101
|
Soh KY, Loh JMS, Hall C, Proft T. Functional Analysis of Two Novel Streptococcus iniae Virulence Factors Using a Zebrafish Infection Model. Microorganisms 2020; 8:E1361. [PMID: 32899555 PMCID: PMC7564053 DOI: 10.3390/microorganisms8091361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
Streptococcus iniae is a major fish pathogen that contributes to large annual losses in the aquaculture industry, exceeding US$100 million. It is also reported to cause opportunistic infections in humans. We have recently identified two novel S. iniae virulence factors, an extracellular nuclease (SpnAi) and a secreted nucleotidase (S5nAi), and verified their predicted enzymatic activities using recombinant proteins. Here, we report the generation of green fluorescent S. iniae spnAi and s5nAi deletion mutants and their evaluation in a transgenic zebrafish infection model. Our results show nuclease and nucleotidase activities in S. iniae could be attributed to SpnAi and S5nAi, respectively. Consistent with this, larvae infected with the deletion mutants demonstrated enhanced survival and bacterial clearance, compared to those infected with wild-type (WT) S. iniae. Deletion of spnAi and s5nAi resulted in sustained recruitment of neutrophils and macrophages, respectively, to the site of infection. We also show that recombinant SpnAi is able to degrade neutrophil extracellular traps (NETs) isolated from zebrafish kidney tissue. Our results suggest that both enzymes play an important role in S. iniae immune evasion and might present potential targets for the development of therapeutic agents or vaccines.
Collapse
Affiliation(s)
- Kar Yan Soh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| | - Jacelyn Mei San Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| | - Christopher Hall
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
102
|
Eustache JH, Tohme S, Milette S, Rayes RF, Tsung A, Spicer JD. Casting A Wide Net On Surgery: The Central Role of Neutrophil Extracellular Traps. Ann Surg 2020; 272:277-283. [PMID: 32675540 PMCID: PMC7373444 DOI: 10.1097/sla.0000000000003586] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
: Since their discovery, neutrophil extracellular traps (NETs) have been implicated in a broad array of functions, both beneficial and detrimental to the host. Indeed, NETs have roles in infection, sepsis, wound healing, thrombotic disease, and cancer propagation, all of which are directly implicated in the care of surgical patients. Here we provide an updated review on the role of NETs in the perioperative period with specific emphasis on perioperative infections, wound healing, vascular complications, cancer propagation, as well as discussing ongoing, and future therapeutic targets. Surgeons will benefit from understanding the latest discoveries in neutrophil biology and how these novel functions affect the care of surgical patients. Furthermore, novel anti-NET therapies are being developed which may have profound effects on the care of surgical patients.
Collapse
Affiliation(s)
- Jules H Eustache
- Division of Upper GI and Thoracic Surgery, McGill University Health Centre, Montral, QC, Canada
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Hermitage, PA
| | - Simon Milette
- Division of Upper GI and Thoracic Surgery, McGill University Health Centre, Montral, QC, Canada
| | - Roni F Rayes
- Division of Upper GI and Thoracic Surgery, McGill University Health Centre, Montral, QC, Canada
| | - Allan Tsung
- Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jonathan D Spicer
- Division of Upper GI and Thoracic Surgery, McGill University Health Centre, Montral, QC, Canada
| |
Collapse
|
103
|
Demarco B, Chen KW, Broz P. Cross talk between intracellular pathogens and cell death. Immunol Rev 2020; 297:174-193. [PMID: 32567717 DOI: 10.1111/imr.12892] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Infections with bacterial pathogens often results in the initiation of programmed cell death as part of the host innate immune defense, or as a bacterial virulence strategy. Induction of host cell death is controlled by an elaborate network of innate immune and cell death signaling pathways and manifests in different morphologically and functionally distinct forms of death, such as apoptosis, necroptosis, NETosis and pyroptosis. The mechanism by which host cell death restricts bacterial replication is highly cell-type and context depended, but its physiological importance is highlighted the diversity of strategies bacterial pathogens use to avoid induction of cell death or to block cell death signaling pathways. In this review, we discuss the latest insights into how bacterial pathogens elicit and manipulate cell death signaling, how different forms of cell death kill or restrict bacteria and how cell death and innate immune pathway cross talk to guard against pathogen-induced inhibition of host cell death.
Collapse
Affiliation(s)
- Benjamin Demarco
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Kaiwen W Chen
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
104
|
Kitamura S, Zheng Q, Woehl JL, Solania A, Chen E, Dillon N, Hull MV, Kotaniguchi M, Cappiello JR, Kitamura S, Nizet V, Sharpless KB, Wolan DW. Sulfur(VI) Fluoride Exchange (SuFEx)-Enabled High-Throughput Medicinal Chemistry. J Am Chem Soc 2020; 142:10899-10904. [PMID: 32479075 DOI: 10.1021/jacs.9b13652] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Optimization of small-molecule probes or drugs is a synthetically lengthy, challenging, and resource-intensive process. Lack of automation and reliance on skilled medicinal chemists is cumbersome in both academic and industrial settings. Here, we demonstrate a high-throughput hit-to-lead process based on the biocompatible sulfur(VI) fluoride exchange (SuFEx) click chemistry. A high-throughput screening hit benzyl (cyanomethyl)carbamate (Ki = 8 μM) against a bacterial cysteine protease SpeB was modified with a SuFExable iminosulfur oxydifluoride [RN═S(O)F2] motif, rapidly diversified into 460 analogs in overnight reactions, and the products were directly screened to yield drug-like inhibitors with 480-fold higher potency (Ki = 18 nM). We showed that the improved molecule is active in a bacteria-host coculture. Since this SuFEx linkage reaction succeeds on picomole scale for direct screening, we anticipate our methodology can accelerate the development of robust biological probes and drug candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Miyako Kotaniguchi
- Laboratory of Advanced Food Process Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Nakaku, Sakai, Osaka 599-8570, Japan
| | | | - Shinichi Kitamura
- Laboratory of Advanced Food Process Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Nakaku, Sakai, Osaka 599-8570, Japan
| | | | | | | |
Collapse
|
105
|
Zhu L, Olsen RJ, Beres SB, Saavedra MO, Kubiak SL, Cantu CC, Jenkins L, Waller AS, Sun Z, Palzkill T, Porter AR, DeLeo FR, Musser JM. Streptococcus pyogenes genes that promote pharyngitis in primates. JCI Insight 2020; 5:137686. [PMID: 32493846 DOI: 10.1172/jci.insight.137686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pyogenes (group A streptococcus; GAS) causes 600 million cases of pharyngitis annually worldwide. There is no licensed human GAS vaccine despite a century of research. Although the human oropharynx is the primary site of GAS infection, the pathogenic genes and molecular processes used to colonize, cause disease, and persist in the upper respiratory tract are poorly understood. Using dense transposon mutant libraries made with serotype M1 and M28 GAS strains and transposon-directed insertion sequencing, we performed genome-wide screens in the nonhuman primate (NHP) oropharynx. We identified many potentially novel GAS fitness genes, including a common set of 115 genes that contribute to fitness in both genetically distinct GAS strains during experimental NHP pharyngitis. Targeted deletion of 4 identified fitness genes/operons confirmed that our newly identified targets are critical for GAS virulence during experimental pharyngitis. Our screens discovered many surface-exposed or secreted proteins - substrates for vaccine research - that potentially contribute to GAS pharyngitis, including lipoprotein HitA. Pooled human immune globulin reacted with purified HitA, suggesting that humans produce antibodies against this lipoprotein. Our findings provide new information about GAS fitness in the upper respiratory tract that may assist in translational research, including developing novel vaccines.
Collapse
Affiliation(s)
- Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Stephen B Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Samantha L Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Concepcion C Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Leslie Jenkins
- Department of Comparative Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Andrew S Waller
- Animal Health Trust, Lanwades Park, Newmarket, United Kingdom
| | - Zhizeng Sun
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Adeline R Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
106
|
Zhao X, Yang L, Chang N, Hou L, Zhou X, Yang L, Li L. Neutrophils undergo switch of apoptosis to NETosis during murine fatty liver injury via S1P receptor 2 signaling. Cell Death Dis 2020; 11:379. [PMID: 32424179 PMCID: PMC7235026 DOI: 10.1038/s41419-020-2582-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/18/2023]
Abstract
Inappropriate neutrophil infiltration and subsequent neutrophil extracellular trap (NET) formation have been confirmed to be involved in chronic inflammatory conditions. Fatty liver disease is an increasingly severe health problem worldwide and currently considered the most common cause of chronic liver disease. Sphingosine 1-phosphate (S1P), a product of membrane sphingolipid metabolism, regulates vital physiological and pathological actions by inducing infiltration and activation of various cell types through S1P receptors (S1PRs). Here, we seek to determine the S1PR-mediated effects on neutrophil activation during chronic liver inflammation. In this study, NETs are detected in the early stage of methionine-choline-deficient and a high-fat (MCDHF) diet-induced liver injury. NET depletion by deoxyribonuclease I intraperitoneal injection significantly protects liver from MCDHF-induced liver injury in vivo. Meanwhile, we show that levels of myeloperoxidase-DNA complex (NET marker) in the serum present positive correlation with sphingosine kinase1 (S1P rate-limiting enzyme) messenger RNA expression or S1P levels in the injured liver of MCDHF-fed mice. In vitro, S1PR2 participates in the redirection of neutrophil apoptosis to NETosis via Gαi/o, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and reactive oxygen species signaling pathways. Moreover, S1PR2 knockdown in MCDHF-fed mice by S1PR2-siRNA intravenous injection significantly inhibits NET formation in damaged liver tissue and then alleviates hepatic inflammation and fibrosis. Conclusion: In the early stage of fatty liver disease, S1PR2-mediated neutrophil activation plays an important role in the evolvement of liver injury.
Collapse
Affiliation(s)
- Xinhao Zhao
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Lei Hou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Xuan Zhou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
107
|
Van AP, Álvarez de Haro N, Bron JE, Desbois AP. Chromatin extracellular trap release in rainbow trout, Oncorhynchus mykiss (Walbaum, 1792). FISH & SHELLFISH IMMUNOLOGY 2020; 99:227-238. [PMID: 31988016 DOI: 10.1016/j.fsi.2020.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 05/22/2023]
Abstract
Neutrophils release nuclear chromatin decorated with antimicrobial proteins into the extracellular milieu as an innate immune defence mechanism to counter invading microbes. These chromatin structures, called extracellular traps (ETs) and released by a process called NETosis, have been detected in mammals, certain invertebrates and some fish species, including fathead minnow, zebrafish, common carp, turbot, sole and barramundi. However, there have been no previous studies of ETs in the Salmonidae. ETs are released in response to chemical and biological stimuli, but observations from different fish species are inconsistent, particularly regarding the potency of various inducers and inhibitors. Thus, this present study aimed to describe ET release in a salmonid (rainbow trout, Oncorhynchus mykiss (Walbaum, 1792)) and uncover the inducers and inhibitors that can control this response. Highly enriched suspensions of polymorphonuclear cells (PMNs; mainly neutrophils) were prepared from head kidney tissues by a triple-layer Percoll gradient technique. ET structures were visualised in PMN-enriched suspensions through staining of the chromatin with nucleic acid-specific dyes and immunocytochemical probing of characteristic proteins expected to decorate the structure. ET release was quantified after incubation with inducers and inhibitors known to affect this response in other organisms. Structures resembling ETs stained positively with SYTOX Green (a stain specific for nucleic acid) while immunocytochemistry was used to detect neutrophil elastase, myeloperoxidase and H2A histone in the structures, which are diagnostic proteinaceous markers of ETs. Consistent with other studies on mammals and some fish species, calcium ionophore and flagellin were potent inducers of ETs, while cytochalasin D inhibited NETosis. Phorbol 12-myristate 13-acetate (PMA), used commonly to induce ETs, exerted only weak stimulatory activity, while heat-killed bacteria and lipopolysaccharide did not induce ET release. Unexpectedly, the ET-inhibitor diphenyleneiodonium chloride acted as an inducer of ET release, an observation not reported elsewhere. Taken together, these data confirm for the first time that ETs are released by salmonid PMNs and compounds useful for manipulating NETosis were identified, thus providing a platform for further studies to explore the role of this mechanism in fish immunity. This new knowledge provides a foundation for translation to farm settings, since manipulation of the innate immune response offers a potential alternative to the use of antibiotics to mitigate against microbial infections, particularly for pathogens where protection by vaccination has yet to be realised.
Collapse
Affiliation(s)
- Andre P Van
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Neila Álvarez de Haro
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - James E Bron
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Andrew P Desbois
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom.
| |
Collapse
|
108
|
Group A Streptococcus establishes pharynx infection by degrading the deoxyribonucleic acid of neutrophil extracellular traps. Sci Rep 2020; 10:3251. [PMID: 32094510 PMCID: PMC7039874 DOI: 10.1038/s41598-020-60306-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Group A Streptococcus (GAS) secretes deoxyribonucleases and evades neutrophil extracellular killing by degrading neutrophil extracellular traps (NETs). However, limited information is currently available on the interaction between GAS and NETs in the pathogenicity of GAS pharyngitis. In this study, we modified a mouse model of GAS pharyngitis and revealed an essential role for DNase in this model. After intranasal infection, the nasal mucosa was markedly damaged near the nasal cavity, at which GAS was surrounded by neutrophils. When neutrophils were depleted from mice, GAS colonization and damage to the nasal mucosa were significantly decreased. Furthermore, mice infected with deoxyribonuclease knockout GAS mutants (∆spd, ∆endA, and ∆sdaD2) survived significantly better than those infected with wild-type GAS. In addition, the supernatants of digested NETs enhanced GAS-induced cell death in vitro. Collectively, these results indicate that NET degradation products may contribute to the establishment of pharyngeal infection caused by GAS.
Collapse
|
109
|
In Vivo Imaging of Neutrophil Extracellular Traps (NETs): Visualization Methods and Outcomes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4192745. [PMID: 32090090 PMCID: PMC7015184 DOI: 10.1155/2020/4192745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 01/01/2023]
Abstract
Neutrophils comprise the first line of innate immune defense during a host-pathogen interaction. They attack microorganisms directly through three different methods, of which, phagocytosis and degranulation have been known and well-studied for decades. The formation of neutrophil extracellular traps (NETs) is the third and unique method, which was unveiled in 2004. Since then, many studies on NETs have been carried out. However, only few have successfully demonstrated the activity of NETs in vivo. Results of the in vivo studies on NETs have strengthened our understanding of their role in different situations. This review highlights the main in vivo studies, which have contributed in extending our understanding of the role of NETs during infections and diseases, thus indicating their advantages and limitations.
Collapse
|
110
|
Deng Q, Pan B, Alam HB, Liang Y, Wu Z, Liu B, Mor-Vaknin N, Duan X, Williams AM, Tian Y, Zhang J, Li Y. Citrullinated Histone H3 as a Therapeutic Target for Endotoxic Shock in Mice. Front Immunol 2020; 10:2957. [PMID: 31998291 PMCID: PMC6962130 DOI: 10.3389/fimmu.2019.02957] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Sepsis results in millions of deaths every year, with acute lung injury (ALI) being one of the leading causes of mortality in septic patients. As neutrophil extracellular traps (NETs) are abundant in sepsis, neutralizing components of NETs may be a useful strategy to improve outcomes of sepsis. Citrullinated histone H3 (CitH3) has been recently shown to be involved in the NET formation. In this study, we demonstrate that CitH3 damages human umbilical vein endothelial cells (HUVECs) and potentiates NET formation through a positive feedback mechanism. We developed a novel CitH3 monoclonal antibody to target peptidylarginine deiminase (PAD) 2 and PAD 4 generated CitH3. In a mouse model of lethal lipopolysaccharide (LPS) induced shock, neutralizing CitH3 with the newly developed anti-CitH3 monoclonal antibody attenuates inflammatory responses, ameliorates ALI, and improves survival. Our study suggests that effectively blocking circulating CitH3 might be a potential therapeutic method for the treatment of endotoxemia.
Collapse
Affiliation(s)
- Qiufang Deng
- Xiangya Hospital, Central South University, Changsha, China.,Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Baihong Pan
- Xiangya Hospital, Central South University, Changsha, China.,Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Hasan B Alam
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Yingjian Liang
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States.,The First Hospital, China Medical University, Shenyang, China
| | - Zhenyu Wu
- Xiangya Hospital, Central South University, Changsha, China.,Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Baoling Liu
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Nirit Mor-Vaknin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Xiuzhen Duan
- Department of Pathology, Loyola University Medical Center, Maywood, IL, United States
| | - Aaron M Williams
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Yuzi Tian
- Xiangya Hospital, Central South University, Changsha, China.,Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Justin Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Yongqing Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
111
|
Loureiro A, Pais C, Sampaio P. Relevance of Macrophage Extracellular Traps in C. albicans Killing. Front Immunol 2019; 10:2767. [PMID: 31866996 PMCID: PMC6904331 DOI: 10.3389/fimmu.2019.02767] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022] Open
Abstract
Candida albicans causes systemic life-threatening infections, particularly in immunocompromised individuals, such as patients in intensive care units, patients undergoing chemotherapy, and post-surgical and neutropenic patients. The proliferation of invading Candida cells is mainly limited by the action of the human innate immune system, in which phagocytic cells play a fundamental role. This function is, however, limited in neutropenic patients, who rely mainly on the protective immunity mediated by macrophages. Macrophages have been shown to release extracellular DNA fibers, known as macrophage extracellular traps (METs), which can entrap and kill various microbes by a process called ETosis. In this study, we observed that, upon contact with C. albicans, macrophages became active in phagocyting and engulfing yeast cells. ETosis was induced in 6% of macrophages within the first 30 min of contact, and this percentage increased with the multiplicity of infection until a plateau was reached. After 2.5 h incubation, the presence of extracellular macrophage DNA was observed in approximately half of the cells. This study suggests that the formation of METs occurs before pyroptosis (first 6–8 h) and macrophage cell death (up to 24 h), and thus, METs could be included in models describing C. albicans–macrophage interactions. We also observed that macrophage ETosis and phagocytosis can occur simultaneously and that, in the first hours of infection, both processes are similarly important in controlling the proliferation of yeast cells, this being critical in neutropenic patients. Finally, it can also be concluded that, since C. albicans can degrade DNA, the structural component of METs, yeast extracellular DNase activity can be considered as an important virulence factor.
Collapse
Affiliation(s)
- Ana Loureiro
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Célia Pais
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
112
|
A Multicomponent Vaccine Provides Immunity against Local and Systemic Infections by Group A Streptococcus across Serotypes. mBio 2019; 10:mBio.02600-19. [PMID: 31772056 PMCID: PMC6879722 DOI: 10.1128/mbio.02600-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
GAS is among the most common human pathogens and causes a wide variety of diseases, likely more than any other microorganism. The diverse clinical manifestations of GAS may be attributable to its large repertoire of virulence factors that are selectively and synergistically involved in streptococcal pathogenesis. To date, GAS vaccines have not been successful due to multiple serotypes and postinfection sequelae associated with autoimmunity. In this study, five conserved virulence factors that are involved in GAS pathogenesis were used as a combined vaccine. Intranasal immunization with this vaccine induced humoral and cellular immune responses across GAS serotypes and protected against mucosal, systemic, and skin infections. The significance of this work is to demonstrate that the efficacy of GAS vaccines can be achieved by including multiple nonredundant critical virulence factors and inducing local and systemic immunity. The strategy also provides valuable insights for vaccine development against other pathogens. Group A streptococcus (GAS) species are responsible for a broad spectrum of human diseases, ranging from superficial to invasive infections, and are associated with autoimmune disorders. There is no commercial vaccine against GAS. The clinical manifestations of GAS infection may be attributable to the large repertoire of virulence factors used selectively in different types of GAS disease. Here, we selected five molecules, highly conserved among GAS serotypes, and involved in different pathogenic mechanisms, as a multicomponent vaccine, 5CP. Intranasal (i.n.) immunization with 5CP protected mice against both mucosal and systemic GAS infection across serotypes; the protection lasted at least 6 months. Immunization of mice with 5CP constrained skin lesion development and accelerated lesion recovery. Flow cytometry and enzyme-linked immunosorbent assay analyses revealed that 5CP induced Th17 and antibody responses locally and systemically; however, the Th17 response induced by 5CP resolved more quickly than that to GAS when challenge bacteria were cleared, suggesting that 5CP is less likely to cause autoimmune responses. These findings support that immunization through the i.n. route targeting multiple nonredundant virulence factors can induce immunity against different types of GAS disease and represents an alternative strategy for GAS vaccine development, with favorable efficacy, coverage, duration, and safety.
Collapse
|
113
|
Wickramanayake MVKS, Dahanayake PS, Hossain S, Heo GJ. Antimicrobial resistance of pathogenic Aeromonas spp. isolated from marketed Pacific abalone (Haliotis discus hannai) in Korea. J Appl Microbiol 2019; 128:606-617. [PMID: 31606917 DOI: 10.1111/jam.14485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 11/28/2022]
Abstract
AIMS The object of this study was to identify potential health concerns of the Aeromons spp. isolated from marketed Pacific abalone (Haliotis discus hannai) with respect to their virulence and antimicrobial resistance patterns. METHODS AND RESULTS We identified 29 strains of aeromonads consisting of five species; Aeromonas hydrophila (n = 9), Aeromonas enteropelogenes (n = 14), Aeromonas veronii (n = 3), Aeromonas salmonicida (n = 2) and Aeromonas sobria (n = 1), by employing series of biochemical tests and gene sequencing. In the phenotypic virulence assays, all isolates showed gelatinase and caseinase activities, while lipase formation (69%), phospholipase production (90%), DNase formation (82%), slime production (49%) and haemolysis activity (α = 18% and β = 82%) were also detected among isolates. Prevalence of virulence genes; aerA (100%), fla (66%), ahyB (73%), act (52%), alt (42%), ast (35%), ser (52%), gcat (69%), ascV (43%), hlyA (83%), lip (52%) and exu (59%) were detected by PCR assays. In disc diffusion test, 100% resistance was detected against ampicillin while cephalothin, rifampicin, oxytetracycline, colistine sulphate, nalidixic acid and piperaciliin were resisted by 86, 73, 42, 35, 28, 20 and 20% of the isolates respectively. Thirteen (45%) of the isolates showed multiple antimicrobial resistance (MAR) indices ≥ 0·2. CONCLUSIONS Our findings suggest that the potential health risk posed by the abalone-borne Aeromonas spp. should not be underestimated. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first time to evaluate possible public health risks upon consumption of abalone harbored Aeromonas spp. and also to isolate potential pathogenic and multidrug-resistant Aeromonas spp. from Pacific abalone in Korea.
Collapse
Affiliation(s)
- M V K S Wickramanayake
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - P S Dahanayake
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Sabrina Hossain
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| |
Collapse
|
114
|
Streptococcus pyogenes Transcriptome Changes in the Inflammatory Environment of Necrotizing Fasciitis. Appl Environ Microbiol 2019; 85:AEM.01428-19. [PMID: 31471300 PMCID: PMC6803311 DOI: 10.1128/aem.01428-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection, is principally caused by S. pyogenes. The inflammatory environment at the site of infection causes global gene expression changes for survival of the bacterium and pathogenesis. However, no known study regarding transcriptomic profiling of S. pyogenes in cases of necrotizing fasciitis has been presented. We identified 483 bacterial genes whose expression was consistently altered during infection. Our results showed that S. pyogenes infection induces drastic upregulation of the expression of virulence-associated genes and shifts metabolic pathway usage. In particular, high-level expression of toxins, such as cytolysins, proteases, and nucleases, was observed at infection sites. In addition, genes identified as consistently enriched included those related to metabolism of arginine and histidine as well as carbohydrate uptake and utilization. Conversely, genes associated with the oxidative stress response and cell division were consistently downregulated during infection. The present findings provide useful information for establishing novel treatment strategies. Streptococcus pyogenes is a major cause of necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection. At the host infection site, the local environment and interactions between the host and bacteria have effects on bacterial gene expression profiles, while the gene expression pattern of S. pyogenes related to this disease remains unknown. In this study, we used a mouse model of necrotizing fasciitis and performed RNA-sequencing (RNA-seq) analysis of S. pyogenes M1T1 strain 5448 by isolating total RNA from infected hind limbs obtained at 24, 48, and 96 h postinfection. RNA-seq analysis results identified 483 bacterial genes whose expression was consistently altered in the infected hindlimbs compared to their expression under in vitro conditions. Genes showing consistent enrichment during infection included 306 encoding molecules involved in virulence, carbohydrate utilization, amino acid metabolism, trace-metal transport, and the vacuolar ATPase transport system. Surprisingly, drastic upregulation of 3 genes, encoding streptolysin S precursor (sagA), cysteine protease (speB), and secreted DNase (spd), was noted in the present mouse model (log2 fold change, >6.0, >9.4, and >7.1, respectively). Conversely, the number of consistently downregulated genes was 177, including those associated with the oxidative stress response and cell division. These results suggest that in necrotizing fasciitis, S. pyogenes shows an altered metabolism, decreased cell proliferation, and upregulation of expression of major toxins. Our findings are considered to provide critical information for developing novel treatment strategies and vaccines for necrotizing fasciitis. IMPORTANCE Necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection, is principally caused by S. pyogenes. The inflammatory environment at the site of infection causes global gene expression changes for survival of the bacterium and pathogenesis. However, no known study regarding transcriptomic profiling of S. pyogenes in cases of necrotizing fasciitis has been presented. We identified 483 bacterial genes whose expression was consistently altered during infection. Our results showed that S. pyogenes infection induces drastic upregulation of the expression of virulence-associated genes and shifts metabolic pathway usage. In particular, high-level expression of toxins, such as cytolysins, proteases, and nucleases, was observed at infection sites. In addition, genes identified as consistently enriched included those related to metabolism of arginine and histidine as well as carbohydrate uptake and utilization. Conversely, genes associated with the oxidative stress response and cell division were consistently downregulated during infection. The present findings provide useful information for establishing novel treatment strategies.
Collapse
|
115
|
Degraded neutrophil extracellular traps promote the growth of Actinobacillus pleuropneumoniae. Cell Death Dis 2019; 10:657. [PMID: 31506432 PMCID: PMC6736959 DOI: 10.1038/s41419-019-1895-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/03/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
Actinobacillus pleuropneumoniae (A.pp) causes severe pneumonia associated with enormous economic loss in pigs. Peracute diseased pigs die in <24 h with pneumonia. Neutrophils are the prominent innate immune cell in this infection that massively infiltrate the infected lung. Here we show that neutrophils release neutrophil extracellular traps (NETs) as response to A.pp infection. Numerous NET-markers were identified in bronchoalveolar lavage fluid (BALF) of A.pp-infected piglets in vivo, however, most NET fibers are degraded. Importantly, A.pp is able to enhance its growth rate in the presence of NETs that have been degraded by nucleases efficiently. A.pp itself releases no nuclease, but we identified host nucleases as sources that degrade NETs after A.pp infection. Furthermore, the nucleases of co-infecting pathogens like Streptococcus suis increase growth of A.pp in presence of porcine NETs. Thus, A.pp is not only evading the antimicrobial activity of NETs, A.pp is rather additionally using parts of NETs as growth factor thereby taking advantage of host nucleases as DNase1 or nucleases of co-infecting bacteria, which degrade NETs. This effect can be diminished by inhibiting the bacterial adenosine synthase indicating that degraded NETs serve as a source for NAD, which is required by A.pp for its growth. A similar phenotype was found for the human pathogen Haemophilus (H.) influenzae and its growth in the presence of human neutrophils. H. influenzae benefits from host nucleases in the presence of neutrophils. These data shed light on the detrimental effects of NETs during host immune response against certain bacterial species that require and/or efficiently take advantage of degraded DNA material, which has been provided by host nuclease or nucleases of other co-infecting bacteria, as growth source.
Collapse
|
116
|
Sharma P, Garg N, Sharma A, Capalash N, Singh R. Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers. Int J Med Microbiol 2019; 309:151354. [PMID: 31495663 DOI: 10.1016/j.ijmm.2019.151354] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
New frontiers of therapy are being explored against the upcoming bacterial diseases rendered untreatable due to multiple, extreme and pan- antibiotic resistance. Nucleases are ubiquitous in bacterial pathogens performing various functions like acquiring nucleotide nutrients, allowing or preventing uptake of foreign DNA, controlling biofilm formation/dispersal/architecture, invading host by tissue damage, evading immune defence by degrading DNA matrix of neutrophil extracellular traps (NETs) and immunomodulating the host immune response. Secretory nucleases also provide means of survival to other bacteria like iron-reducing Shewanella and such functions help them adapt and survive proficiently. Other than their pro-pathogen roles in survival, nucleases can be used directly as therapeutics. One of the powerful armours of pathogens is the formation of biofilms, thus helping them resist and persist in the harshest of environments. As eDNA forms the structural and binding component of biofilm, nucleases can be used against the adhering component, thus increasing the permeability of antimicrobial agents. Nucleases have recently become a model system of intense study for their biological functions and medical applications in diagnosis, immunoprophylaxis and therapy. Rational implications of these enzymes can impact human medicine positively in future by opening new ways for therapeutics which have otherwise reached saturation due to multi drug resistance.
Collapse
Affiliation(s)
- Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| | - Nisha Garg
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Anshul Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Ravinder Singh
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
117
|
Skopelja-Gardner S, Theprungsirikul J, Lewis KA, Hammond JH, Carlson KM, Hazlett HF, Nymon A, Nguyen D, Berwin BL, Hogan DA, Rigby WFC. Regulation of Pseudomonas aeruginosa-Mediated Neutrophil Extracellular Traps. Front Immunol 2019; 10:1670. [PMID: 31379861 PMCID: PMC6657737 DOI: 10.3389/fimmu.2019.01670] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is the most prevalent opportunistic pathogen in the airways of cystic fibrosis (CF) patients. The pulmonary disorder is characterized by recurrent microbial infections and an exaggerated host inflammatory immune response led primarily by influx of neutrophils. Under these conditions, chronic colonization with P. aeruginosa is associated with diminished pulmonary function and increased morbidity and mortality. P. aeruginosa has a wide array of genetic mechanisms that facilitate its persistent colonization of the airway despite extensive innate host immune responses. Loss of function mutations in the quorum sensing regulatory gene lasR have been shown to confer survival advantage and a more pathogenic character to P. aeruginosa in CF patients. However, the strategies used by LasR-deficient P. aeruginosa to modulate neutrophil-mediated bactericidal functions are unknown. We sought to understand the role of LasR in P. aeruginosa-mediated neutrophil extracellular trap (NET) formation, an important anti-microbial mechanism deployed by neutrophils, the first-line responder in the infected airway. We observe mechanistic and phenotypic differences between NETs triggered by LasR-sufficient and LasR-deficient P. aeruginosa strains. We uncover that LasR-deficient P. aeruginosa strains fail to induce robust NET formation in both human and murine neutrophils, independently of bacterial motility or LPS expression. LasR does not mediate NET release via downstream quorum sensing signaling pathways but rather via transcriptional regulation of virulence factors, including, but not restricted to, LasB elastase and LasA protease. Finally, our studies uncover the differential requirements for NADPH oxidase in NET formation triggered by different P. aeruginosa strains.
Collapse
Affiliation(s)
- Sladjana Skopelja-Gardner
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Jomkuan Theprungsirikul
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kimberley A Lewis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - John H Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kyrsten M Carlson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Haley F Hazlett
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Amanda Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Dao Nguyen
- Department of Microbiology and Immunology, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Brent L Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - William F C Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.,Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
118
|
Niedźwiedzka-Rystwej P, Repka W, Tokarz-Deptuła B, Deptuła W. "In sickness and in health" - how neutrophil extracellular trap (NET) works in infections, selected diseases and pregnancy. J Inflamm (Lond) 2019; 16:15. [PMID: 31297037 PMCID: PMC6599315 DOI: 10.1186/s12950-019-0222-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022] Open
Abstract
The discovery of the NET network (neutrophil extracellular trap) has revolutionized the perception of defense mechanisms used by neutrophils in infections and non-infectious states, as this mechanism proves the complexity of the ways in which neutrophils can act in the organism. The paper describes the NET network and its participation in bacterial, viral, fungal and parasitic infections, both in a positive and a negative aspect. In addition, attention was paid to the participation of NETs in the course of autoimmune diseases, cancer, as well as its impact on pregnancy and fertility in mammals.
Collapse
Affiliation(s)
| | - Weronika Repka
- Scientific Student’s Association for Microbiology, University of Szczecin, Szczecin, Poland
| | - Beata Tokarz-Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Wiesław Deptuła
- Department of Microbiology, Faculty of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| |
Collapse
|
119
|
Andreoni F, Ugolini F, Keller N, Neff A, Nizet V, Hollands A, Marques Maggio E, Zinkernagel AS, Schuepbach RA. Immunoglobulin Attenuates Streptokinase-Mediated Virulence in Streptococcus dysgalactiae Subspecies equisimilis Necrotizing Fasciitis. J Infect Dis 2019; 217:270-279. [PMID: 29099935 PMCID: PMC7263839 DOI: 10.1093/infdis/jix560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/28/2017] [Indexed: 01/18/2023] Open
Abstract
Background Necrotizing fasciitis (NF) retains a very high mortality rate despite prompt and adequate antibiotic treatment and surgical debridement. Necrotizing fasciitis has recently been associated withStreptococcus dysgalactiae subspeciesequisimilis (SDSE). Methods We investigated the causes of a very severe clinical manifestation of SDSE-NF by assessing both host and pathogen factors. Results We found a lack of streptokinase-function blocking antibodies in the patient resulting in increased streptokinase-mediated fibrinolysis and bacterial spread. At the same time, the clinical SDSE isolate produced very high levels of streptokinase. Exogenous immunoglobulin Gs (ex-IgGs) efficiently blocked streptokinase-mediated fibrinolysis in vitro, indicating a protective role against the action of streptokinase. In vivo, SDSE infection severity was also attenuated by ex-IgGs in a NF mouse model. Conclusions These findings illustrate for the first time that the lack of specific antibodies against streptococcal virulence factors, such as streptokinase, may contribute to NF disease severity. This can be counteracted by ex-IgGs.
Collapse
Affiliation(s)
- Federica Andreoni
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Fabio Ugolini
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Nadia Keller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Andrina Neff
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Victor Nizet
- Department of Pediatrics, Division of Pharmacology and Drug Discovery, San Diego, California.,Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, California
| | - Andrew Hollands
- Department of Pediatrics, Division of Pharmacology and Drug Discovery, San Diego, California
| | - Ewerton Marques Maggio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
120
|
Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat Commun 2019; 10:1667. [PMID: 30971685 PMCID: PMC6458182 DOI: 10.1038/s41467-019-09040-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 02/12/2019] [Indexed: 01/05/2023] Open
Abstract
Neutrophils are crucial mediators of host defense that are recruited to the central nervous system (CNS) in large numbers during acute bacterial meningitis caused by Streptococcus pneumoniae. Neutrophils release neutrophil extracellular traps (NETs) during infections to trap and kill bacteria. Intact NETs are fibrous structures composed of decondensed DNA and neutrophil-derived antimicrobial proteins. Here we show NETs in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis, and their absence in other forms of meningitis with neutrophil influx into the CSF caused by viruses, Borrelia and subarachnoid hemorrhage. In a rat model of meningitis, a clinical strain of pneumococci induced NET formation in the CSF. Disrupting NETs using DNase I significantly reduces bacterial load, demonstrating that NETs contribute to pneumococcal meningitis pathogenesis in vivo. We conclude that NETs in the CNS reduce bacterial clearance and degrading NETs using DNase I may have significant therapeutic implications. Neutrophils play critical roles in the host response to bacteria, including the production neutrophil extracellular traps (NET). Here the authors show that NET formation in the context of pneumococcal meningitis impairs bacterial clearance and targeting NET formation in this context could be a potential therapeutic option.
Collapse
|
121
|
Human polyspecific immunoglobulin attenuates group A streptococcal virulence factor activity and reduces disease severity in a murine necrotizing fasciitis model. Clin Microbiol Infect 2019; 25:512.e7-512.e13. [DOI: 10.1016/j.cmi.2018.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/29/2018] [Accepted: 07/07/2018] [Indexed: 01/01/2023]
|
122
|
Huskey DA, Curlango‐Rivera G, Hawes MC. Use of rhodizonic acid for rapid detection of root border cell trapping of lead and reversal of trapping with DNase. APPLICATIONS IN PLANT SCIENCES 2019; 7:e01240. [PMID: 31024783 PMCID: PMC6476171 DOI: 10.1002/aps3.1240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Lead (Pb) is a contaminant whose removal from soil remains a challenge. In a previous study, border cells released from root tips were found to trap Pb, alter its chemistry, and prevent root uptake. Rhodizonic acid (RA) is a forensic tool used to reveal gunshot residue, and also to detect Pb within plant tissues. Here we report preliminary observations to assess the potential application of RA in exploring the dynamics of Pb accumulation at the root tip surface. METHODS AND RESULTS Corn root tips were immersed in Pb solution, stained with RA, and observed microscopically. Pb trapping by border cells was evident within minutes. The role of extracellular DNA was revealed when addition of nucleases resulted in dispersal of RA-stained Pb particles. CONCLUSIONS RA is an efficient tool to monitor Pb-root interactions. Trapping by border cells may control Pb levels and chemistry at the root tip surface. Understanding how plants influence Pb distribution in soil may facilitate its remediation.
Collapse
Affiliation(s)
- David A. Huskey
- Department of Soil, Water and Environmental SciencesUniversity of Arizona429 Shantz Building, #38 1177 E. Fourth Street, P.O. Box 210038TucsonArizona85721‐0038USA
| | - Gilberto Curlango‐Rivera
- Department of Soil, Water and Environmental SciencesUniversity of Arizona429 Shantz Building, #38 1177 E. Fourth Street, P.O. Box 210038TucsonArizona85721‐0038USA
| | - Martha C. Hawes
- Department of Soil, Water and Environmental SciencesUniversity of Arizona429 Shantz Building, #38 1177 E. Fourth Street, P.O. Box 210038TucsonArizona85721‐0038USA
| |
Collapse
|
123
|
Neutrophils and NETs in modulating acute and chronic inflammation. Blood 2019; 133:2178-2185. [PMID: 30898862 DOI: 10.1182/blood-2018-11-844530] [Citation(s) in RCA: 479] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022] Open
Abstract
Neutrophils are an absolutely essential part of the innate immune system, playing an essential role in the control of infectious diseases but more recently are also being viewed as important players in tissue repair. Neutrophils are able to counteract an infection through phagocytosis and/or the release of neutrophil extracellular traps (NETs). By contrast, neutrophils help repair damaged tissues, limiting NET production but still phagocytosing debris. However, when inflammation is recurrent, or the inciting agent persists, neutrophils through a frustrated inability to resolve the problem can release NETs to exacerbate tissue damage during inappropriate inflammation. In this review, we discuss the mechanisms of NET formation, as well as the apparent paradoxical role of neutrophils and NETs in host defense, chronic inflammation, and tissue disrepair.
Collapse
|
124
|
A DNase from a Fungal Phytopathogen Is a Virulence Factor Likely Deployed as Counter Defense against Host-Secreted Extracellular DNA. mBio 2019; 10:mBio.02805-18. [PMID: 30837342 PMCID: PMC6401486 DOI: 10.1128/mbio.02805-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We document that the absence of a single gene encoding a DNase in a fungal plant pathogen results in significantly reduced virulence to a plant host. We compared a wild-type strain of the maize pathogen Cochliobolus heterostrophus and an isogenic mutant lacking a candidate secreted DNase-encoding gene and demonstrated that the mutant is reduced in virulence on leaves and on roots. There are no previous reports of deletion of such a gene from either an animal or plant fungal pathogen accompanied by comparative assays of mutants and wild type for alterations in virulence. We observed DNase activity, in fungal culture filtrates, that is Mg2+ dependent and induced when plant host leaf material is present. Our findings demonstrate not only that fungi use extracellular DNases (exDNases) for virulence, but also that the relevant molecules are deployed in above-ground leaves as well as below-ground plant tissues. Overall, these data provide support for a common defense/counter defense virulence mechanism used by animals, plants, and their fungal and bacterial pathogens and suggest that components of the mechanism might be novel targets for the control of plant disease. Histone-linked extracellular DNA (exDNA) is a component of neutrophil extracellular traps (NETs). NETs have been shown to play a role in immune response to bacteria, fungi, viruses, and protozoan parasites. Mutation of genes encoding group A Streptococcus extracellular DNases (exDNases) results in reduced virulence in animals, a finding that implies that exDNases are deployed as counter defense against host DNA-containing NETs. Is the exDNA/exDNase mechanism also relevant to plants and their pathogens? It has been demonstrated previously that exDNA is a component of a matrix secreted from plant root caps and that plants also carry out an extracellular trapping process. Treatment with DNase I destroys root tip resistance to infection by fungi, the most abundant plant pathogens. We show that the absence of a single gene encoding a candidate exDNase results in significantly reduced virulence of a fungal plant pathogen to its host on leaves, the known infection site, and on roots. Mg2+-dependent exDNase activity was demonstrated in fungal culture filtrates and induced when host leaf material was present. It is speculated that the enzyme functions to degrade plant-secreted DNA, a component of a complex matrix akin to neutrophil extracellular traps of animals.
Collapse
|
125
|
Osowicki J, Azzopardi KI, McIntyre L, Rivera-Hernandez T, Ong CLY, Baker C, Gillen CM, Walker MJ, Smeesters PR, Davies MR, Steer AC. A Controlled Human Infection Model of Group A Streptococcus Pharyngitis: Which Strain and Why? mSphere 2019; 4:e00647-18. [PMID: 30760615 PMCID: PMC6374595 DOI: 10.1128/msphere.00647-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/16/2019] [Indexed: 01/23/2023] Open
Abstract
Group A Streptococcus (GAS) is a major cause of global infection-related morbidity and mortality. A modern controlled human infection model (CHIM) of GAS pharyngitis can accelerate vaccine development and pathogenesis research. A robust rationale for strain selection is central to meeting ethical, scientific, and regulatory requirements. Multifaceted characterization studies were done to compare a preferred candidate emm75 (M75) GAS strain to three other strains: an alternative candidate emm12 (M12) strain, an M1 strain used in 1970s pharyngitis CHIM studies (SS-496), and a representative (5448) of the globally disseminated M1T1 clone. A range of approaches were used to explore strain growth, adherence, invasion, delivery characteristics, short- and long-term viability, phylogeny, virulence factors, vaccine antigens, resistance to killing by human neutrophils, and lethality in a murine invasive model. The strains grew reliably in a medium without animal-derived components, were consistently transferred using a swab method simulating the CHIM protocol, remained viable at -80°C, and carried genes for most candidate vaccine antigens. Considering GAS molecular epidemiology, virulence factors, in vitro assays, and results from the murine model, the contemporary strains show a spectrum of virulence, with M75 appearing the least virulent and 5448 the most. The virulence profile of SS-496, used safely in 1970s CHIM studies, was similar to that of 5448 in the animal model and virulence gene carriage. The results of this multifaceted characterization confirm the M75 strain as an appropriate choice for initial deployment in the CHIM, with the aim of safely and successfully causing pharyngitis in healthy adult volunteers.IMPORTANCE GAS (Streptococcus pyogenes) is a leading global cause of infection-related morbidity and mortality. A modern CHIM of GAS pharyngitis could help to accelerate vaccine development and drive pathogenesis research. Challenge strain selection is critical to the safety and success of any CHIM and especially so for an organism such as GAS, with its wide strain diversity and potential to cause severe life-threatening acute infections (e.g., toxic shock syndrome and necrotizing fasciitis) and postinfectious complications (e.g., acute rheumatic fever, rheumatic heart disease, and acute poststreptococcal glomerulonephritis). In this paper, we outline the rationale for selecting an emm75 strain for initial use in a GAS pharyngitis CHIM in healthy adult volunteers, drawing on the findings of a broad characterization effort spanning molecular epidemiology, in vitro assays, whole-genome sequencing, and animal model studies.
Collapse
Affiliation(s)
- Joshua Osowicki
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Kristy I Azzopardi
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ciara Baker
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Christine M Gillen
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Pierre R Smeesters
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Paediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Andrew C Steer
- Tropical Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
126
|
Ginsburg I, Korem M, Koren E, Varani J. Pro-inflammatory agents released by pathogens, dying host cells, and neutrophils act synergistically to destroy host tissues: a working hypothesis. J Inflamm Res 2019; 12:35-47. [PMID: 30774411 PMCID: PMC6350637 DOI: 10.2147/jir.s190007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We postulate that the extensive cell and tissue damage inflicted by many infectious, inflammatory and post-inflammatory episodes is an enled result of a synergism among the invading microbial agents, host neutrophils and dead and dying cells in the nidus. Microbial toxins and other metabolites along with the plethora of pro-inflammatory agents released from activated neutrophils massively recruited to the infectious sites and high levels of cationic histones, other cationic peptides, proteinases and Th1 cytokines released from activated polymorphonuclear neutrophils (PMNs) and from necrotized tissues may act in concert (synergism) to bring about cell killing and tissue destruction. Multiple, diverse interactions among the many potential pro-inflammatory moieties have been described in these complex lesions. Such infections are often seen in the skin and aerodigestive tract where the tissue is exposed to the environment, but can occur in any tissue. Commonly, the tissue-destructive infections are caused by group A streptococci, pneumococci, Staphylococcus aureus, meningococci, Escherichia coli and Shigella, although many other microbial species are seen on occasion. All these microbial agents are characterized by their ability to recruit large numbers of PMNs. Given the complex nature of the disease process, it is proposed that, to treat these multifactorial disorders, a "cocktail" of anti-inflammatory agents combined with non-bacteriolytic antibiotics and measures to counteract the critical toxic role of cationic moieties might prove more effective than a strategy based on attacking the bacteria alone.
Collapse
Affiliation(s)
- Isaac Ginsburg
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel,
| | - Maya Korem
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel,
| | - Erez Koren
- Research and Development Department, Clexio Biosciences Ltd, Petah Tikva, Israel
| | - James Varani
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
127
|
Pancholi V. Group A Streptococcus-Mediated Host Cell Signaling. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0021-2018. [PMID: 30767846 PMCID: PMC11590744 DOI: 10.1128/microbiolspec.gpp3-0021-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
In the past decade, the field of the cellular microbiology of group A Streptococcus (S. pyogenes) infection has made tremendous advances and touched upon several important aspects of pathogenesis, including receptor biology, invasive and evasive phenomena, inflammasome activation, strain-specific autophagic bacterial killing, and virulence factor-mediated programmed cell death. The noteworthy aspect of S. pyogenes-mediated cell signaling is the recognition of the role of M protein in a variety of signaling events, starting with the targeting of specific receptors on the cell surface and on through the induction and evasion of NETosis, inflammasome, and autophagy/xenophagy to pyroptosis and apoptosis. Variations in reports on S. pyogenes-mediated signaling events highlight the complex mechanism of pathogenesis and underscore the importance of the host cell and S. pyogenes strain specificity, as well as in vitro/in vivo experimental parameters. The severity of S. pyogenes infection is, therefore, dependent on the virulence gene expression repertoire in the host environment and on host-specific dynamic signaling events in response to infection. Commonly known as an extracellular pathogen, S. pyogenes finds host macrophages as safe havens wherein it survives and even multiplies. The fact that endothelial cells are inherently deficient in autophagic machinery compared to epithelial cells and macrophages underscores the invasive nature of S. pyogenes and its ability to cause severe systemic diseases. S. pyogenes is still one of the top 10 causes of infectious mortality. Understanding the orchestration of dynamic host signaling networks will provide a better understanding of the increasingly complex mechanism of S. pyogenes diseases and novel ways of therapeutically intervening to thwart severe and often fatal infections.
Collapse
Affiliation(s)
- Vijay Pancholi
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210
| |
Collapse
|
128
|
Miralda I, Vashishta A, Uriarte SM. Neutrophil Interaction with Emerging Oral Pathogens: A Novel View of the Disease Paradigm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:165-178. [PMID: 31732941 DOI: 10.1007/978-3-030-28524-1_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Periodontitis is a multifactorial chronic inflammatory infectious disease that compromises the integrity of tooth-supporting tissues. The disease progression depends on the disruption of host-microbe homeostasis in the periodontal tissue. This disruption is marked by a shift in the composition of the polymicrobial oral community from a symbiotic to a dysbiotic, more complex community that is capable of evading killing while promoting inflammation. Neutrophils are the main phagocytic cell in the periodontal pocket, and the outcome of the interaction with the oral microbiota is an important determinant of oral health. Novel culture-independent techniques have facilitated the identification of new bacterial species at periodontal lesions and induced a reappraisal of the microbial etiology of periodontitis. In this chapter, we discuss how neutrophils interact with two emerging oral pathogens, Filifactor alocis and Peptoanaerobacter stomatis, and the different strategies deploy by these organisms to modulate neutrophil effector functions, with the goal to outline a new paradigm in our knowledge about neutrophil responses to putative periodontal pathogens and their contribution to disease progression.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Aruna Vashishta
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA. .,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
129
|
Shannon BA, McCormick JK, Schlievert PM. Toxins and Superantigens of Group A Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0054-2018. [PMID: 30737912 PMCID: PMC11590448 DOI: 10.1128/microbiolspec.gpp3-0054-2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pyogenes (i.e., the group A Streptococcus) is a human-restricted and versatile bacterial pathogen that produces an impressive arsenal of both surface-expressed and secreted virulence factors. Although surface-expressed virulence factors are clearly vital for colonization, establishing infection, and the development of disease, the secreted virulence factors are likely the major mediators of tissue damage and toxicity seen during active infection. The collective exotoxin arsenal of S. pyogenes is rivaled by few bacterial pathogens and includes extracellular enzymes, membrane active proteins, and a variety of toxins that specifically target both the innate and adaptive arms of the immune system, including the superantigens; however, despite their role in S. pyogenes disease, each of these virulence factors has likely evolved with humans in the context of asymptomatic colonization and transmission. In this article, we focus on the biology of the true secreted exotoxins of the group A Streptococcus, as well as their roles in the pathogenesis of human disease.
Collapse
Affiliation(s)
- Blake A Shannon
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - John K McCormick
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - Patrick M Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
130
|
Zhou Y, Xiao B, Jiang N, Sang X, Yang N, Feng Y, Jiang L, Chen Q. Expression and functional analysis of the TatD-like DNase of Plasmodium knowlesi. Parasit Vectors 2018; 11:629. [PMID: 30541605 PMCID: PMC6291984 DOI: 10.1186/s13071-018-3251-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/03/2018] [Indexed: 01/21/2023] Open
Abstract
Background In recent years, human infection by the simian malaria parasite Plasmodium knowlesi has increased in Southeast Asia, leading to growing concerns regarding the cross-species spread of the parasite. Consequently, a deeper understanding of the biology of P. knowlesi is necessary in order to develop tools for control of the emerging disease. TatD-like DNase expressed at the surface of P. falciparum has recently been shown to counteract host innate immunity and is thus a potential malaria vaccine candidate. Methods The expression of the TatD DNase of P. knowlesi (PkTatD) was confirmed by both Western-blot and immunofluorescent assay. The DNA catalytic function of the PkTatD was confirmed by digestion of DNA with the recombinant PkTatD protein in the presence of various irons. Results In the present study, we investigated the expression of the homologous DNase in P. knowlesi. The expression of TatD-like DNase in P. knowslesi (PkTatD) was verified by Western blot and indirect immunofluorescence assays. Like that of the P. falciparum parasite, PkTatD was also found to be located on the surface of erythrocytes infected by the parasites. Biochemical analysis indicated that PkTatD can hydrolyze DNA and this activity is magnesium-dependent. Conclusions We identified that PkTatD expressed on the surface of P. knowlesi-infected RBCs is a Mg2+-dependent DNase and exhibits a stronger hydrolytic capacity than TatD from P. falciparum. The data support our previous findings that TatD-like DNase is a unanimously expressed virulence factor of Plasmodium parasites.
Collapse
Affiliation(s)
- Yapan Zhou
- Key Laboratory of Zoonosis, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Bo Xiao
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Pasteur Institute of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Jiang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Na Yang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Ying Feng
- Key Laboratory of Zoonosis, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Pasteur Institute of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qijun Chen
- Key Laboratory of Zoonosis, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China.
| |
Collapse
|
131
|
Group A Streptococcal DNase Sda1 Impairs Plasmacytoid Dendritic Cells' Type 1 Interferon Response. J Invest Dermatol 2018; 139:1284-1293. [PMID: 30543898 DOI: 10.1016/j.jid.2018.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/19/2023]
Abstract
Group A Streptococcus causes severe invasive infections, including necrotizing fasciitis. The expression of an array of virulence factors targeting specific host immune functions impedes successful bacterial clearance. The virulence factor streptococcal DNase Sda1 was previously shown to interfere with the entrapment of bacteria through neutrophil extracellular traps and TLR9 signaling. In this study, we showed that plasmacytoid dendritic cells are recruited to the infected tissue during group A streptococcal necrotizing fasciitis. We found that the streptococcal DNase Sda1 impairs plasmacytoid dendritic cell recruitment by reducing IFN-1 levels at the site of infection. We found that streptococcal DNase Sda1 interferes with stabilization of the DNA by the host molecule HMGB1 protein, which may account for decreased IFN-1 levels at the site of infection.
Collapse
|
132
|
Ma F, Chang X, Wang G, Zhou H, Ma Z, Lin H, Fan H. Streptococcus Suis Serotype 2 Stimulates Neutrophil Extracellular Traps Formation via Activation of p38 MAPK and ERK1/2. Front Immunol 2018; 9:2854. [PMID: 30581435 PMCID: PMC6292872 DOI: 10.3389/fimmu.2018.02854] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/20/2018] [Indexed: 01/06/2023] Open
Abstract
Streptococcus suis serotype 2 is a major pathogen of swine streptococcicosis, which result in serious economic loss worldwide. SS2 is an important zoonosis causing meningitis and even death in humans. Neutrophil extracellular traps (NETs) constitute a significant bactericidal strategy of innate immune. The battle between SS2 and NETs may account for the pathogenicity of SS2. However, the molecular mechanism underlying release of SS2-induced NETs remains unclear. In this study, SS2 was found to induce NETs within 2–4 h, and was dependent on reactive oxygen species (ROS) from NADPH oxidase. Moreover, SS2 could activate neutrophil p38 MAPK and ERK1/2. Blockage of p38 MAPK or ERK1/2 activation decreased SS2-induced NETs formation by 65 and 85%, respectively. In addition, NADPH oxidase derived ROS inhibition negatively affected phosphorylation of p38 MAPK and ERK1/2 in SS2 induced neutrophils. Both TLR2 and TLR4 were significantly up-regulated by SS2 infection in blood cells in vivo and neutrophils in vitro, which indicates these two receptors are involved in SS2 recognition. Blocking TLR4 signaling could further inhibit the activation of ERK1/2, but not p38 MAPK; however, TLR4 signaling inhibition reduced NETs formation induced by SS2. In conclusion, SS2 could be recognized by TLR2 and/or TLR4, initiating NETs formation signaling pathways in a NADPH oxidase derived ROS dependent manner. ROS will activate p38 MAPK and ERK1/2, which ultimately induces NETs formation.
Collapse
Affiliation(s)
- Fang Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaojing Chang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guangyu Wang
- National Center of Meat Quality and Safety Control, Nanjing Agriculture University, Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
133
|
Woodberry T, Bouffler SE, Wilson AS, Buckland RL, Brüstle A. The Emerging Role of Neutrophil Granulocytes in Multiple Sclerosis. J Clin Med 2018; 7:E511. [PMID: 30513926 PMCID: PMC6306801 DOI: 10.3390/jcm7120511] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong autoimmune, neurodegenerative, and neuroinflammatory component. Most of the common disease modifying treatments (DMTs) for MS modulate the immune response targeting disease associated T and B cells and while none directly target neutrophils, several DMTs do impact their abundance or function. The role of neutrophils in MS remains unknown and research is ongoing to better understand the phenotype, function, and contribution of neutrophils to both disease onset and stage of disease. Here we summarize the current state of knowledge of neutrophils and their function in MS, including in the rodent based MS model, and we discuss the potential effects of current treatments on these functions. We propose that neutrophils are likely to participate in MS pathogenesis and their abundance and function warrant monitoring in MS.
Collapse
Affiliation(s)
- Tonia Woodberry
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Sophie E Bouffler
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Alicia S Wilson
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Rebecca L Buckland
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Anne Brüstle
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| |
Collapse
|
134
|
Li RHL, Tablin F. A Comparative Review of Neutrophil Extracellular Traps in Sepsis. Front Vet Sci 2018; 5:291. [PMID: 30547040 PMCID: PMC6280561 DOI: 10.3389/fvets.2018.00291] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 01/03/2023] Open
Abstract
Sepsis is the leading cause of critical illness and mortality in human beings and animals. Neutrophils are the primary effector cells of innate immunity during sepsis. Besides degranulation and phagocytosis, neutrophils also release neutrophil extracellular traps (NETs), composed of cell-free DNA, histones, and antimicrobial proteins. Although NETs have protective roles in the initial stages of sepsis, excessive NET formation has been found to induce thrombosis and multiple organ failure in murine sepsis models. Since the discovery of NETs nearly a decade ago, many investigators have identified NETs in various species. However, many questions remain regarding the exact mechanisms and fate of neutrophils following NET formation. In humans and mice, platelet-neutrophil interactions via direct binding or soluble mediators seem to play an important role in mediating NET formation during sepsis. Preliminary data suggest that these interactions may be species dependent. Regardless of these differences, there is increasing evidence in human and veterinary medicine suggesting that NETs play a crucial role in the pathogenesis of intravascular thrombosis and multiple organ failure in sepsis. Because the outcome of sepsis is highly dependent on early recognition and intervention, detection of NETs or NET components can aid in the diagnosis of sepsis in humans and veterinary species. In addition, the use of novel therapies such as deoxyribonuclease and non-anticoagulant heparin to target NET components shows promising results in murine septic models. Much work is needed in translating these NET-targeting therapies to clinical practice.
Collapse
Affiliation(s)
- Ronald H L Li
- Department of Radiological and Surgical Sciences, School of Veterinary Medicine, University of California, Davis Davis, CA, United States
| | - Fern Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis Davis, CA, United States
| |
Collapse
|
135
|
Dwivedi N, Radic M. Burning controversies in NETs and autoimmunity: The mysteries of cell death and autoimmune disease. Autoimmunity 2018; 51:267-280. [PMID: 30417698 DOI: 10.1080/08916934.2018.1523395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The causes and mechanisms of autoimmune disease pose continuing challenges to the scientific community. Recent clues implicate a peculiar feature of neutrophils, their ability to release nuclear chromatin in the form of neutrophil extracellular traps (NETs), in the induction or progression of autoimmune disease. Efforts to define the beneficial versus detrimental effects of NET release have, as yet, only partially revealed mechanisms that guide this process. Evidence suggests that the process of NET release is highly regulated, but the details of regulation remain controversial and obscure. Without a better understanding of the factors that initiate and control NET formation, the judicious modification of neutrophil behaviour for medically useful purposes appears remote. We highlight gaps and inconsistencies in published work, which make NETs and their role in health and disease a puzzle that deserves more focused attention.
Collapse
Affiliation(s)
- Nishant Dwivedi
- a TIP Immunology , EMD Serono Research and Development Institute, Inc , Billerica , MA , USA
| | - Marko Radic
- b Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
136
|
The conserved mosaic prophage protein paratox inhibits the natural competence regulator ComR in Streptococcus. Sci Rep 2018; 8:16535. [PMID: 30409983 PMCID: PMC6224593 DOI: 10.1038/s41598-018-34816-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023] Open
Abstract
Horizontal gene transfer is an important means of bacterial evolution. This includes natural genetic transformation, where bacterial cells become “competent” and DNA is acquired from the extracellular environment. Natural competence in many species of Streptococcus, is regulated by quorum sensing via the ComRS receptor-signal pair. The ComR-XIP (mature ComS peptide) complex induces expression of the alternative sigma factor SigX, which targets RNA polymerase to CIN-box promoters to activate genes involved in DNA uptake and recombination. In addition, the widely distributed Streptococcus prophage gene paratox (prx) also contains a CIN-box, and here we demonstrate it to be transcriptionally activated by XIP. In vitro experiments demonstrate that Prx binds ComR directly and prevents the ComR-XIP complex from interacting with DNA. Mutations of prx in vivo caused increased expression of the late competence gene ssb when induced with XIP as compared to wild-type, and Prx orthologues are able to inhibit ComR activation by XIP in a reporter strain which lacks an endogenous prx. Additionally, an X-ray crystal structure of Prx reveals a unique fold that implies a novel molecular mechanism to inhibit ComR. Overall, our results suggest Prx functions to inhibit the acquisition of new DNA by Streptococcus.
Collapse
|
137
|
Qi X, Yue X, Han Y, Jiang P, Yang F, Lei JJ, Liu RD, Zhang X, Wang ZQ, Cui J. Characterization of Two Trichinella spiralis Adult-Specific DNase II and Their Capacity to Induce Protective Immunity. Front Microbiol 2018; 9:2504. [PMID: 30455671 PMCID: PMC6230719 DOI: 10.3389/fmicb.2018.02504] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Deoxyribonuclease II (DNase II) is a widespread endonuclease, which can degrade the DNA. Trichinella spiralis adult-specific DNase II-1 (TsDNase II-1) and DNase II-7 (TsDNase II-7) were identified in excretory-secretory (ES) or surface proteins of adult worm (AW) and intestinal infective larvae (IIL) using immunoproteomics with early infection sera. The aim of this study was to characterize the two T. spiralis DNase II enzymes and to investigate their role as potential vaccine candidate target molecules. The cDNA sequences of the two DNase II enzymes from 3 days old AWs of T. spiralis were cloned and expressed. The sequencing results showed that the complete cDNA sequences of the two DNase II enzymes were 1221 and 1161 bp long, and the predicted open reading frames encoded 347 and 348 amino acids, respectively. On Western blot analysis, natural TsDNase II-1 and TsDNase II-7 in the crude extracts of IIL, AWs, and newborn larvae (NBL) and AW ES proteins were recognized by both anti-rTsDNase II-1 and anti-rTsDNase II-7 sera. Indirect immunofluorescence test and qPCR showed that the two DNase II enzymes were highly expressed at AW and NBL stages and were mainly located at the cuticle and stichosome of the nematode. Vaccination with the two recombinant DNase II enzymes triggered prominent humoral responses that exhibited significant immune protection against T. spiralis larval infection, as demonstrated by the notable reduction in intestinal AW and muscle larva burdens. Specific antibodies to the two molecules evidently inhibited the in vitro parasite invasion of enterocytes and participated in the killing of NBL by an antibody-dependent cell-mediated cytotoxicity (ADCC) mode. The enzymes DNase II-1 and DNase II-7 are the potential target molecules for anti-Trichinella vaccine for blocking both larval invasion and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhong Q. Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
138
|
Abstract
While the microscopic appearance of neutrophil extracellular traps (NETs) has fascinated basic researchers since its discovery, the (patho)physiological mechanisms triggering NET release, the disease relevance and clinical translatability of this unconventional cellular mechanism remained poorly understood. Here, we summarize and discuss current concepts of the mechanisms and disease relevance of NET formation.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dominik Hartl
- Children's Hospital, University of Tübingen, Tübingen, Germany
| |
Collapse
|
139
|
van der Windt DJ, Sud V, Zhang H, Varley PR, Goswami J, Yazdani HO, Tohme S, Loughran P, O’Doherty RM, Minervini MI, Huang H, Simmons RL, Tsung A. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 2018; 68:1347-1360. [PMID: 29631332 PMCID: PMC6173613 DOI: 10.1002/hep.29914] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/11/2018] [Accepted: 03/30/2018] [Indexed: 12/14/2022]
Abstract
UNLABELLED Nonalcoholic steatohepatitis (NASH) is a progressive, inflammatory form of fatty liver disease. It is the most rapidly rising risk factor for the development of hepatocellular carcinoma (HCC), which can arise in NASH with or without cirrhosis. The inflammatory signals promoting the progression of NASH to HCC remain largely unknown. The propensity of neutrophils to expel decondensed chromatin embedded with inflammatory proteins, known as neutrophil extracellular traps (NETs), has been shown to be important in chronic inflammatory conditions and in cancer progression. In this study, we asked whether NET formation occurs in NASH and contributes to the progression of HCC. We found elevated levels of a NET marker in serum of patients with NASH. In livers from STAM mice (NASH induced by neonatal streptozotocin and high-fat diet), early neutrophil infiltration and NET formation were seen, followed by an influx of monocyte-derived macrophages, production of inflammatory cytokines, and progression of HCC. Inhibiting NET formation, through treatment with deoxyribonuclease (DNase) or using mice knocked out for peptidyl arginine deaminase type IV (PAD4-/- ), did not affect the development of a fatty liver but altered the consequent pattern of liver inflammation, which ultimately resulted in decreased tumor growth. Mechanistically, we found that commonly elevated free fatty acids stimulate NET formation in vitro. CONCLUSION Our findings implicate NETs in the protumorigenic inflammatory environment in NASH, suggesting that their elimination may reduce the progression of liver cancer in NASH. (Hepatology 2018).
Collapse
Affiliation(s)
- Dirk J. van der Windt
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Vikas Sud
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hongji Zhang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Patrick R. Varley
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Julie Goswami
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Patricia Loughran
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Robert M. O’Doherty
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Marta I. Minervini
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hai Huang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA,Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Richard L. Simmons
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
140
|
An TJ, Benvenuti MA, Mignemi ME, Thomsen IP, Schoenecker JG. Pediatric Musculoskeletal Infection: Hijacking the Acute-Phase Response. JBJS Rev 2018; 4:01874474-201609000-00004. [PMID: 27760072 DOI: 10.2106/jbjs.rvw.15.00099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tissue injury activates the acute-phase response mediated by the liver, which promotes coagulation, immunity, and tissue regeneration. To survive and disseminate, musculoskeletal pathogens express virulence factors that modulate and hijack this response. As the acute-phase reactants required by these pathogens are most abundant in damaged tissue, these infections are predisposed to occur in tissues following traumatic or surgical injury. Staphylococcus aureus expresses the virulence factors coagulase and von Willebrand binding protein to stimulate coagulation and to form a fibrin abscess that protects it from host immune-cell phagocytosis. After the staphylococcal abscess community reaches quorum, which is the colony density that enables cell-to-cell communication and coordinated gene expression, subsequent expression of staphylokinase stimulates activation of fibrinolysis, which ruptures the abscess wall and results in bacterial dissemination. Unlike Staphylococcus aureus, Streptococcus pyogenes expresses streptokinase and other virulence factors to activate fibrinolysis and to rapidly disseminate throughout the body, causing diseases such as necrotizing fasciitis. Understanding the virulence strategies of musculoskeletal pathogens will help to guide clinical diagnosis and decision-making through monitoring of acute-phase markers such as C-reactive protein, erythrocyte sedimentation rate, and fibrinogen.
Collapse
Affiliation(s)
- Thomas J An
- Departments of Orthopaedics (M.E.M. and J.G.S.), Pediatrics (I.P.T. and J.G.S.), Pediatric Infectious Disease (I.P.T.), Pharmacology (J.G.S.), and Pathology (J.G.S.), Vanderbilt University School of Medicine (T.J.A. and M.A.B.), Nashville, Tennessee
| | | | | | | | | |
Collapse
|
141
|
Secreted Phosphatase and Deoxyribonuclease Are Required by Pseudomonas aeruginosa To Defend against Neutrophil Extracellular Traps. Infect Immun 2018; 86:IAI.00403-18. [PMID: 29967090 DOI: 10.1128/iai.00403-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/23/2018] [Indexed: 11/20/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are produced by neutrophils as an innate immune defense mechanism to trap and kill microbial pathogens. NETs are comprised of ejected chromatin that forms a lattice structure enmeshed with numerous antimicrobial proteins. In addition to forming the structural backbone of NETs, extracellular DNA (eDNA) has membrane-disrupting antimicrobial activity that contributes to NET killing. Many pathogens produce secreted extracellular DNases to evade the antimicrobial activity of NETs. Pseudomonas aeruginosa encodes an operon of two secreted enzymes, a predicted alkaline phosphatase and a DNase. The DNase (eddB) degrades eDNA to use as a nutrient source. Here we report that both eDNA and NETs are potent inducers of this DNase-phosphatase operon. Furthermore, the secreted DNase contributes to degrading NET DNA and defends P. aeruginosa against NET-mediated killing. We demonstrate that EddA has both alkaline phosphatase and phosphodiesterase (PDase) activities and also protects against the antimicrobial activity of NETs. Although the phosphatase does not cause DNA degradation similar to that of the DNase, its protective function is likely a result of removing the cation-chelating phosphates from the eDNA phosphodiester backbone. Therefore, both the DNase and PDase contribute to defense against NET killing of P. aeruginosa, highlighting the role of DNA-manipulating enzymes in targeting the eDNA in neutrophil extracellular traps.
Collapse
|
142
|
Abstract
Streptococcus pyogenes (or Group A Streptococcus, GAS) is a Gram-positive human pathogen responsible for a diverse array of superficial, invasive and immune-related diseases. GAS infections have historically been diseases of poverty and overcrowding, and remain a significant problem in the developing world and in disadvantaged populations within developed countries. With improved living conditions and access to antibiotics, the rates of GAS diseases in developed societies have gradually declined during the 20th century. However, genetic changes in circulating GAS strains and/or changes in host susceptibility to infection can lead to dramatic increases in the rates of specific diseases. No situations exemplify this more than the global upsurge of invasive GAS disease that originated in the 1980s and the regional increases in scarlet fever in north-east Asia and the UK. In each case, increased disease rates have been associated with the emergence of new GAS strains with increased disease-causing capability. Global surveillance for new GAS strains with increased virulence is important and determining why certain populations suddenly become susceptible to circulating strains remains a research priority. Here, we overview the changing epidemiology of GAS infections and the genetic alterations that accompany the emergence of GAS strains with increased capacity to cause disease.
Collapse
|
143
|
Binnenkade L, Kreienbaum M, Thormann KM. Characterization of ExeM, an Extracellular Nuclease of Shewanella oneidensis MR-1. Front Microbiol 2018; 9:1761. [PMID: 30123203 PMCID: PMC6085458 DOI: 10.3389/fmicb.2018.01761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/13/2018] [Indexed: 01/08/2023] Open
Abstract
Bacterial extracellular nucleases have multiple functions in processes as diverse as nutrient acquisition, natural transformation, biofilm formation, or defense against neutrophil extracellular traps (NETs). Here we explored the properties of ExeM in Shewanella oneidensis MR-1, an extracellular nuclease, which is widely conserved among species of Shewanella, Vibrio, Aeromonas, and others. In S. oneidensis, ExeM is crucial for normal biofilm formation. In vitro activity measurements on heterologously produced ExeM revealed that this enzyme is a sugar-unspecific endonuclease, which requires Ca2+ and Mg2+/Mn2+ as co-factors for full activity. ExeM was almost exclusively localized to the cytoplasmic membrane fraction, even when a putative C-terminal membrane anchor was deleted. In contrast, ExeM was not detected in medium supernatants. Based on the results we hypothesize that ExeM predominantly interacts with DNA in close proximity to the cell, e.g., to promote biofilm formation and defense against NETs, or to control uptake of DNA.
Collapse
Affiliation(s)
- Lucas Binnenkade
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Maximilian Kreienbaum
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Kai M Thormann
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
144
|
Becatti M, Mannucci A, Taddei N, Fiorillo C. Oxidative stress and inflammation: new molecular targets for cardiovascular diseases. Intern Emerg Med 2018; 13:647-649. [PMID: 29858969 DOI: 10.1007/s11739-018-1865-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| | - Amanda Mannucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| |
Collapse
|
145
|
Butler A, Walton GM, Sapey E. Neutrophilic Inflammation in the Pathogenesis of Chronic Obstructive Pulmonary Disease. COPD 2018; 15:392-404. [DOI: 10.1080/15412555.2018.1476475] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aidan Butler
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Georgia May Walton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
146
|
Cooper PR, Chicca IJ, Holder MJ, Milward MR. Inflammation and Regeneration in the Dentin-pulp Complex: Net Gain or Net Loss? J Endod 2018; 43:S87-S94. [PMID: 28844308 DOI: 10.1016/j.joen.2017.06.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The balance between the immune/inflammatory and regenerative responses in the diseased pulp is central to the clinical outcome, and this response is unique within the body because of its tissue site. Cariogenic bacteria invade the dentin and pulp tissues, triggering molecular and cellular events dependent on the disease stage. At the early onset, odontoblasts respond to bacterial components in an attempt to protect the tooth's hard and soft tissues and limit disease progression. However, as disease advances, the odontoblasts die, and cells central to the pulp core, including resident immune cells, pulpal fibroblasts, endothelial cells, and stem cells, respond to the bacterial challenge via their expression of a range of pattern recognition receptors that identify pathogen-associated molecular patterns. Subsequently, recruitment and activation occurs of a range of immune cell types, including neutrophils, macrophages, and T and B cells, which are attracted to the diseased site by cytokine/chemokine chemotactic gradients initially generated by resident pulpal cells. Although these cells aim to disinfect the tooth, their extravasation, migration, and antibacterial activity (eg, release of reactive oxygen species [ROS]) along with the bacterial toxins cause pulp damage and impede tissue regeneration processes. Recently, a novel bacterial killing mechanism termed neutrophil extracellular traps (NETs) has also been described that uses ROS signaling and results in cellular DNA extrusion. The NETs are decorated with antimicrobial peptides (AMPs), and their interaction with bacteria results in microbial entrapment and death. Recent data show that NETs can be stimulated by bacteria associated with endodontic infections, and they may be present in inflamed pulp tissue. Interestingly, some bacteria associated with pulpal infections express deoxyribonuclease enzymes, which may enable their evasion of NETs. Furthermore, although NETs aim to localize and kill invading bacteria using AMPs and histones, limiting the spread of the infection, data also indicate that NETs can exacerbate inflammation and their components are cytotoxic. This review considers the potential role of NETs within pulpal infections and how these structures may influence the pulp's vitality and regenerative responses.
Collapse
Affiliation(s)
- Paul R Cooper
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK.
| | - Ilaria J Chicca
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | - Michael J Holder
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | - Michael R Milward
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| |
Collapse
|
147
|
Matsuhisa A, Okui A, Horiuchi Y. [Viewing sepsis and autoimmune disease in relation with infection and NETs-formation]. Nihon Saikingaku Zasshi 2018; 73:171-191. [PMID: 29863035 DOI: 10.3412/jsb.73.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neutrophil has been widely recognized as body's first line of defence against pathogens. NETosis was first reported in 2004 as a programmed cell death of neutrophil and distinguished from apoptosis and necrosis. This phenomenon has been already observed in both basic and clinical research. NETosis is induced by various stimulants such as PMA, IL-8, DAMPs/PAMPs, bacteria, and antigen-antibody complex including self-antibody such as ANCA. It is known that there are two types of NETosis following bacterial infections. Although both of them have the ability to capture and kill bacteria, they also damage the host tissues. The inhibition of the NETs-related enzymes prevents the NETs formation at that time. The production of O2- from respiratory burst of neutrophils triggers NETs formation. In the first type of NETosis, neutrophils are completely collapsed, while in the second type, they maintain the morphology and the ability of phagocytosis. However, bacteria can escape from NETs by degrading NETs with their secreting nucleases. Thus the animal models of infection, using these bacteria, oftentimes suffer from severe infectious diseases. Human CGD (Chronic Granulomatosis Disease) patients who do not have Nox2 are immunocompromised, and highly susceptible to infection due to the defect of NETs formation. On the other hand, SLE patients are unable to break down the NETs as their serum inhibits the DNase1 activity, which results in autoantibody generation against NETs as well as self-DNA. It is getting clear that there is a relationship between inflammatory diseases, including infectious diseases, Sepsis and autoimmune diseases, and NETs. Therefore, it is important to re-evaluate the inflammatory disorders from NETs' perspective, and to incorporate the emerging concepts for better understanding the mechanisms involved.
Collapse
Affiliation(s)
- Akio Matsuhisa
- Medical Device & Deagnostic Dept., Fuso Pharmaceutical Industries, Ltd
| | - Akira Okui
- Research & Development Center, Fuso Pharmaceutical Industries, Ltd
| | | |
Collapse
|
148
|
Jiang N, Tu Z, Zhang Y, Li J, Feng Y, Yang N, Sang X, Chen Q. Identification and characterization of DNA endonucleases in Plasmodium falciparum 3D7 clone. Malar J 2018; 17:232. [PMID: 29914511 PMCID: PMC6006590 DOI: 10.1186/s12936-018-2388-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum is the most virulent parasite of the five Plasmodium species that cause human malaria, and biological analysis of the parasite is critical for the development of novel strategies for disease control. DNA endonucleases are important for maintaining the biological activity, gene stability of the parasite and interaction with host immune systems. In this study, ten sequences of DNA endonucleases were found in the genome of P. falciparum 3D7 clone, seven of them were predicted to contain an endonuclease/exonuclease/phosphatase (IPR005135) domain which plays an important role in DNA catalytic activity. The seven DNA endonucleases of P. falciparum were systematically investigated. Methods Plasmodium falciparum 3D7 clone was cultured in human O+ RBCs, RNA was extracted at 8, 16, 24, 32, 40, and 48 h post invasion and real-time quantitative PCR was carried out to analyse the transcription of the seven DNA endonuclease genes in asexual stages. Immunofluorescence assay was carried out to confirm the location of the encoded proteins expressed in the erythrocytic stages. Finally, the catalytic activity of the DNA nucleases were tested. Results Of the seven proteins analysed, two proteins were not soluble. Fragments derived from the rest five endonuclease sequences were successfully expressed as soluble proteins, and which were used to generate antisera for protein localization. The proteins were all located in the nucleus at ring and trophozoite stages. While at schizont stage, proteins encoded by PF3D7_1238600, PF3D7_0107200 and PF3D7_0319200 were in the punctuated forms in the parasite most likely around nuclei of the merozoites. But the proteins encoded by PF3D7_0305600 and PF3D7_1363500 were distributed around the infected erythrocyte membrane. The enzymatic activity of the recombinant GST-PF3D7_1238600 was very efficient without divalent iron, while the activity of the rest four enzymes was iron dependent. Further, divalent irons did not show any specific enhancement on the activity of GST-PF3D7_1238600, but the activity of GST-PF3D7_0107200, GST-PF3D7_1363500 and GST-PF3D7_0319200 were Cu2+ dependent. The activity of GST-PF3D7_0305600 was dependent on Mg2+ and Mn2+. Except GST-PF3D7_1363500, four of the GST tagged recombinant proteins hydrolysed the supercoiled circular plasmid DNA with or without divalent metal ions. The GST-PF3D7_1363500 protein only changed the supercoiled circular plasmid DNA into nicked plasmids, even with Cu2+. Conclusions Fragments derived from five of the endonuclease sequences of P. falciparum 3D7 clone were successfully expressed. The proteins displayed diverse cell distribution, biochemical and enzymatic activities, which indicated that they carried different biological function in the development of the parasite in the erythrocytes. The DNA repair and DNA degradation capacity of the DNA endonucleases in the biology of the parasite remained further studied. Electronic supplementary material The online version of this article (10.1186/s12936-018-2388-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ning Jiang
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, People's Republic of China
| | - Zhiwei Tu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, People's Republic of China
| | - Yiwei Zhang
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, People's Republic of China
| | - Jianping Li
- Blood Center of Liaoning Province, 13 Beihai Street, Shenyang, 110866, People's Republic of China
| | - Ying Feng
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, People's Republic of China
| | - Na Yang
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, People's Republic of China
| | - Xiaoyu Sang
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, People's Republic of China
| | - Qijun Chen
- Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
149
|
Brinkmann V. Neutrophil Extracellular Traps in the Second Decade. J Innate Immun 2018; 10:414-421. [PMID: 29909412 DOI: 10.1159/000489829] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Nearly 15 years after the first description of neutrophil extracellular traps (NETs), our knowledge concerning this structure has expanded considerably. Initially, NETs were considered solely an elaborate function of the innate immune system to combat invading microorganisms. Successively it became clear that NETs have farther-reaching capabilities. They are involved in a series of pathophysiological mechanisms ranging from inflammation to thrombosis where they fulfill essential functions when produced at the right site and the right time but can have a serious impact when generation or clearance of NETs is inadequately controlled. This review provides a concise overview on the far-reaching functions of NETs in health and disease.
Collapse
|
150
|
New Insights into the Role of Zinc Acquisition and Zinc Tolerance in Group A Streptococcal Infection. Infect Immun 2018; 86:IAI.00048-18. [PMID: 29581188 DOI: 10.1128/iai.00048-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/14/2018] [Indexed: 11/20/2022] Open
Abstract
Zinc plays an important role in host innate immune function. However, the innate immune system also utilizes zinc starvation ("nutritional immunity") to combat infections. Here, we investigate the role of zinc import and export in the protection of Streptococcus pyogenes (group A Streptococcus; GAS), a Gram-positive bacterial pathogen responsible for a wide spectrum of human diseases, against challenge from host innate immune defense. In order to determine the role of GAS zinc import and export during infection, we utilized zinc import (ΔadcA ΔadcAII) and export (ΔczcD) deletion mutants in competition with the wild type in both in vitro and in vivo virulence models. We demonstrate that nutritional immunity is deployed extracellularly, while zinc toxicity is utilized upon phagocytosis of GAS by neutrophils. We also show that lysosomes and azurophilic granules in neutrophils contain zinc stores for use against intracellular pathogens.
Collapse
|