101
|
Thomas C, Strutt D. The roles of the cadherins Fat and Dachsous in planar polarity specification in Drosophila. Dev Dyn 2011; 241:27-39. [PMID: 21919123 DOI: 10.1002/dvdy.22736] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2011] [Indexed: 11/06/2022] Open
Abstract
Planar polarity is generated through the activity of two groups of proteins, the "core" system and the Fat (Ft)/Dachsous (Ds) system. Although both are conserved from insects to mammals, vertebrate studies into planar polarity have primarily focussed on core planar polarity proteins and have only recently branched into the study of the Ft/Ds system. In Drosophila, however, years of detailed analysis have started to elucidate some of the mechanisms by which Ft/Ds signalling might set up polarity across a tissue, and how this may impact upon core protein-mediated planar polarity. In this review, we discuss the major findings, models, and controversies that have emerged from Drosophila research into the Ft/Ds system, and indicate some areas for further investigation.
Collapse
Affiliation(s)
- Chloe Thomas
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.
| | | |
Collapse
|
102
|
Staley BK, Irvine KD. Hippo signaling in Drosophila: recent advances and insights. Dev Dyn 2011; 241:3-15. [PMID: 22174083 DOI: 10.1002/dvdy.22723] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2011] [Indexed: 01/08/2023] Open
Abstract
The Hippo signaling pathway emerged from studies of Drosophila tumor suppressor genes, and is now appreciated as a major growth control pathway in vertebrates as well as arthropods. As a recently discovered pathway, key components of the pathway are continually being identified, and new insights into how the pathway is regulated and deployed are arising at a rapid pace. Over the past year and a half, significant advances have been made in our understanding of upstream regulatory inputs into Hippo signaling, key negative regulators of Hippo pathway activity have been identified, and important roles for the pathway in regeneration have been described. This review describes these and other advances, focusing on recent progress in our understanding of Hippo signaling that has come from continued studies in Drosophila.
Collapse
Affiliation(s)
- Binnaz Kucuk Staley
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
103
|
Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 2011; 13:877-83. [PMID: 21808241 DOI: 10.1038/ncb2303] [Citation(s) in RCA: 950] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Precise control of organ size is crucial during animal development and regeneration. In Drosophila and mammals, studies over the past decade have uncovered a critical role for the Hippo tumour-suppressor pathway in the regulation of organ size. Dysregulation of this pathway leads to massive overgrowth of tissue. The Hippo signalling pathway is highly conserved and limits organ size by phosphorylating and inhibiting the transcription co-activators YAP and TAZ in mammals and Yki in Drosophila, key regulators of proliferation and apoptosis. The Hippo pathway also has a critical role in the self-renewal and expansion of stem cells and tissue-specific progenitor cells, and has important functions in tissue regeneration. Emerging evidence shows that the Hippo pathway is regulated by cell polarity, cell adhesion and cell junction proteins. In this review we summarize current understanding of the composition and regulation of the Hippo pathway, and discuss how cell polarity and cell adhesion proteins inform the role of this pathway in organ size control and regeneration.
Collapse
Affiliation(s)
- Bin Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | |
Collapse
|
104
|
Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell 2011; 21:120-33. [PMID: 21763613 PMCID: PMC3166557 DOI: 10.1016/j.devcel.2011.06.011] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Planar cell polarization entails establishment of cellular asymmetries within the tissue plane. An evolutionarily conserved planar cell polarity (PCP) signaling system employs intra- and intercellular feedback interactions between its core components, including Frizzled, Van Gogh, Flamingo, Prickle, and Dishevelled, to establish their characteristic asymmetric intracellular distributions and coordinate planar polarity of cell populations. By translating global patterning information into asymmetries of cell membranes and intracellular organelles, PCP signaling coordinates morphogenetic behaviors of individual cells and cell populations with the embryonic polarity. In vertebrates, by polarizing cilia in the node/Kupffer's vesicle, PCP signaling links the anteroposterior to left-right embryonic polarity.
Collapse
Affiliation(s)
- Ryan S Gray
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
105
|
Mitotic Spindle Orientation in Asymmetric and Symmetric Cell Divisions during Animal Development. Dev Cell 2011; 21:102-19. [DOI: 10.1016/j.devcel.2011.06.012] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 11/17/2022]
|
106
|
Abstract
In all multicellular organisms, epithelial cells are not only polarized along the apical-basal axis, but also within the epithelial plane, giving cells a sense of direction. Planar cell polarity (PCP) signaling regulates establishment of polarity within the plane of an epithelium. The outcomes of PCP signaling are diverse and include the determination of cell fates, the generation of asymmetric but highly aligned structures, such as the stereocilia in the human inner ear or the hairs on a fly wing, or the directional migration of cells during convergence and extension during vertebrate gastrulation. In humans, aberrant PCP signaling can result in severe developmental defects, such as open neural tubes (spina bifida), and can cause cystic kidneys. In this review, we discuss the basic mechanism and more recent findings of PCP signaling focusing on Drosophila melanogaster, the model organism in which most key PCP components were initially identified.
Collapse
Affiliation(s)
- Saw Myat Thanda W Maung
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | | |
Collapse
|
107
|
Donoughe S, DiNardo S. dachsous and frizzled contribute separately to planar polarity in the Drosophila ventral epidermis. Development 2011; 138:2751-9. [PMID: 21613320 DOI: 10.1242/dev.063024] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cells that comprise tissues often need to coordinate cytoskeletal events to execute morphogenesis properly. For epithelial tissues, some of that coordination is accomplished by polarization of the cells within the plane of the epithelium. Two groups of genes--the Dachsous (Ds) and Frizzled (Fz) systems--play key roles in the establishment and maintenance of such polarity. There has been great progress in uncovering the how these genes work together to produce planar polarity, yet fundamental questions remain unanswered. Here, we study the Drosophila larval ventral epidermis to begin to address several of these questions. We show that ds and fz contribute independently to polarity and that they do so over spatially distinct domains. Furthermore, we find that the requirement for the Ds system changes as field size increases. Lastly, we find that Ds and its putative receptor Fat (Ft) are enriched in distinct patterns in the epithelium during embryonic development.
Collapse
Affiliation(s)
- Seth Donoughe
- University of Pennsylvania Medical School, Department of Cell & Developmental Biology, 421 Curie Blvd, Philadelphia, PA 19104-6048, USA
| | | |
Collapse
|
108
|
Abstract
The establishment and maintenance of apico–basal cell polarity is a pre-requisite for the formation of a functioning epithelial tissue. Many lines of evidence suggest that cell polarity perturbations favour cancer formation, even though the mechanistic basis for this link remains unclear. Studies in Drosophila have uncovered complex interactions between the conserved Hpo (Hippo) tumour suppressor pathway and apico–basal polarity determinants. The Hpo pathway is a crucial growth regulatory network whose inactivation in Drosophila epithelial tissues induces massive overproliferation. Its core consists of a phosphorylation cascade (comprising the kinases Hpo and Warts) that mediates the inactivation of the pro-growth transcriptional co-activator Yki [Yorkie; YAP (Yes-associated protein) in mammals]. Several apically located proteins, such as Merlin, Expanded or Kibra, have been identified as upstream regulators of the Hpo pathway, leading to the notion that an apical multi-molecular complex modulates core kinase activity and promotes Yki/YAP inactivation. In the present review, we explore the links between apico–basal polarity and Hpo signalling. We focus on the regulation of Yki/YAP by apical proteins, but also on how the Hpo pathway might in turn influence apical domain size as part of a regulatory feedback loop.
Collapse
|
109
|
Abstract
Planar polarity describes the coordinated polarisation of cells or structures in the plane of a tissue. The patterning mechanisms that underlie planar polarity are well characterised in Drosophila, where many events are regulated by two pathways: the 'core' planar polarity complex and the Fat/Dachsous system. Components of both pathways also function in vertebrates and are implicated in diverse morphogenetic processes, some of which self-evidently involve planar polarisation and some of which do not. Here, we review the molecular mechanisms and cellular consequences of planar polarisation in diverse contexts, seeking to identify the common principles across the animal kingdom.
Collapse
Affiliation(s)
- Lisa V. Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Strutt
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
110
|
Bando T, Hamada Y, Kurita K, Nakamura T, Mito T, Ohuchi H, Noji S. Lowfat, a mammalian Lix1 homologue, regulates leg size and growth under the Dachsous/Fat signaling pathway during tissue regeneration†. Dev Dyn 2011; 240:1440-53. [DOI: 10.1002/dvdy.22647] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2011] [Indexed: 01/15/2023] Open
|
111
|
Bayly R, Axelrod JD. Pointing in the right direction: new developments in the field of planar cell polarity. Nat Rev Genet 2011; 12:385-91. [PMID: 21502960 DOI: 10.1038/nrg2956] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Planar cell polarity (PCP) is observed in an array of developmental processes that involve collective cell movement and tissue organization, and its disruption can lead to severe developmental defects. Recent studies in flies and vertebrates have identified new functions for PCP as well as new signalling components, and have proposed new mechanistic models. However, despite this progress, the search to simplify principles of understanding continues and important mechanistic uncertainties still pose formidable challenges.
Collapse
Affiliation(s)
- Roy Bayly
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
112
|
Affiliation(s)
- Bin Zhao
- Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093-0815, USA.
| | | | | |
Collapse
|
113
|
Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S, Basson MA, Francis-West P, Irvine KD. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development 2011; 138:947-57. [PMID: 21303848 PMCID: PMC3035097 DOI: 10.1242/dev.057166] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2010] [Indexed: 11/20/2022]
Abstract
The Drosophila Dachsous and Fat proteins function as ligand and receptor, respectively, for an intercellular signaling pathway that regulates Hippo signaling and planar cell polarity. Although gene-targeted mutations in two mammalian Fat genes have been described, whether mammals have a Fat signaling pathway equivalent to that in Drosophila, and what its biological functions might be, have remained unclear. Here, we describe a gene-targeted mutation in a murine Dachsous homolog, Dchs1. Analysis of the phenotypes of Dchs1 mutant mice and comparisons with Fat4 mutant mice identify requirements for these genes in multiple organs, including the ear, kidney, skeleton, intestine, heart and lung. Dchs1 and Fat4 single mutants and Dchs1 Fat4 double mutants have similar phenotypes throughout the body. In some cases, these phenotypes suggest that Dchs1-Fat4 signaling influences planar cell polarity. In addition to the appearance of cysts in newborn kidneys, we also identify and characterize a requirement for Dchs1 and Fat4 in growth, branching and cell survival during early kidney development. Dchs1 and Fat4 are predominantly expressed in mesenchymal cells in multiple organs, and mutation of either gene increases protein staining for the other. Our analysis implies that Dchs1 and Fat4 function as a ligand-receptor pair during murine development, and identifies novel requirements for Dchs1-Fat4 signaling in multiple organs.
Collapse
Affiliation(s)
- Yaopan Mao
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Joanna Mulvaney
- Department of Craniofacial Development, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Sana Zakaria
- Department of Craniofacial Development, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Tian Yu
- Department of Craniofacial Development, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
- MRC Centre for Developmental Neurobiology, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Katherine Malanga Morgan
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Steve Allen
- Veterinary Basic Sciences, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - M. Albert Basson
- Department of Craniofacial Development, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
- MRC Centre for Developmental Neurobiology, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Philippa Francis-West
- Department of Craniofacial Development, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Kenneth D. Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
114
|
Bando T, Mito T, Nakamura T, Ohuchi H, Noji S. Regulation of leg size and shape: Involvement of the Dachsous-fat signaling pathway. Dev Dyn 2011; 240:1028-41. [DOI: 10.1002/dvdy.22590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2011] [Indexed: 11/11/2022] Open
|
115
|
Axelrod JD, Tomlin CJ. Modeling the control of planar cell polarity. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:588-605. [PMID: 21755606 DOI: 10.1002/wsbm.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A growing list of medically important developmental defects and disease mechanisms can be traced to disruption of the planar cell polarity (PCP) pathway. The PCP system polarizes cells in epithelial sheets along an axis orthogonal to their apical-basal axis. Studies in the fruitfly, Drosophila, have suggested that components of the PCP signaling system function in distinct modules, and that these modules and the effector systems with which they interact function together to produce emergent patterns. Experimental methods allow the manipulation of individual PCP signaling molecules in specified groups of cells; these interventions not only perturb the polarization of the targeted cells at a subcellular level, but also perturb patterns of polarity at the multicellular level, often affecting nearby cells in characteristic ways. These kinds of experiments should, in principle, allow one to infer the architecture of the PCP signaling system, but the relationships between molecular interactions and tissue-level pattern are sufficiently complex that they defy intuitive understanding. Mathematical modeling has been an important tool to address these problems. This article explores the emergence of a local signaling hypothesis, and describes how a local intercellular signal, coupled with a directional cue, can give rise to global pattern. We will discuss the critical role mathematical modeling has played in guiding and interpreting experimental results, and speculate about future roles for mathematical modeling of PCP. Mathematical models at varying levels of inhibition have and are expected to continue contributing in distinct ways to understanding the regulation of PCP signaling.
Collapse
Affiliation(s)
- Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | | |
Collapse
|
116
|
Antagonistic growth regulation by Dpp and Fat drives uniform cell proliferation. Dev Cell 2011; 20:123-30. [PMID: 21238930 DOI: 10.1016/j.devcel.2010.11.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/22/2010] [Accepted: 10/25/2010] [Indexed: 11/21/2022]
Abstract
We use the Dpp morphogen gradient in the Drosophila wing disc as a model to address the fundamental question of how a gradient of a growth factor can produce uniform growth. We first show that proper expression and subcellular localization of components in the Fat tumor-suppressor pathway, which have been argued to depend on Dpp activity differences, are not reliant on the Dpp gradient. We next analyzed cell proliferation in discs with uniformly high Dpp or uniformly low Fat signaling activity and found that these pathways regulate growth in a complementary manner. While the Dpp mediator Brinker inhibits growth in the primordium primarily in the lateral regions, Fat represses growth mostly in the medial region. Together, our results indicate that the activities of both signaling pathways are regulated in a parallel rather than sequential manner and that uniform proliferation is achieved by their complementary action on growth.
Collapse
|
117
|
Bao Y, Hata Y, Ikeda M, Withanage K. Mammalian Hippo pathway: from development to cancer and beyond. J Biochem 2011; 149:361-79. [PMID: 21324984 DOI: 10.1093/jb/mvr021] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hippo pathway was discovered as a signal transduction pathway that regulates organ size in Drosophila melanogaster. It is composed of three components: cell surface upstream regulators including cell adhesion molecules and cell polarity complexes; a kinase cascade comprising two serine-threonine kinases with regulators and adaptors; and a downstream target, a transcription coactivator. The coactivator mediates the transcription of cell proliferation-promoting and anti-apoptotic genes. The pathway negatively regulates the coactivator to restrict cell proliferation and to promote cell death. Thus, the pathway prevents tissue overgrowth and tumourigenesis. The framework of the pathway is conserved in mammals. A dysfunction of the pathway is frequently detected in human cancers and correlates with a poor prognosis. Recent works indicated that the Hippo pathway plays an important role in tissue homoeostasis through the regulation of stem cells, cell differentiation and tissue regeneration.
Collapse
Affiliation(s)
- Yijun Bao
- Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
118
|
Abstract
The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration.
Collapse
Affiliation(s)
- Georg Halder
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA., Program in Genes and Development, MD Anderson Cancer Center, Houston, TX 77030, USA., Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA., Authors for correspondence (; )
| | - Randy L. Johnson
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA., Program in Genes and Development, MD Anderson Cancer Center, Houston, TX 77030, USA., Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA., Authors for correspondence (; )
| |
Collapse
|
119
|
Liu AM, Xu MZ, Chen J, Poon RT, Luk JM. Targeting YAP and Hippo signaling pathway in liver cancer. Expert Opin Ther Targets 2010; 14:855-68. [PMID: 20545481 DOI: 10.1517/14728222.2010.499361] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
IMPORTANCE OF THE FIELD The Hippo signaling pathway plays pivotal roles in controlling both cell growth and organ size, emerging as a new paradigm in tumor suppression. Yes-associated protein (YAP) functions as a potent transcription co-activator and is a major downstream target tightly regulated by the Hippo pathway. Inactivation of the Hippo signaling induces YAP-mediated activation of various target genes that functionally causes cellular proliferation and outgrowth of organ size. Recently, YAP has been implicated as a bona fide oncogene in solid tumors, but little is known about its exact molecular mechanism in carcinogenesis. AREAS COVERED IN THIS REVIEW We discuss the latest important findings in the Hippo signaling pathway and the possible means of developing potential cancer therapeutics by targeting multiple sites along the Hippo pathway. WHAT THE READER WILL GAIN An overview of the emerging roles of YAP and Hippo signaling in oncogenesis and the possible ways of developing cancer therapies against the pathway components, downstream targets or interconnected pathways. TAKE HOME MESSAGE YAP is a key oncogenic driver in liver carcinogenesis and deregulation of the Hippo pathway causes tumor formation and malignancy. Targeting YAP and cognate downstream signaling targets may have clinical utility in cancer therapies.
Collapse
Affiliation(s)
- Angela M Liu
- Department of Pharmacology, National University of Singapore, 117597, Singapore
| | | | | | | | | |
Collapse
|
120
|
Modularity in the Hippo signaling pathway. Trends Biochem Sci 2010; 35:627-33. [DOI: 10.1016/j.tibs.2010.05.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 01/15/2023]
|
121
|
Abstract
First discovered in Drosophila, the Hippo signaling pathway is a conserved regulator of organ size. Central to this pathway is a kinase cascade leading from the tumor suppressor Hippo (Mst1 and Mst2 in mammals) to the oncoprotein Yki (YAP and TAZ in mammals), a transcriptional coactivator of target genes involved in cell proliferation and survival. Here, I review recent progress in elucidating the molecular mechanism and physiological function of Hippo signaling in Drosophila and mammals. These studies suggest that the core Hippo kinase cascade integrates multiple upstream inputs, enabling dynamic regulation of tissue homeostasis in animal development and physiology.
Collapse
Affiliation(s)
- Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
122
|
Harumoto T, Ito M, Shimada Y, Kobayashi TJ, Ueda HR, Lu B, Uemura T. Atypical cadherins Dachsous and Fat control dynamics of noncentrosomal microtubules in planar cell polarity. Dev Cell 2010; 19:389-401. [PMID: 20817616 PMCID: PMC2951474 DOI: 10.1016/j.devcel.2010.08.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 06/04/2010] [Accepted: 08/11/2010] [Indexed: 01/07/2023]
Abstract
How global organ asymmetry and individual cell polarity are connected to each other is a central question in studying planar cell polarity (PCP). In the Drosophila wing, which develops PCP along its proximal-distal (P-D) axis, we previously proposed that the core PCP mediator Frizzled redistributes distally in a microtubule (MT)-dependent manner. Here, we performed organ-wide analysis of MT dynamics by introducing quantitative in vivo imaging. We observed MTs aligning along the P-D axis at the onset of redistribution and a small but significant excess of + ends-distal MTs in the proximal region of the wing. This characteristic alignment and asymmetry of MT growth was controlled by atypical cadherins Dachsous (Ds) and Fat (Ft). Furthermore, the action of Ft was mediated in part by PAR-1. All these data support the idea that the active reorientation of MT growth adjusts cell polarity along the organ axis.
Collapse
Affiliation(s)
- Toshiyuki Harumoto
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Masayoshi Ito
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuko Shimada
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tetsuya J. Kobayashi
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroki R. Ueda
- Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
123
|
Grusche FA, Richardson HE, Harvey KF. Upstream Regulation of the Hippo Size Control Pathway. Curr Biol 2010; 20:R574-82. [DOI: 10.1016/j.cub.2010.05.023] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
124
|
Abstract
Planar cell polarity (PCP) signaling regulates the establishment of polarity within the plane of an epithelium and allows cells to obtain directional information. Its results are as diverse as the determination of cell fates, the generation of asymmetric but highly aligned structures (e.g., stereocilia in the human ear or hairs on a fly wing), or the directional migration of cells during convergent extension during vertebrate gastrulation. Aberrant PCP establishment can lead to human birth defects or kidney disease. PCP signaling is governed by the noncanonical Wnt or Fz/PCP pathway. Traditionally, PCP establishment has been best studied in Drosophila, mainly due to the versatility of the fly as a genetic model system. In Drosophila, PCP is essential for the orientation of wing and abdominal hairs, the orientation of the division axis of sensory organ precursors, and the polarization of ommatidia in the eye, the latter requiring a highly coordinated movement of groups of photoreceptor cells during the process of ommatidial rotation. Here, I review our current understanding of PCP signaling in the Drosophila eye and allude to parallels in vertebrates.
Collapse
Affiliation(s)
- Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|