101
|
Nau M, Schindler A, Bartels A. Real-motion signals in human early visual cortex. Neuroimage 2018; 175:379-387. [PMID: 29649561 DOI: 10.1016/j.neuroimage.2018.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 11/25/2022] Open
Abstract
Eye movements induce visual motion that can complicate the stable perception of the world. The visual system compensates for such self-induced visual motion by integrating visual input with efference copies of eye movement commands. This mechanism is central as it does not only support perceptual stability but also mediates reliable perception of world-centered objective motion. In humans, it remains elusive whether visual motion responses in early retinotopic cortex are driven by objective motion or by retinal motion associated with it. To address this question, we used fMRI to examine functional responses of sixteen visual areas to combinations of planar objective motion and pursuit eye movements. Observers were exposed to objective motion that was faster, matched or slower relative to pursuit, allowing us to compare conditions that differed in objective motion velocity while retinal motion and eye movement signals were matched. Our results show that not only higher level motion regions such as V3A and V6, but also early visual areas signaled the velocity of objective motion, hence the product of integrating retinal with non-retinal signals. These results shed new light on mechanisms that mediate perceptual stability and real-motion perception, and show that extra-retinal signals related to pursuit eye movements influence processing in human early visual cortex.
Collapse
Affiliation(s)
- Matthias Nau
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Trondheim, Norway; Egil & Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Trondheim, Norway; Norwegian University of Science and Technology, Trondheim, Norway
| | - Andreas Schindler
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany; Department of Psychology, University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Andreas Bartels
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany; Department of Psychology, University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Bernstein Centre for Computational Neuroscience, Tübingen, Germany.
| |
Collapse
|
102
|
Filippini M, Breveglieri R, Hadjidimitrakis K, Bosco A, Fattori P. Prediction of Reach Goals in Depth and Direction from the Parietal Cortex. Cell Rep 2018; 23:725-732. [DOI: 10.1016/j.celrep.2018.03.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/03/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022] Open
|
103
|
Challenge to Promote Change: The Neural Basis of the Contextual Interference Effect in Young and Older Adults. J Neurosci 2018; 38:3333-3345. [PMID: 29483284 DOI: 10.1523/jneurosci.2640-17.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/26/2018] [Accepted: 02/16/2018] [Indexed: 02/03/2023] Open
Abstract
Motor performance deteriorates with age. Hence, studying the effects of different training types on performance improvement is particularly important. Here, we investigated the neural correlates of the contextual interference (CI) effect in 32 young (YA; 16 female) and 28 older (OA; 12 female) human adults. Participants were randomly assigned to either a blocked or a random practice schedule, practiced three variations of a bimanual visuomotor task over 3 d, and were retested 6 d later. Functional magnetic resonance imaging data were acquired during the first and last training days and during retention. Although the overall performance level was lower in OA than YA, the typical CI effects were observed in both age groups, i.e., inferior performance during acquisition but superior performance during retention for random relative to blocked practice. At the neural level, blocked practice showed higher brain activity in motor-related brain regions compared with random practice across both age groups. However, although activity in these regions decreased with blocked practice in both age groups, it was either preserved (YA) or increased (OA) as a function of random practice. In contrast, random compared with blocked practice resulted in greater activations in visual processing regions across age groups. Interestingly, in OA, the more demanding random practice schedule triggered neuroplastic changes in areas of the default mode network, ultimately leading to better long-term retention. Our findings may have substantial implications for the optimization of practice schedules, and rehabilitation settings in particular.SIGNIFICANCE STATEMENT In aging societies, it is critically important to understand how motor skills can be maintained or enhanced in older adults, with the ultimate goal to prolong functional independence. Here, we demonstrated that a more challenging random as opposed to a blocked practice environment temporarily reduced performance during the acquisition phase but resulted in lasting benefits for skill retention. In older adults, learning success was critically dependent on reduction of activation in areas of the default mode network, pointing to plastic functional changes in brain regions that are vulnerable to aging effects. The random practice context led to increased economy of brain activity and better skill retention. This provides new perspectives for reversing the negative consequences of aging.
Collapse
|
104
|
Two visual pathways – Where have they taken us and where will they lead in future? Cortex 2018; 98:283-292. [DOI: 10.1016/j.cortex.2017.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023]
|
105
|
de Haan EH, Jackson SR, Schenk T. Where are we now with ‘What’ and ‘How’? Cortex 2018; 98:1-7. [DOI: 10.1016/j.cortex.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 01/02/2023]
|
106
|
Gamberini M, Dal Bò G, Breveglieri R, Briganti S, Passarelli L, Fattori P, Galletti C. Sensory properties of the caudal aspect of the macaque's superior parietal lobule. Brain Struct Funct 2017; 223:1863-1879. [PMID: 29260370 DOI: 10.1007/s00429-017-1593-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/12/2017] [Indexed: 11/26/2022]
Abstract
In the superior parietal lobule (SPL), the anterior part (area PE) is known to process somatosensory information, while the caudalmost part (areas V6Av and V6) processes visual information. Here we studied the visual and somatosensory properties of the areas PEc and V6Ad located in between the somatosensory and visual domains of SPL. About 1500 neurons were extracellularly recorded in 19 hemispheres of 12 monkeys (Macaca fascicularis). Visual and somatosensory properties of single neurons were generally studied separately, while in a subpopulation of neurons, both the sensory properties were tested. Visual neurons were more represented in V6Ad and somatosensory neurons in PEc. The visual neurons of these two areas showed similar properties and represented a large part of the contralateral visual field, mostly the lower part. In contrast, somatosensory neurons showed remarkable differences. The arms were overrepresented in both the areas, but V6Ad represented only the upper limbs, whereas PEc both the upper and lower limbs. Interestingly, we found that in both the areas, bimodal visual-somatosensory cells represented the proximal part of the arms. We suggest that PEc is involved in locomotion and in the control of hand/foot interaction with the objects of the environment, while V6Ad is in the control of the object prehension specifically performed with the upper limbs. Neuroimaging and lesion studies from literature support a strict homology with humans.
Collapse
Affiliation(s)
- Michela Gamberini
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
- Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Giulia Dal Bò
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Rossella Breveglieri
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
- Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Sofia Briganti
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Lauretta Passarelli
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
- Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
- Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
| |
Collapse
|
107
|
Affiliation(s)
| | - Shawn R. Olsen
- Allen Institute for Brain Science, Seattle, Washington 98109
| |
Collapse
|
108
|
Rozzi S, Fogassi L. Neural Coding for Action Execution and Action Observation in the Prefrontal Cortex and Its Role in the Organization of Socially Driven Behavior. Front Neurosci 2017; 11:492. [PMID: 28936159 PMCID: PMC5594103 DOI: 10.3389/fnins.2017.00492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 11/13/2022] Open
Abstract
The lateral prefrontal cortex (LPF) plays a fundamental role in planning, organizing, and optimizing behavioral performance. Neuroanatomical and neurophysiological studies have suggested that in this cortical sector, information processing becomes more abstract when moving from caudal to rostral and that such processing involves parietal and premotor areas. We review studies that have shown that the LPF, in addition to its involvement in implementing rules and setting behavioral goals, activates during the execution of forelimb movements even in the absence of a learned relationship between an instruction and its associated motor output. Thus, we propose that the prefrontal cortex is involved in exploiting contextual information for planning and guiding behavioral responses, also in natural situations. Among contextual cues, those provided by others' actions are particularly relevant for social interactions. Functional studies of macaques have demonstrated that the LPF is activated by the observation of biological stimuli, in particular those related to goal-directed actions. We review these studies and discuss the idea that the prefrontal cortex codes high-order representations of observed actions rather than simple visual descriptions of them. Based on evidence that the same sector of the LPF contains both neurons coding own action goals and neurons coding others' goals, we propose that this sector is involved in the selection of own actions appropriate for reacting in a particular social context and for the creation of new action sequences in imitative learning.
Collapse
Affiliation(s)
- Stefano Rozzi
- Department of Medicine and Surgery, Unit of Neuroscience, University of ParmaParma, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, Unit of Neuroscience, University of ParmaParma, Italy
| |
Collapse
|
109
|
Advantages of Using the Dorsolateral versus the Dorsomedial Visual Stream for Decoding Hand Movements. J Neurosci 2017; 37:8312-8314. [PMID: 28855329 DOI: 10.1523/jneurosci.1461-17.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 11/21/2022] Open
|