggest that chitosan derivatives are safe and effective mucosal adjuvants for intranasal vaccination.
Collapse
Affiliation(s)
- Takashi Kobayashi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Human milk oligosaccharides inhibit rotavirus infectivity in vitro and in acutely infected piglets. Br J Nutr 2013; 110:1233-42. [PMID: 23442265 DOI: 10.1017/s0007114513000391] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human milk (HM) is rich in oligosaccharides (HMO) that exert prebiotic and anti-infective activities. HM feeding reduces the incidence of rotavirus (RV) infection in infants. Herein, the anti-RV activity of oligosaccharides was tested in an established in vitro system for assessing cellular binding and viral infectivity/replication, and also tested in a newly developed, acute RV infection, in situ piglet model. For the in vitro work, crude HMO isolated from pooled HM, neutral HMO (lacto-N-neotetraose, LNnT; 2'-fucosyllactose) and acidic HMO (aHMO, '-sialyllactose, 3'-SL; -sialyllactose, -SL) were tested against the porcine OSU strain and human RV Wa strain. The RV Wa strain was not inhibited by any oligosaccharides. However, the RV OSU strain infectivity was dose-dependently inhibited by sialic acid (SA)-containing HMO. 3'-SL and 6'-SL concordantly inhibited (125)I-radiolabelled RV cellular binding and infectivity/replication. For the in situ study, a midline laparotomy was performed on 21-d-old formula-fed piglets and six 10 cm loops of ileum were isolated in situ. Briefly, 2 mg/ml of LNnT, aHMO mixture (40% 6'-SL/10 % 3'-SL/50 % SA) or media with or without the RV OSU strain (1 x 10(7) focus-forming units)were injected into the loops and maintained for 6 h. The loops treated with HMO treatments þ RV had lower RV replication, as assessed by non-structural protein-4 (NSP4) mRNA expression, than RV-treated loops alone. In conclusion, SA-containing HMO inhibited RV infectivity in vitro; however, both neutral HMO and SA with aHMO decreased NSP4 replication during acute RV infection in situ.
Collapse
|
104
|
The adjuvant double mutant Escherichia coli heat labile toxin enhances IL-17A production in human T cells specific for bacterial vaccine antigens. PLoS One 2012; 7:e51718. [PMID: 23284753 PMCID: PMC3527457 DOI: 10.1371/journal.pone.0051718] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 11/05/2012] [Indexed: 01/15/2023] Open
Abstract
The strong adjuvant activity and low enterotoxicity of the novel mucosal adjuvant double mutant Escherichia coli heat labile toxin, LT(R192G/L211A) or dmLT, demonstrated in mice, makes this molecule a promising adjuvant candidate. However, little is known about the mechanisms responsible for the adjuvant effect of dmLT or whether dmLT also has an adjuvant function in humans. We investigated the effect of dmLT on human T cell responses to different bacterial vaccine antigens: the mycobacterial purified protein derivative (PPD) antigen, tested in individuals previously vaccinated with Bacillus Calmette-Guérin, the LT binding subunit (LTB), evaluated in subjects immunised with oral inactivated whole cell vaccines against enterotoxigenic Escherichia coli, and Streptococcus pneumoniae whole cell vaccine antigens, tested in subjects naturally exposed to pneumococci. We found that dmLT enhanced the production of IL-17A by peripheral blood mononuclear cells in response to all antigens tested. dmLT had comparable effects on IL-17A responses to PPD as the single mutant LT(R192G) adjuvant, which has demonstrated clinical adjuvant activity in humans. Neutralisation of IL-1β and IL-23, but not IL-6, suppressed the IL-17A-enhancing effect of dmLT. Furthermore, CD4+ T cells produced higher levels of IL-17A when stimulated with monocytes pulsed with PPD and dmLT compared to PPD alone, supporting an important role of antigen presenting cells in enhancing IL-17A responses. dmLT also potentiated mitogen-induced IL-17A and IL-13 production. However, dmLT had variable influences on IFN-γ responses to the different stimuli tested. Our demonstration of a potent ability of dmLT to enhance human Th17 type T cell responses to bacterial vaccine antigens encourages further evaluation of the adjuvant function of dmLT in humans.
Collapse
|