101
|
George R, Stanewsky R. Peripheral Sensory Organs Contribute to Temperature Synchronization of the Circadian Clock in Drosophila melanogaster. Front Physiol 2021; 12:622545. [PMID: 33603678 PMCID: PMC7884628 DOI: 10.3389/fphys.2021.622545] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks are cell-autonomous endogenous oscillators, generated and maintained by self-sustained 24-h rhythms of clock gene expression. In the fruit fly Drosophila melanogaster, these daily rhythms of gene expression regulate the activity of approximately 150 clock neurons in the fly brain, which are responsible for driving the daily rest/activity cycles of these insects. Despite their endogenous character, circadian clocks communicate with the environment in order to synchronize their self-sustained molecular oscillations and neuronal activity rhythms (internal time) with the daily changes of light and temperature dictated by the Earth's rotation around its axis (external time). Light and temperature changes are reliable time cues (Zeitgeber) used by many organisms to synchronize their circadian clock to the external time. In Drosophila, both light and temperature fluctuations robustly synchronize the circadian clock in the absence of the other Zeitgeber. The complex mechanisms for synchronization to the daily light-dark cycles are understood with impressive detail. In contrast, our knowledge about how the daily temperature fluctuations synchronize the fly clock is rather limited. Whereas light synchronization relies on peripheral and clock-cell autonomous photoreceptors, temperature input to the clock appears to rely mainly on sensory cells located in the peripheral nervous system of the fly. Recent studies suggest that sensory structures located in body and head appendages are able to detect temperature fluctuations and to signal this information to the brain clock. This review will summarize these studies and their implications about the mechanisms underlying temperature synchronization.
Collapse
Affiliation(s)
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
102
|
Zampieri N, de Nooij JC. Regulating muscle spindle and Golgi tendon organ proprioceptor phenotypes. CURRENT OPINION IN PHYSIOLOGY 2021; 19:204-210. [PMID: 33381667 PMCID: PMC7769215 DOI: 10.1016/j.cophys.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proprioception is an essential part of motor control. The main sensory subclasses that underlie this feedback control system - muscle spindle and Golgi tendon organ afferents - have been extensively characterized at a morphological and physiological level. More recent studies are beginning to reveal the molecular foundation for distinct proprioceptor subtypes, offering new insights into their developmental ontogeny and phenotypic diversity. This review intends to highlight some of these new findings.
Collapse
Affiliation(s)
- Niccolò Zampieri
- Max-Delbrück-Center for Molecular Medicine Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Joriene C. de Nooij
- Dept. of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032.,Columbia University Motor Neuron Center, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032.,Corresponding author:
| |
Collapse
|
103
|
Dickerson BH, Fox JL, Sponberg S. Functional diversity from generic encoding in insect campaniform sensilla. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
104
|
Stewart TA, Hughes K, Stevenson AJ, Marino N, Ju AL, Morehead M, Davis FM. Mammary mechanobiology - investigating roles for mechanically activated ion channels in lactation and involution. J Cell Sci 2021; 134:jcs248849. [PMID: 33262312 DOI: 10.1242/jcs.248849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/06/2020] [Indexed: 01/14/2023] Open
Abstract
The ability of a mother to produce a nutritionally complete neonatal food source has provided a powerful evolutionary advantage to mammals. Milk production by mammary epithelial cells is adaptive, its release is exquisitely timed, and its own glandular stagnation with the permanent cessation of suckling triggers the cell death and tissue remodeling that enables female mammals to nurse successive progeny. Chemical and mechanical signals both play a role in this process. However, despite this duality of input, much remains unknown about the nature and function of mechanical forces in this organ. Here, we characterize the force landscape in the functionally mature gland and the capacity of luminal and basal cells to experience and exert force. We explore molecular instruments for force-sensing, in particular channel-mediated mechanotransduction, revealing increased expression of Piezo1 in mammary tissue in lactation and confirming functional expression in luminal cells. We also reveal, however, that lactation and involution proceed normally in mice with luminal-specific Piezo1 deletion. These findings support a multifaceted system of chemical and mechanical sensing in the mammary gland, and a protective redundancy that ensures continued lactational competence and offspring survival.
Collapse
Affiliation(s)
- Teneale A Stewart
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Alexander J Stevenson
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Natascia Marino
- Department of Medicine, Indiana University School of Medicine, Indianapolis, 46202, USA
- Susan G. Komen Tissue Bank at Indiana University Simon Cancer Center, Indianapolis, 46202, USA
| | - Adler L Ju
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Michael Morehead
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, 26506, USA
| | - Felicity M Davis
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
105
|
Piersanti S, Rebora M, Salerno G, Anton S. The Antennal Pathway of Dragonfly Nymphs, from Sensilla to the Brain. INSECTS 2020; 11:E886. [PMID: 33339188 PMCID: PMC7765675 DOI: 10.3390/insects11120886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information.
Collapse
Affiliation(s)
- Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06123 Perugia, Italy; (S.P.); (M.R.)
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06123 Perugia, Italy; (S.P.); (M.R.)
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06123 Perugia, Italy;
| | - Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France
| |
Collapse
|
106
|
Dickerson BH. Timing precision in fly flight control: integrating mechanosensory input with muscle physiology. Proc Biol Sci 2020; 287:20201774. [PMID: 33323088 DOI: 10.1098/rspb.2020.1774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animals rapidly collect and act on incoming information to navigate complex environments, making the precise timing of sensory feedback critical in the context of neural circuit function. Moreover, the timing of sensory input determines the biomechanical properties of muscles that undergo cyclic length changes, as during locomotion. Both of these issues come to a head in the case of flying insects, as these animals execute steering manoeuvres at timescales approaching the upper limits of performance for neuromechanical systems. Among insects, flies stand out as especially adept given their ability to execute manoeuvres that require sub-millisecond control of steering muscles. Although vision is critical, here I review the role of rapid, wingbeat-synchronous mechanosensory feedback from the wings and structures unique to flies, the halteres. The visual system and descending interneurons of the brain employ a spike rate coding scheme to relay commands to the wing steering system. By contrast, mechanosensory feedback operates at faster timescales and in the language of motor neurons, i.e. spike timing, allowing wing and haltere input to dynamically structure the output of the wing steering system. Although the halteres have been long known to provide essential input to the wing steering system as gyroscopic sensors, recent evidence suggests that the feedback from these vestigial hindwings is under active control. Thus, flies may accomplish manoeuvres through a conserved hindwing circuit, regulating the firing phase-and thus, the mechanical power output-of the wing steering muscles.
Collapse
Affiliation(s)
- Bradley H Dickerson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
107
|
Kuan AT, Phelps JS, Thomas LA, Nguyen TM, Han J, Chen CL, Azevedo AW, Tuthill JC, Funke J, Cloetens P, Pacureanu A, Lee WCA. Dense neuronal reconstruction through X-ray holographic nano-tomography. Nat Neurosci 2020; 23:1637-1643. [PMID: 32929244 PMCID: PMC8354006 DOI: 10.1038/s41593-020-0704-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
Imaging neuronal networks provides a foundation for understanding the nervous system, but resolving dense nanometer-scale structures over large volumes remains challenging for light microscopy (LM) and electron microscopy (EM). Here we show that X-ray holographic nano-tomography (XNH) can image millimeter-scale volumes with sub-100-nm resolution, enabling reconstruction of dense wiring in Drosophila melanogaster and mouse nervous tissue. We performed correlative XNH and EM to reconstruct hundreds of cortical pyramidal cells and show that more superficial cells receive stronger synaptic inhibition on their apical dendrites. By combining multiple XNH scans, we imaged an adult Drosophila leg with sufficient resolution to comprehensively catalog mechanosensory neurons and trace individual motor axons from muscles to the central nervous system. To accelerate neuronal reconstructions, we trained a convolutional neural network to automatically segment neurons from XNH volumes. Thus, XNH bridges a key gap between LM and EM, providing a new avenue for neural circuit discovery.
Collapse
Affiliation(s)
- Aaron T Kuan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard University, Boston, MA, USA
| | - Logan A Thomas
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Julie Han
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Chiao-Lin Chen
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Anthony W Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | | | - Alexandra Pacureanu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- ESRF, The European Synchrotron, Grenoble, France.
| | - Wei-Chung Allen Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
108
|
Öztürk-Çolak A, Inami S, Buchler JR, McClanahan PD, Cruz A, Fang-Yen C, Koh K. Sleep Induction by Mechanosensory Stimulation in Drosophila. Cell Rep 2020; 33:108462. [PMID: 33264620 PMCID: PMC7735403 DOI: 10.1016/j.celrep.2020.108462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/11/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
People tend to fall asleep when gently rocked or vibrated. Experimental studies have shown that rocking promotes sleep in humans and mice. However, the mechanisms underlying the phenomenon are not well understood. A habituation model proposes that habituation, a form of non-associative learning, mediates sleep induction by monotonous stimulation. Here, we show that gentle vibration promotes sleep in Drosophila in part through habituation. Vibration-induced sleep (VIS) leads to increased homeostatic sleep credit and reduced arousability, and can be suppressed by heightened arousal or reduced GABA signaling. Multiple mechanosensory organs mediate VIS, and the magnitude of VIS depends on vibration frequency and genetic background. Sleep induction improves over successive blocks of vibration. Furthermore, training with continuous vibration does not generalize to intermittent vibration, demonstrating stimulus specificity, a characteristic of habituation. Our findings suggest that habituation plays a significant role in sleep induction by vibration. Öztürk-Çolak et al. demonstrate that gentle vibration induces sleep in Drosophila. The authors show that sleep induction improves over multiple vibration sessions, which suggests that habituation, a form of simple learning, plays a significant role in vibration-induced sleep.
Collapse
Affiliation(s)
- Arzu Öztürk-Çolak
- Department of Neuroscience, Jefferson Center for Synaptic Biology, and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19106, USA
| | - Sho Inami
- Department of Neuroscience, Jefferson Center for Synaptic Biology, and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19106, USA
| | - Joseph R Buchler
- Department of Neuroscience, Jefferson Center for Synaptic Biology, and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19106, USA
| | - Patrick D McClanahan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andri Cruz
- Department of Neuroscience, Jefferson Center for Synaptic Biology, and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19106, USA
| | - Christopher Fang-Yen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyunghee Koh
- Department of Neuroscience, Jefferson Center for Synaptic Biology, and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19106, USA.
| |
Collapse
|
109
|
Hampel S, Eichler K, Yamada D, Bock DD, Kamikouchi A, Seeds AM. Distinct subpopulations of mechanosensory chordotonal organ neurons elicit grooming of the fruit fly antennae. eLife 2020; 9:e59976. [PMID: 33103999 PMCID: PMC7652415 DOI: 10.7554/elife.59976] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/25/2020] [Indexed: 11/13/2022] Open
Abstract
Diverse mechanosensory neurons detect different mechanical forces that can impact animal behavior. Yet our understanding of the anatomical and physiological diversity of these neurons and the behaviors that they influence is limited. We previously discovered that grooming of the Drosophila melanogaster antennae is elicited by an antennal mechanosensory chordotonal organ, the Johnston's organ (JO) (Hampel et al., 2015). Here, we describe anatomically and physiologically distinct JO mechanosensory neuron subpopulations that each elicit antennal grooming. We show that the subpopulations project to different, discrete zones in the brain and differ in their responses to mechanical stimulation of the antennae. Although activation of each subpopulation elicits antennal grooming, distinct subpopulations also elicit the additional behaviors of wing flapping or backward locomotion. Our results provide a comprehensive description of the diversity of mechanosensory neurons in the JO, and reveal that distinct JO subpopulations can elicit both common and distinct behavioral responses.
Collapse
Affiliation(s)
- Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| | - Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| | - Daichi Yamada
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Azusa Kamikouchi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| |
Collapse
|
110
|
Leal A, Karnopp E, Barreto YC, Oliveira RS, Rosa ME, Borges BT, Goulart FL, de Souza VQ, Laikowski MM, Moura S, Vinadé L, da Rocha JBT, Dal Belo CA. The Insecticidal Activity of Rhinella schneideri (Werner, 1894) Paratoid Secretion in Nauphoeta cinerea Cocroaches. Toxins (Basel) 2020; 12:toxins12100630. [PMID: 33019552 PMCID: PMC7601029 DOI: 10.3390/toxins12100630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Rhinella schneideri is a common toad found in South America, whose paratoid toxic secretion has never been explored as an insecticide. In order to evaluate its insecticidal potential, Nauphoeta cinerea cockroaches were used as an experimental model in biochemical, physiological and behavioral procedures. Lethality assays with Rhinella schneideri paratoid secretion (RSPS) determined the LD50 value after 24 h (58.07µg/g) and 48 h exposure (44.07 µg/g) (R2 = 0.882 and 0.954, respectively). Acetylcholinesterase activity (AChE) after RSPS at its highest dose promoted an enzyme inhibition of 40%, a similar effect observed with neostigmine administration (p < 0.001, n= 5). Insect locomotion recordings revealed that RSPS decreased the distance traveled by up to 37% with a concomitant 85% increase in immobile episodes (p < 0.001, n = 36). RSPS added to in vivo cockroach semi-isolated heart preparation promoted an irreversible and dose dependent decrease in heart rate, showing a complete failure after 30 min recording (p < 0.001, n ≥ 6). In addition, RSPS into nerve-muscle preparations induced a dose-dependent neuromuscular blockade, reaching a total blockage at 70 min at the highest dose applied (p < 0.001, n ≥ 6). The effect of RSPS on spontaneous sensorial action potentials was characterized by an increase in the number of spikes 61% (p < 0.01). Meanwhile, there was 42% decrease in the mean area of those potentials (p < 0.05, n ≥ 6). The results obtained here highlight the potential insecticidal relevance of RSPS and its potential biotechnological application.
Collapse
Affiliation(s)
- Allan Leal
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTox), Universidade Federal de Santa Maria (UFSM), Avenida Roraima 1000, Santa Maria RS 97105-900, Brazil;
| | - Etiely Karnopp
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Yuri Correia Barreto
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Raquel Soares Oliveira
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Maria Eduarda Rosa
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Bruna Trindade Borges
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Flávia Luana Goulart
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Velci Queiróz de Souza
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Manuela Merlin Laikowski
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Caxias do Sul RS 95070-560, Brazil; (M.M.L.); (S.M.)
| | - Sidnei Moura
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Caxias do Sul RS 95070-560, Brazil; (M.M.L.); (S.M.)
| | - Lúcia Vinadé
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - João Batista Teixeira da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTox), Universidade Federal de Santa Maria (UFSM), Avenida Roraima 1000, Santa Maria RS 97105-900, Brazil;
| | - Cháriston André Dal Belo
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTox), Universidade Federal de Santa Maria (UFSM), Avenida Roraima 1000, Santa Maria RS 97105-900, Brazil;
- Correspondence:
| |
Collapse
|
111
|
Court R, Namiki S, Armstrong JD, Börner J, Card G, Costa M, Dickinson M, Duch C, Korff W, Mann R, Merritt D, Murphey RK, Seeds AM, Shirangi T, Simpson JH, Truman JW, Tuthill JC, Williams DW, Shepherd D. A Systematic Nomenclature for the Drosophila Ventral Nerve Cord. Neuron 2020; 107:1071-1079.e2. [PMID: 32931755 PMCID: PMC7611823 DOI: 10.1016/j.neuron.2020.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 11/30/2022]
Abstract
Drosophila melanogaster is an established model for neuroscience research with relevance in biology and medicine. Until recently, research on the Drosophila brain was hindered by the lack of a complete and uniform nomenclature. Recognizing this, Ito et al. (2014) produced an authoritative nomenclature for the adult insect brain, using Drosophila as the reference. Here, we extend this nomenclature to the adult thoracic and abdominal neuromeres, the ventral nerve cord (VNC), to provide an anatomical description of this major component of the Drosophila nervous system. The VNC is the locus for the reception and integration of sensory information and involved in generating most of the locomotor actions that underlie fly behaviors. The aim is to create a nomenclature, definitions, and spatial boundaries for the Drosophila VNC that are consistent with other insects. The work establishes an anatomical framework that provides a powerful tool for analyzing the functional organization of the VNC.
Collapse
Affiliation(s)
- Robert Court
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Shigehiro Namiki
- HHMI-Janelia Research Campus, Ashburn, VA 20147, USA; RCAST, University of Tokyo, Tokyo 153-8904, Japan
| | | | - Jana Börner
- Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gwyneth Card
- HHMI-Janelia Research Campus, Ashburn, VA 20147, USA
| | - Marta Costa
- Virtual Fly Brain, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Michael Dickinson
- Division of Biology and Biological Engineering, The California Institute of Technology, Pasadena, CA 91125, USA
| | - Carsten Duch
- iDN, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Wyatt Korff
- HHMI-Janelia Research Campus, Ashburn, VA 20147, USA
| | - Richard Mann
- Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10027, USA
| | - David Merritt
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rod K Murphey
- Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Troy Shirangi
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Julie H Simpson
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - James W Truman
- HHMI-Janelia Research Campus, Ashburn, VA 20147, USA; Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - John C Tuthill
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Darren W Williams
- Centre for Developmental Neurobiology, King's College London, London WC2R 2LS, UK
| | - David Shepherd
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, Bangor, UK.
| |
Collapse
|
112
|
Fernandes FDF, Bahia AC, Secundino NFC, Pimenta PFP. Ultrastructural Analysis of Mouthparts of Adult Horn Fly (Diptera: Muscidae) From the Brazilian Midwest Region. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1447-1458. [PMID: 32424423 DOI: 10.1093/jme/tjaa085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 06/11/2023]
Abstract
The ultrastructure of the mouthparts of Haematobia irritans (L.) was investigated by scanning electron microscopy. The morphological characteristics of the maxillary palps, labium (prementum and postmentum), labrum, hypopharynx, haustellum, and labellar lobes are described, as well as of the sensilla evidenced on all the surface of the mouthparts, and the set of different positions assumed by the mouth apparatus of this fly. Based on their morphology, 12 well-differentiated sensilla were identified, among three types of cuticular sensilla: trichoidea, coeloconica, and campaniformia. A slight sexual dimorphism in the sensilla patterns found in the mouthparts of H. irritans was evidenced. These observations are discussed with reference to the current literature on the functional morphology of sense organs of Insecta. These results could facilitate the recognition of the chemosensory sensilla by electrophysiological techniques, and foment future taxonomic and phylogenetic studies to better elucidate the evolution of Diptera, Muscomorpha.
Collapse
Affiliation(s)
- Fernando de Freitas Fernandes
- Laboratory of Medical Entomology (LEM), René Rachou Institute (IRR), Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, MG, Brazil
- Division of Entomology, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Ana Cristina Bahia
- Laboratory of Insects and Parasites Biochemistry, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Paulo Filemon Paolucci Pimenta
- Laboratory of Medical Entomology (LEM), René Rachou Institute (IRR), Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, MG, Brazil
| |
Collapse
|
113
|
Iikura H, Takizawa H, Ozawa S, Nakagawa T, Matsui Y, Nambu H. Mosquito repellence induced by tarsal contact with hydrophobic liquids. Sci Rep 2020; 10:14480. [PMID: 32879341 PMCID: PMC7468126 DOI: 10.1038/s41598-020-71406-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/14/2020] [Indexed: 11/19/2022] Open
Abstract
Mosquito legs have a unique highly water-repellent surface structure. While being beneficial to mosquitoes, the water-repellence of the tarsi enhances the wettability of hydrophobic substances such as oils. This high wettability induces strong attraction forces on a mosquito’s legs (up to 87% of the mosquito’s weight) towards the oil. We studied the landing behaviour of mosquitoes on oil-coated surfaces and observed that the mosquito contact time was reduced compared to that on hydrophilic-liquid-coated surfaces, suggesting that the oil coating induces an escape response. The observed escape behaviour occurred consistently with several hydrophobic liquids, including silicone oil, which is used globally in personal care products. As the repellent effect is similar to multiple hydrophobic substances, it is likely to be mechanically stimulated owing to the physical properties of the hydrophobic liquids and not due to chemical interactions. On human skin, the contact time was sufficiently short to prevent mosquitoes from starting to blood-feed. The secretion of Hippopotamus amphibius, which has physical properties similar to those of low-viscosity silicone oil, also triggered an escape response, suggesting that it acts as a natural mosquito repellent. Our results are beneficial to develop new, safe, and effective mosquito-repellent technologies.
Collapse
Affiliation(s)
- Hiroaki Iikura
- Material Science Research, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan. .,Material Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan.
| | - Hiroyuki Takizawa
- Personal Health Care Products Research, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan
| | - Satoshi Ozawa
- Material Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| | - Takao Nakagawa
- Personal Health Care Products Research, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan
| | - Yoshiaki Matsui
- Material Science Research, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan.,Material Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| | - Hiromi Nambu
- Material Science Research, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan.,Material Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| |
Collapse
|
114
|
Location and arrangement of campaniform sensilla in
Drosophila melanogaster. J Comp Neurol 2020; 529:905-925. [DOI: 10.1002/cne.24987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 11/07/2022]
|
115
|
Ng R, Wu ST, Su CY. Neuronal Compartmentalization: A Means to Integrate Sensory Input at the Earliest Stage of Information Processing? Bioessays 2020; 42:e2000026. [PMID: 32613656 PMCID: PMC7864560 DOI: 10.1002/bies.202000026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Indexed: 01/08/2023]
Abstract
In numerous peripheral sense organs, external stimuli are detected by primary sensory neurons compartmentalized within specialized structures composed of cuticular or epithelial tissue. Beyond reflecting developmental constraints, such compartmentalization also provides opportunities for grouped neurons to functionally interact. Here, the authors review and illustrate the prevalence of these structural units, describe characteristics of compartmentalized neurons, and consider possible interactions between these cells. This article discusses instances of neuronal crosstalk, examples of which are observed in the vertebrate tastebuds and multiple types of arthropod chemosensory hairs. Particular attention is paid to insect olfaction, which presents especially well-characterized mechanisms of functional, cross-neuronal interactions. These examples highlight the potential impact of peripheral processing, which likely contributes more to signal integration than previously considered. In surveying a wide variety of structural units, it is hoped that this article will stimulate future research that determines whether grouped neurons in other sensory systems can also communicate to impact information processing.
Collapse
Affiliation(s)
| | | | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
116
|
Crava CM, Zanini D, Amati S, Sollai G, Crnjar R, Paoli M, Rossi-Stacconi MV, Rota-Stabelli O, Tait G, Haase A, Romani R, Anfora G. Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor. JOURNAL OF INSECT PHYSIOLOGY 2020; 125:104088. [PMID: 32652080 DOI: 10.1016/j.jinsphys.2020.104088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Drosophila suzukii is an invasive pest that prefers to lay eggs in ripening fruits, whereas most closely related Drosophila species exclusively use rotten fruit as oviposition site. This behaviour is allowed by an enlarged and serrated ovipositor that can pierce intact fruit skin, and by multiple contact sensory systems (mechanosensation and taste) that detect the optimal egg-laying substrates. Here, we tested the hypothesis that bristles present in the D. suzukii ovipositor tip contribute to these sensory modalities. Analysis of the bristle ultrastructure revealed that four different types of cuticular elements (conical pegs type 1 and 2, chaetic and trichoid sensilla) are present on the tip of each ovipositor plate. All of them have a poreless shaft and are innervated at their base by a single neuron that ends in a distal tubular body, thus resembling mechanosensitive structures. Fluorescent labelling in D. suzukii and D. melanogaster revealed that pegs located on the ventral side of the ovipositor tip are innervated by a single neuron in both species. RNA-sequencing profiled gene expression, notably sensory receptor genes of the terminalia of D. suzukii and of three other Drosophila species with changes in their ovipositor structure (from serrated to blunt ovipositor: Drosophila subpulchrella, Drosophila biarmipes and D. melanogaster). Our results revealed few species-specific transcripts and an overlapping expression of candidate mechanosensitive genes as well as the presence of some chemoreceptor transcripts. These experimental evidences suggest a mechanosensitive function for the D. suzukii ovipositor, which might be crucial across Drosophila species independently from ovipositor shape.
Collapse
Affiliation(s)
- Cristina Maria Crava
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy; ERI BIOTECMED, Universitat de València, Burjassot, Spain.
| | - Damiano Zanini
- Center for Mind/Brain Sciences and Department of Physics, University of Trento, Rovereto, Italy; Neurobiology and Genetics, Biozentrum Universität Würzburg, Julius-Maximilians-University of Würzburg, Germany
| | - Simone Amati
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giorgia Sollai
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Italy
| | - Roberto Crnjar
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Italy
| | - Marco Paoli
- Center for Mind/Brain Sciences and Department of Physics, University of Trento, Rovereto, Italy
| | | | - Omar Rota-Stabelli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Gabriella Tait
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Albrecht Haase
- Center for Mind/Brain Sciences and Department of Physics, University of Trento, Rovereto, Italy
| | - Roberto Romani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.
| | - Gianfranco Anfora
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy; Centre Agriculture, Food and Environment (C3A), University of Trento, San Michele all'Adige, Italy
| |
Collapse
|
117
|
Verbe A, Varennes LP, Vercher JL, Viollet S. How do hoverflies use their righting reflex? J Exp Biol 2020; 223:jeb215327. [PMID: 32527962 DOI: 10.1242/jeb.215327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/28/2020] [Indexed: 11/20/2022]
Abstract
When taking off from a sloping surface, flies have to reorient themselves dorsoventrally and stabilize their body by actively controlling their flapping wings. We have observed that righting is achieved solely by performing a rolling manoeuvre. How flies manage to do this has not yet been elucidated. It was observed here for the first time that hoverfly reorientation is entirely achieved within 6 wingbeats (48.8 ms) at angular roll velocities of up to 10×103 deg s-1 and that the onset of their head rotation consistently follows that of their body rotation after a time lag of 16 ms. The insects' body roll was found to be triggered by the asymmetric wing stroke amplitude, as expected. The righting process starts immediately with the first wingbeat and seems unlikely to depend on visual feedback. A dynamic model for the fly's righting reflex is presented, which accounts for the head/body movements and the time lag recorded in these experiments. This model consists of a closed-loop control of the body roll, combined with a feedforward control of the head/body angle. During the righting manoeuvre, a strong coupling seems to exist between the activation of the halteres (which measure the body's angular speed) and the gaze stabilization reflex. These findings again confirm the fundamental role played by the halteres in both body and head stabilization processes.
Collapse
Affiliation(s)
- Anna Verbe
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| | - Léandre P Varennes
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| | - Jean-Louis Vercher
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| | - Stéphane Viollet
- Institute of Movement Sciences Biorobotics Department, Aix-Marseille Université, CNRS, ISM, Marseille cedex 09, France
| |
Collapse
|
118
|
Kanturski M, Świątek P, Trela J, Borowiak-Sobkowiak B, Wieczorek K. Micromorphology of the model species pea aphid Acyrthosiphon pisum (Hemiptera, Aphididae) with special emphasis on the sensilla structure. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1779827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- M. Kanturski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - P. Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - J. Trela
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - B. Borowiak-Sobkowiak
- Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Poznań, Poland
| | - K. Wieczorek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
119
|
Díaz-de-la-Peña L, Maestro-Paramio L, Díaz-Benjumea FJ, Herrero P. Temporal groups of lineage-related neurons have different neuropeptidergic fates and related functions in the Drosophila melanogaster CNS. Cell Tissue Res 2020; 381:381-396. [PMID: 32556724 DOI: 10.1007/s00441-020-03231-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/12/2020] [Indexed: 01/20/2023]
Abstract
The central nervous system (CNS) of Drosophila is comprised of the brain and the ventral nerve cord (VNC), which are the homologous structures of the vertebrate brain and the spinal cord, respectively. Neurons of the CNS arise from neural stem cells called neuroblasts (NBs). Each neuroblast gives rise to a specific repertory of cell types whose fate is unknown in most lineages. A combination of spatial and temporal genetic cues defines the fate of each neuron. We studied the origin and specification of a group of peptidergic neurons present in several abdominal segments of the larval VNC that are characterized by the expression of the neuropeptide GPB5, the GPB5-expressing neurons (GPB5-ENs). Our data reveal that the progenitor NB that generates the GPB5-ENs also generates the abdominal leucokinergic neurons (ABLKs) in two different temporal windows. We also show that these two set of neurons share the same axonal projections in larvae and in adults and, as previously suggested, may both function in hydrosaline regulation. Our genetic analysis of potential specification determinants reveals that Klumpfuss (klu) and huckebein (hkb) are involved in the specification of the GPB5 cell fate. Additionally, we show that GPB5-ENs have a role in starvation resistance and longevity; however, their role in desiccation and ionic stress resistance is not as clear. We hypothesize that the neurons arising from the same neuroblast lineage are both architecturally similar and functionally related.
Collapse
Affiliation(s)
- Laura Díaz-de-la-Peña
- Centro de Biología Molecular Severo Ochoa (CBMSO), C/Nicolas Cabrera 1, 28049, Madrid, Spain
| | - Leila Maestro-Paramio
- Centro de Biología Molecular Severo Ochoa (CBMSO), C/Nicolas Cabrera 1, 28049, Madrid, Spain
| | | | - Pilar Herrero
- Centro de Biología Molecular Severo Ochoa (CBMSO), C/Nicolas Cabrera 1, 28049, Madrid, Spain.
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain.
| |
Collapse
|
120
|
Azevedo AW, Dickinson ES, Gurung P, Venkatasubramanian L, Mann RS, Tuthill JC. A size principle for recruitment of Drosophila leg motor neurons. eLife 2020; 9:e56754. [PMID: 32490810 PMCID: PMC7347388 DOI: 10.7554/elife.56754] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022] Open
Abstract
To move the body, the brain must precisely coordinate patterns of activity among diverse populations of motor neurons. Here, we use in vivo calcium imaging, electrophysiology, and behavior to understand how genetically-identified motor neurons control flexion of the fruit fly tibia. We find that leg motor neurons exhibit a coordinated gradient of anatomical, physiological, and functional properties. Large, fast motor neurons control high force, ballistic movements while small, slow motor neurons control low force, postural movements. Intermediate neurons fall between these two extremes. This hierarchical organization resembles the size principle, first proposed as a mechanism for establishing recruitment order among vertebrate motor neurons. Recordings in behaving flies confirmed that motor neurons are typically recruited in order from slow to fast. However, we also find that fast, intermediate, and slow motor neurons receive distinct proprioceptive feedback signals, suggesting that the size principle is not the only mechanism that dictates motor neuron recruitment. Overall, this work reveals the functional organization of the fly leg motor system and establishes Drosophila as a tractable system for investigating neural mechanisms of limb motor control.
Collapse
Affiliation(s)
- Anthony W Azevedo
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Evyn S Dickinson
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Lalanti Venkatasubramanian
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - John C Tuthill
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
121
|
Gone with the wind: Is signal timing in a neotropical katydid an adaptive response to variation in wind-induced vibratory noise? Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02842-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
Wind, a major source of environmental noise, forces invertebrates that communicate with plant-borne vibrations to adjust their signaling when communicating in windy conditions. However, the strategies that animals use to reduce the impact of wind noise on communication are not well studied. We investigated the effects of wind on the production of tremulatory signals in the neotropical katydid Copiphora brevirostris. First, we recorded katydid signaling activity and natural wind variation in the field. Additionally, we exposed katydid couples during their most active signaling time period to artificial wind of different levels, and we recorded the number of tremulations produced by the males. We found that wind levels are at their lowest between 2:00 and 5:00 in the morning, which coincides with peak signaling period for male katydids. Furthermore, we found that males produce significantly fewer tremulations when exposed to wind rather than acoustic noise or silence. Wind velocity significantly affected the number of tremulations produced during the wind treatment, with fewer tremulations produced with higher wind velocities. Our results show that katydids can time their vibratory signaling both in the short- and long-term to favorable sensory conditions, either through behavioral flexibility in response to short-term fluctuations in wind or as a result of an evolutionary process in response to predictable periods of low-wind conditions.
Significance statement
Animal communication can be hampered by noise across all sensory modalities. Most research on the effects of noise and the strategies to cope with it has focused on animals that use airborne sounds to communicate. However, although hundreds of thousands of invertebrates communicate with vibrational signals, we know very little about how noise affects this form of communication. For animals that rely on substrate-borne vibrations, wind represents the major source of environmental noise. Wind velocity levels can be predictable at a long-term scale (hours) but rather unpredictable at a short time scale (seconds). Both scales of variation are important for communication. Using a combination of field observations and lab experiments, we investigated the strategies used by a neotropical katydid Copiphora brevirostris to cope with vibrational noise induced by wind. Our results demonstrate that C. brevirostris times its signals at the long- and short-term range. Katydids signaled more at the times at night when wind velocity was lowest. Moreover, when exposed to wind gusts during their peak time of activity, katydids signaled more during the wind-free gaps.
Collapse
|
122
|
DeAngelis BD, Zavatone-Veth JA, Gonzalez-Suarez AD, Clark DA. Spatiotemporally precise optogenetic activation of sensory neurons in freely walking Drosophila. eLife 2020; 9:e54183. [PMID: 32319425 PMCID: PMC7198233 DOI: 10.7554/elife.54183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/21/2020] [Indexed: 01/21/2023] Open
Abstract
Previous work has characterized how walking Drosophila coordinate the movements of individual limbs (DeAngelis et al., 2019). To understand the circuit basis of this coordination, one must characterize how sensory feedback from each limb affects walking behavior. However, it has remained difficult to manipulate neural activity in individual limbs of freely moving animals. Here, we demonstrate a simple method for optogenetic stimulation with body side-, body segment-, and limb-specificity that does not require real-time tracking. Instead, we activate at random, precise locations in time and space and use post hoc analysis to determine behavioral responses to specific activations. Using this method, we have characterized limb coordination and walking behavior in response to transient activation of mechanosensitive bristle neurons and sweet-sensing chemoreceptor neurons. Our findings reveal that activating these neurons has opposite effects on turning, and that activations in different limbs and body regions produce distinct behaviors.
Collapse
Affiliation(s)
- Brian D DeAngelis
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | | | | | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Department of Physics, Yale UniversityNew HavenUnited States
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| |
Collapse
|
123
|
Lacin H, Williamson WR, Card GM, Skeath JB, Truman JW. Unc-4 acts to promote neuronal identity and development of the take-off circuit in the Drosophila CNS. eLife 2020; 9:55007. [PMID: 32216875 PMCID: PMC7156266 DOI: 10.7554/elife.55007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
The Drosophila ventral nerve cord (VNC) is composed of thousands of neurons born from a set of individually identifiable stem cells. The VNC harbors neuronal circuits required to execute key behaviors, such as flying and walking. Leveraging the lineage-based functional organization of the VNC, we investigated the developmental and molecular basis of behavior by focusing on lineage-specific functions of the homeodomain transcription factor, Unc-4. We found that Unc-4 functions in lineage 11A to promote cholinergic neurotransmitter identity and suppress the GABA fate. In lineage 7B, Unc-4 promotes proper neuronal projections to the leg neuropil and a specific flight-related take-off behavior. We also uncovered that Unc-4 acts peripherally to promote proprioceptive sensory organ development and the execution of specific leg-related behaviors. Through time-dependent conditional knock-out of Unc-4, we found that its function is required during development, but not in the adult, to regulate the above events.
Collapse
Affiliation(s)
- Haluk Lacin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Department of Genetics, Washington University, Saint Louis, United States
| | - W Ryan Williamson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James B Skeath
- Department of Genetics, Washington University, Saint Louis, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Friday Harbor Laboratories, University of Washington, Friday Harbor, United States
| |
Collapse
|
124
|
Mantziaris C, Bockemühl T, Büschges A. Central pattern generating networks in insect locomotion. Dev Neurobiol 2020; 80:16-30. [PMID: 32128970 DOI: 10.1002/dneu.22738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 11/08/2022]
Abstract
Central pattern generators (CPGs) are neural circuits that based on their connectivity can generate rhythmic and patterned output in the absence of rhythmic external inputs. This property makes CPGs crucial elements in the generation of many kinds of rhythmic motor behaviors in insects, such as flying, walking, swimming, or crawling. Arguably representing the most diverse group of animals, insects utilize at least one of these types of locomotion during one stage of their ontogenesis. Insects have been extensively used to study the neural basis of rhythmic motor behaviors, and particularly the structure and operation of CPGs involved in locomotion. Here, we review insect locomotion with regard to flying, walking, and crawling, and we discuss the contribution of central pattern generation to these three forms of locomotion. In each case, we compare and contrast the topology and structure of the CPGs, and we point out how these factors are involved in the generation of the respective motor pattern. We focus on the importance of sensory information for establishing a functional motor output and we indicate behavior-specific adaptations. Furthermore, we report on the mechanisms underlying coordination between different body parts. Last but not least, by reviewing the state-of-the-art knowledge concerning the role of CPGs in insect locomotion, we endeavor to create a common ground, upon which future research in the field of motor control in insects can build.
Collapse
Affiliation(s)
- Charalampos Mantziaris
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Till Bockemühl
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
125
|
Zhang N, Guo L, Simpson JH. Spatial Comparisons of Mechanosensory Information Govern the Grooming Sequence in Drosophila. Curr Biol 2020; 30:988-1001.e4. [PMID: 32142695 PMCID: PMC7184881 DOI: 10.1016/j.cub.2020.01.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Accepted: 01/14/2020] [Indexed: 01/28/2023]
Abstract
Animals integrate information from different sensory modalities, body parts, and time points to inform behavioral choice, but the relevant sensory comparisons and the underlying neural circuits are still largely unknown. We use the grooming behavior of Drosophila melanogaster as a model to investigate the sensory comparisons that govern a motor sequence. Flies perform grooming movements spontaneously, but when covered with dust, they clean their bodies following an anterior-to-posterior sequence. After investigating different sensory modalities that could detect dust, we focus on mechanosensory bristle neurons, whose optogenetic activation induces a similar sequence. Computational modeling predicts that higher sensory input strength to the head will cause anterior grooming to occur first. We test this prediction using an optogenetic competition assay whereby two targeted light beams independently activate mechanosensory bristle neurons on different body parts. We find that the initial choice of grooming movement is determined by the ratio of sensory inputs to different body parts. In dust-covered flies, sensory inputs change as a result of successful cleaning movements. Simulations from our model suggest that this change results in sequence progression. One possibility is that flies perform frequent comparisons between anterior and posterior sensory inputs, and the changing ratios drive different behavior choices. Alternatively, flies may track the temporal change in sensory input to a given body part to measure cleaning effectiveness. The first hypothesis is supported by our optogenetic competition experiments: iterative spatial comparisons of sensory inputs between body parts is essential for organizing grooming movements in sequence. Zhang et al. find that Drosophila covered with dust compare sensory inputs from mechanosensory bristles on different body parts during grooming. The ratio of anterior:posterior sensory input and its dynamics, rather than the rate of dust removal from the anterior, drives the anterior-to-posterior grooming sequence.
Collapse
Affiliation(s)
- Neil Zhang
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Li Guo
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julie H Simpson
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
126
|
Alonso I, Sanchez Merlinsky A, Szczupak L. Phase-Specific Motor Efference during a Rhythmic Motor Pattern. J Neurosci 2020; 40:1888-1896. [PMID: 31980584 PMCID: PMC7046455 DOI: 10.1523/jneurosci.1201-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/21/2022] Open
Abstract
Neuronal circuits that control motor behaviors orchestrate multiple tasks, including the inhibition of self-generated sensory signals. In the hermaphroditic leech, T and P mechanosensory neurons respond to light touch and pressure on the skin, respectively. We show that the low threshold T cells were also sensitive to topological changes of the animal surface, caused by contraction of the muscles that erect the skin annuli. P cells were unresponsive to this movement. Annuli erection is part of the contraction phase of crawling, a leech locomotive behavior. In isolated ganglia, T cells showed phase-dependent IPSPs during dopamine-induced fictive crawling, whereas P cells were unaffected. The timing and magnitude of the T-IPSPs were highly correlated with the activity of the motoneurons excited during the contraction phase. Together, the results suggest that the central network responsible for crawling sends a reafferent signal onto the T cells, concomitant with the signal to the motoneurons. This reafference is specifically targeted at the sensory neurons that are affected by the movements; and it is behaviorally relevant as excitation of T cells affected the rhythmic motor pattern, probably acting upon the rhythmogenic circuit. Corollary discharge is a highly conserved function of motor systems throughout evolution, and we provide clear evidence of the specificity of its targets and timing and of the benefit of counteracting self-generated sensory input.SIGNIFICANCE STATEMENT Neuronal circuits that control motor behaviors orchestrate multiple tasks, including inhibition of sensory signals originated by the animal movement, a phenomenon known as corollary discharge. Leeches crawl on solid surfaces through a sequence of elongation and contraction movements. During the contraction, the skin topology changes, affecting a subpopulation of mechanosensory receptors, T (touch) neurons, but not P (pressure) sensory neurons. In the isolated nervous system, T neurons were inhibited during the contraction but not during the elongation phase, whereas P cells were unaffected throughout crawling. Excitation of T cells during the contraction phase temporarily disrupted the rhythmic pattern. Thus, corollary discharge was target (T vs P) and phase (contraction vs elongation) specific, and prevented self-generated signals to perturb motor behaviors.
Collapse
Affiliation(s)
- Ignacio Alonso
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias, Ciudad Universitaria, (C1428EHA) Buenos Aires, Argentina
| | - Agustín Sanchez Merlinsky
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias, Ciudad Universitaria, (C1428EHA) Buenos Aires, Argentina
| | - Lidia Szczupak
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias, Ciudad Universitaria, (C1428EHA) Buenos Aires, Argentina
| |
Collapse
|
127
|
Tang Y, Illes P, Verkhratsky A. Glial-neuronal Sensory Organs: Evolutionary Journey from Caenorhabditis elegans to Mammals. Neurosci Bull 2020; 36:561-564. [PMID: 31960268 DOI: 10.1007/s12264-020-00464-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/08/2019] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yong Tang
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, 610075, China.
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China.
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
128
|
Strauß J. Neuronal Innervation of the Subgenual Organ Complex and the Tibial Campaniform Sensilla in the Stick Insect Midleg. INSECTS 2020; 11:E40. [PMID: 31947968 PMCID: PMC7022571 DOI: 10.3390/insects11010040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 01/30/2023]
Abstract
Mechanosensory organs in legs play are crucial receptors in the feedback control of walking and in the detection of substrate-borne vibrations. Stick insects serve as a model for the physiological role of chordotonal organs and campaniform sensilla. This study documents, by axonal tracing, the neural innervation of the complex chordotonal organs and groups of campaniform sensilla in the proximal tibia of the midleg in Sipyloidea sipylus. In total, 6 nerve branches innervate the different sensory structures, and the innervation pattern associates different sensilla types by their position. Sensilla on the anterior and posterior tibia are innervated from distinct nerve branches. In addition, the variation in innervation is studied for five anatomical branching points. The most common variation is the innervation of the subgenual organ sensilla by two nerve branches rather than a single one. The fusion of commonly separated nerve branches also occurred. However, a common innervation pattern can be demonstrated, which is found in >75% of preparations. The variation did not include crossings of nerves between the anterior and posterior side of the leg. The study corrects the innervation of the posterior subgenual organ reported previously. The sensory neuroanatomy and innervation pattern can guide further physiological studies of mechanoreceptor organs and allow evolutionary comparisons to related insect groups.
Collapse
Affiliation(s)
- Johannes Strauß
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26 (IFZ), 35392 Gießen, Germany
| |
Collapse
|
129
|
Genome-wide association study: Understanding the genetic basis of the gait type in Brazilian Mangalarga Marchador horses, a preliminary study. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
130
|
Howard CE, Chen CL, Tabachnik T, Hormigo R, Ramdya P, Mann RS. Serotonergic Modulation of Walking in Drosophila. Curr Biol 2019; 29:4218-4230.e8. [PMID: 31786064 PMCID: PMC6935052 DOI: 10.1016/j.cub.2019.10.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/29/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
Abstract
To navigate complex environments, animals must generate highly robust, yet flexible, locomotor behaviors. For example, walking speed must be tailored to the needs of a particular environment. Not only must animals choose the correct speed and gait, they must also adapt to changing conditions and quickly respond to sudden and surprising new stimuli. Neuromodulators, particularly the small biogenic amine neurotransmitters, have the ability to rapidly alter the functional outputs of motor circuits. Here, we show that the serotonergic system in the vinegar fly, Drosophila melanogaster, can modulate walking speed in a variety of contexts and also change how flies respond to sudden changes in the environment. These multifaceted roles of serotonin in locomotion are differentially mediated by a family of serotonergic receptors with distinct activities and expression patterns.
Collapse
Affiliation(s)
- Clare E Howard
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Medical Scientist Training Program, Columbia University, New York, NY 10027, USA
| | - Chin-Lin Chen
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Tanya Tabachnik
- Advanced Instrumentation Group, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Rick Hormigo
- Advanced Instrumentation Group, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Pavan Ramdya
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Richard S Mann
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Departments of Biochemistry and Molecular Biophysics and Neuroscience, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
131
|
TwoLumps Ascending Neurons Mediate Touch-Evoked Reversal of Walking Direction in Drosophila. Curr Biol 2019; 29:4337-4344.e5. [PMID: 31813606 DOI: 10.1016/j.cub.2019.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/09/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
Abstract
External cues, including touch, enable walking animals to flexibly maneuver around obstacles and extricate themselves from dead-ends (for reviews, see [1-3]). In a screen for neurons that enable Drosophila melanogaster to retreat when it encounters a dead-end, we identified a pair of ascending neurons, the TwoLumps Ascending (TLA) neurons. Silencing TLA activity impairs backward locomotion, whereas optogenetic activation triggers backward walking. TLA-induced reversal is mediated in part by the Moonwalker Descending Neurons (MDNs) [4], which receive excitatory input from the TLAs. Silencing the TLAs decreases the extent to which freely walking flies back up upon encountering a physical barrier in the dark, and TLAs show calcium responses to optogenetic activation of neurons expressing the mechanosensory channel NOMPC. We infer that TLAs convey feedforward mechanosensory stimuli to transiently activate MDNs in response to anterior body touch.
Collapse
|
132
|
Stolz T, Diesner M, Neupert S, Hess ME, Delgado-Betancourt E, Pflüger HJ, Schmidt J. Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons in stick insects. J Neurophysiol 2019; 122:2388-2413. [DOI: 10.1152/jn.00196.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuromodulatory neurons located in the brain can influence activity in locomotor networks residing in the spinal cord or ventral nerve cords of invertebrates. How inputs to and outputs of neuromodulatory descending neurons affect walking activity is largely unknown. With the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and immunohistochemistry, we show that a population of dorsal unpaired median (DUM) neurons descending from the gnathal ganglion to thoracic ganglia of the stick insect Carausius morosus contains the neuromodulatory amine octopamine. These neurons receive excitatory input coupled to the legs’ stance phases during treadmill walking. Inputs did not result from connections with thoracic central pattern-generating networks, but, instead, most are derived from leg load sensors. In excitatory and inhibitory retractor coxae motor neurons, spike activity in the descending DUM (desDUM) neurons increased depolarizing reflexlike responses to stimulation of leg load sensors. In these motor neurons, descending octopaminergic neurons apparently functioned as components of a positive feedback network mainly driven by load-detecting sense organs. Reflexlike responses in excitatory extensor tibiae motor neurons evoked by stimulations of a femur-tibia movement sensor either are increased or decreased or were not affected by the activity of the descending neurons, indicating different functions of desDUM neurons. The increase in motor neuron activity is often accompanied by a reflex reversal, which is characteristic for actively moving animals. Our findings indicate that some descending octopaminergic neurons can facilitate motor activity during walking and support a sensory-motor state necessary for active leg movements. NEW & NOTEWORTHY We investigated the role of descending octopaminergic neurons in the gnathal ganglion of stick insects. The neurons become active during walking, mainly triggered by input from load sensors in the legs rather than pattern-generating networks. This report provides novel evidence that octopamine released by descending neurons on stimulation of leg sense organs contributes to the modulation of leg sensory-evoked activity in a leg motor control system.
Collapse
Affiliation(s)
- Thomas Stolz
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | - Max Diesner
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Susanne Neupert
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Martin E. Hess
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | | | - Hans-Joachim Pflüger
- Institute für Biologie und Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Joachim Schmidt
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
133
|
Ehrlich DE, Schoppik D. A primal role for the vestibular sense in the development of coordinated locomotion. eLife 2019; 8:e45839. [PMID: 31591962 PMCID: PMC6783269 DOI: 10.7554/elife.45839] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Mature locomotion requires that animal nervous systems coordinate distinct groups of muscles. The pressures that guide the development of coordination are not well understood. To understand how and why coordination might emerge, we measured the kinematics of spontaneous vertical locomotion across early development in zebrafish (Danio rerio) . We found that zebrafish used their pectoral fins and bodies synergistically during upwards swims. As larvae developed, they changed the way they coordinated fin and body movements, allowing them to climb with increasingly stable postures. This fin-body synergy was absent in vestibular mutants, suggesting sensed imbalance promotes coordinated movements. Similarly, synergies were systematically altered following cerebellar lesions, identifying a neural substrate regulating fin-body coordination. Together these findings link the vestibular sense to the maturation of coordinated locomotion. Developing zebrafish improve postural stability by changing fin-body coordination. We therefore propose that the development of coordinated locomotion is regulated by vestibular sensation.
Collapse
Affiliation(s)
- David E Ehrlich
- Department of OtolaryngologyNew York University School of MedicineNew YorkUnited States
- Department of Neuroscience & PhysiologyNew York University School of MedicineNew YorkUnited States
- Neuroscience InstituteNew York University School of MedicineNew YorkUnited States
| | - David Schoppik
- Department of OtolaryngologyNew York University School of MedicineNew YorkUnited States
- Department of Neuroscience & PhysiologyNew York University School of MedicineNew YorkUnited States
- Neuroscience InstituteNew York University School of MedicineNew YorkUnited States
| |
Collapse
|
134
|
Abstract
Although familiar to each of us, the sensation of inhabiting a body is ineffable. Traditional senses like vision and hearing monitor the external environment, allowing humans to have shared sensory experiences. But proprioception, the sensation of body position and movement, is fundamentally personal and typically absent from conscious perception. Nonetheless, this 'sixth sense' remains critical to human experience, a fact that is most apparent when one considers those who have lost it. Take, for example, the case of Ian Waterman who, at the age of 19, suffered a rare autoimmune response to a flu infection that attacked the sensory neurons from his neck down. This infection deprived him of the sense of position, movement and touch in his body. With this loss of feedback came a complete inability to coordinate his movements. While he could compel his muscles to contract, he lost the ability to orchestrate these actions into purposeful behaviors, in essence leaving him immobile, unable to stand, walk, or use his body to interact with the world. Only after years of dedicated training was he able to re-learn to move his body entirely under visual control.
Collapse
Affiliation(s)
- John C Tuthill
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St, Seattle, WA 91895, USA.
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
135
|
Goulard R, Verbe A, Vercher JL, Viollet S. Role of the light source position in freely falling hoverflies' stabilization performances. Biol Lett 2019; 14:rsbl.2018.0051. [PMID: 29794004 DOI: 10.1098/rsbl.2018.0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/30/2018] [Indexed: 11/12/2022] Open
Abstract
The stabilization of plummeting hoverflies was filmed and analysed in terms of their wingbeat initiation times as well as the crash and stabilization rates. The flies experienced near-weightlessness for a period of time that depended on their ability to counteract the free fall by triggering their wingbeats. In this paradigm, hoverflies' flight stabilization strategies were investigated here for the first time under two different positions of the light source (overhead and bottom lighting). The crash rates were higher in bottom lighting conditions than with top lighting. In addition, adding a texture to the walls reduced the crash rates only in the overhead lighting condition. The position of the lighting also significantly affected both the stabilization rates and the time taken by the flies to stabilize, which decreased and increased under bottom lighting conditions, respectively, whereas textured walls increased the stabilization rates under both lighting conditions. These results support the idea that flies may mainly base their flight control strategy on visual cues and particularly that the light distribution in the visual field may provide reliable, efficient cues for estimating their orientation with respect to an allocentric reference frame. In addition, the finding that the hoverflies' optic flow-based motion detection ability is affected by the position of the light source in their visual field suggests the occurrence of interactions between movement perception and this visual vertical perception process.
Collapse
Affiliation(s)
- Roman Goulard
- Aix-Marseille Université, CNRS, ISM UMR 7287, Marseille 13009, France
| | - Anna Verbe
- Aix-Marseille Université, CNRS, ISM UMR 7287, Marseille 13009, France
| | | | - Stéphane Viollet
- Aix-Marseille Université, CNRS, ISM UMR 7287, Marseille 13009, France
| |
Collapse
|
136
|
Neuronal stretch reception – Making sense of the mechanosense. Exp Cell Res 2019; 378:104-112. [DOI: 10.1016/j.yexcr.2019.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
|
137
|
Rauscher MJ, Fox JL. Inertial Sensing and Encoding of Self-Motion: Structural and Functional Similarities across Metazoan Taxa. Integr Comp Biol 2019; 58:832-843. [PMID: 29860381 DOI: 10.1093/icb/icy041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To properly orient and navigate, moving animals must obtain information about the position and motion of their bodies. Animals detect inertial signals resulting from body accelerations and rotations using a variety of sensory systems. In this review, we briefly summarize current knowledge on inertial sensing across widely disparate animal taxa with an emphasis on neuronal coding and sensory transduction. We outline systems built around mechanosensory hair cells, including the chordate vestibular complex and the statocysts seen in many marine invertebrates. We next compare these to schemes employed by flying insects for managing inherently unstable aspects of flapping flight, built around comparable mechanosensory cells but taking unique advantage of the physics of rotating systems to facilitate motion encoding. Finally, we highlight fundamental similarities across taxa with respect to the partnering of inertial senses with visual senses and conclude with a discussion of the functional utility of maintaining a multiplicity of encoding schemes for self-motion information.
Collapse
Affiliation(s)
- Michael J Rauscher
- Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Jessica L Fox
- Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
138
|
Aiello BR, Hardy AR, Westneat MW, Hale ME. Fins as Mechanosensors for Movement and Touch-Related Behaviors. Integr Comp Biol 2019; 58:844-859. [PMID: 29917043 DOI: 10.1093/icb/icy065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mechanosensation is a universal feature of animals that is essential for behavior, allowing detection of animals' own body movement and position as well as physical characteristics of the environment. The extraordinary morphological and behavioral diversity that exists across fish species provide rich opportunities for comparative mechanosensory studies in fins. The fins of fishes have been found to function as proprioceptors, by providing feedback on fin ray position and movement, and as tactile sensors, by encoding pressures applied to the fin surface. Across fish species, and among fins, the afferent response is remarkably consistent, suggesting that the ability of fin rays and membrane to sense deformation is a fundamental feature of fish fins. While fin mechanosensation has been known in select, often highly specialized, species for decades, only in the last decade have we explored mechanosensation in typical propulsive fins and considered its role in behavior, particularly locomotion. In this paper, we synthesize the current understanding of the anatomy and physiology of fin mechanosensation, looking toward key directions for research. We argue that a mechanosensory perspective informs studies of fin-based propulsion and other fin-driven behaviors and should be considered in the interpretation of fin morphology and behavior. In addition, we compare the mechanosensory system innervating the fins of fishes to the systems innervating the limbs of mammals and wings of insects in order to identify shared mechanosensory strategies and how different organisms have evolved to meet similar functional challenges. Finally, we discuss how understanding the biological organization and function of fin sensors can inform the design of control systems for engineered fins and fin-driven robotics.
Collapse
Affiliation(s)
- Brett R Aiello
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Adam R Hardy
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
139
|
Dallmann CJ, Dürr V, Schmitz J. Motor control of an insect leg during level and incline walking. ACTA ACUST UNITED AC 2019; 222:222/7/jeb188748. [PMID: 30944163 DOI: 10.1242/jeb.188748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/04/2019] [Indexed: 01/16/2023]
Abstract
During walking, the leg motor system must continually adjust to changes in mechanical conditions, such as the inclination of the ground. To understand the underlying control, it is important to know how changes in leg muscle activity relate to leg kinematics (movements) and leg dynamics (forces, torques). Here, we studied these parameters in hindlegs of stick insects (Carausius morosus) during level and uphill/downhill (±45 deg) walking, using a combination of electromyography, 3D motion capture and ground reaction force measurements. We find that some kinematic parameters including leg joint angles and body height vary across walking conditions. However, kinematics vary little compared with dynamics: horizontal leg forces and torques at the thorax-coxa joint (leg protraction/retraction) and femur-tibia joint (leg flexion/extension) tend to be stronger during uphill walking and are reversed in sign during downhill walking. At the thorax-coxa joint, the different mechanical demands are met by adjustments in the timing and magnitude of antagonistic muscle activity. Adjustments occur primarily in the first half of stance after the touch-down of the leg. When insects transition from level to incline walking, the characteristic adjustments in muscle activity occur with the first step of the leg on the incline, but not in anticipation. Together, these findings indicate that stick insects adjust leg muscle activity on a step-by-step basis so as to maintain a similar kinematic pattern under different mechanical demands. The underlying control might rely primarily on feedback from leg proprioceptors signaling leg position and movement.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Biological Cybernetics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany .,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany .,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
| |
Collapse
|
140
|
Tóth TI, Daun S. A kinematic model of stick-insect walking. Physiol Rep 2019; 7:e14080. [PMID: 31033245 PMCID: PMC6487367 DOI: 10.14814/phy2.14080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 11/24/2022] Open
Abstract
Animal, and insect walking (locomotion) in particular, have attracted much attention from scientists over many years up to now. The investigations included behavioral, electrophysiological experiments, as well as modeling studies. Despite the large amount of material collected, there are left many unanswered questions as to how walking and related activities are generated, maintained, and controlled. It is obvious that for them to take place, precise coordination within muscle groups of one leg and between the legs is required: intra- and interleg coordination. The nature, the details, and the interactions of these coordination mechanisms are not entirely clear. To help uncover them, we made use of modeling techniques, and succeeded in developing a six-leg model of stick-insect walking. Our main goal was to prove that the same model can mimic a variety of walking-related behavioral modes, as well as the most common coordination patterns of walking just by changing the values of a few input or internal variables. As a result, the model can reproduce the basic coordination patterns of walking: tetrapod and tripod and the transition between them. It can also mimic stop and restart, change from forward-to-backward walking and back. Finally, it can exhibit so-called search movements of the front legs both while walking or standing still. The mechanisms of the model that enable it to produce the aforementioned behavioral modes can hint at and prove helpful in uncovering further details of the biological mechanisms underlying walking.
Collapse
Affiliation(s)
- Tibor I. Tóth
- Department of BiologyFaculty of Mathematical and Natural SciencesHeisenberg Research Group of Computational Neuroscience – Modeling Neuronal Network FunctionUniversity of CologneKoelnGermany
| | - Silvia Daun
- Department of BiologyFaculty of Mathematical and Natural SciencesHeisenberg Research Group of Computational Neuroscience – Modeling Neuronal Network FunctionUniversity of CologneKoelnGermany
- Jülich Research CenterInstitute of Neuroscience and MedicineINM‐3KoelnGermany
| |
Collapse
|
141
|
Venkatasubramanian L, Mann RS. The development and assembly of the Drosophila adult ventral nerve cord. Curr Opin Neurobiol 2019; 56:135-143. [PMID: 30826502 DOI: 10.1016/j.conb.2019.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/05/2023]
Abstract
In order to generate complex motor outputs, the nervous system integrates multiple sources of sensory information that ultimately controls motor neurons to generate coordinated movements. The neural circuits that integrate higher order commands from the brain and generate motor outputs are located in the nerve cord of the central nervous system. Recently, genetic access to distinct functional subtypes that make up the Drosophila adult ventral nerve cord has significantly begun to advance our understanding of the structural organization and functions of the neural circuits coordinating motor outputs. Moreover, lineage-tracing and genetic intersection tools have been instrumental in deciphering the developmental mechanisms that generate and assemble the functional units of the adult nerve cord. Together, the Drosophila adult ventral nerve cord is emerging as a powerful system to understand the development and function of neural circuits that are responsible for coordinating complex motor outputs.
Collapse
Affiliation(s)
- Lalanti Venkatasubramanian
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
142
|
Venkatasubramanian L, Guo Z, Xu S, Tan L, Xiao Q, Nagarkar-Jaiswal S, Mann RS. Stereotyped terminal axon branching of leg motor neurons mediated by IgSF proteins DIP-α and Dpr10. eLife 2019; 8:e42692. [PMID: 30714901 PMCID: PMC6391070 DOI: 10.7554/elife.42692] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
For animals to perform coordinated movements requires the precise organization of neural circuits controlling motor function. Motor neurons (MNs), key components of these circuits, project their axons from the central nervous system and form precise terminal branching patterns at specific muscles. Focusing on the Drosophila leg neuromuscular system, we show that the stereotyped terminal branching of a subset of MNs is mediated by interacting transmembrane Ig superfamily proteins DIP-α and Dpr10, present in MNs and target muscles, respectively. The DIP-α/Dpr10 interaction is needed only after MN axons reach the vicinity of their muscle targets. Live imaging suggests that precise terminal branching patterns are gradually established by DIP-α/Dpr10-dependent interactions between fine axon filopodia and developing muscles. Further, different leg MNs depend on the DIP-α and Dpr10 interaction to varying degrees that correlate with the morphological complexity of the MNs and their muscle targets.
Collapse
Affiliation(s)
- Lalanti Venkatasubramanian
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
- Department of NeuroscienceMortimer B. Zuckerman Mind Brain Behavior InstituteNew YorkUnited States
| | - Zhenhao Guo
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | - Shuwa Xu
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Liming Tan
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Qi Xiao
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Sonal Nagarkar-Jaiswal
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Richard S Mann
- Department of NeuroscienceMortimer B. Zuckerman Mind Brain Behavior InstituteNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| |
Collapse
|
143
|
Xu M, Xiang Y, Liu X, Bai B, Chen R, Liu L, Li M. Long noncoding RNA SMRG regulates Drosophila macrochaetes by antagonizing scute through E(spl)mβ. RNA Biol 2018; 16:42-53. [PMID: 30526271 DOI: 10.1080/15476286.2018.1556148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
It is obvious that the majority of cellular transcripts are long noncoding RNAs (lncRNAs). Although studies suggested that lncRNAs participate in many biological processes through diverse mechanisms, however, little is known about their effects on epidermal mechanoreceptors. Here, we identified one novel Drosophila lncRNA, Scutellar Macrochaetes Regulatory Gene (SMRG), which regulates scutellar macrochaetes that act as mechanoreceptors by antagonizing the proneural gene scute (sc), through the repressor Enhancer-of-split mβ (E(spl)mβ). SMRG deficiency induced supernumerary scutellar macrochaetes and simultaneously a high sc RNA level in the adult thorax. Genetically, sc overexpression enhanced this supernumerary phenotype, while heterozygous sc mutant rescued this phenotype, both of which were mediated by E(spl)mβ. At the molecular level, SMRG recruited E(spl)mβ to the sc promoter region, which in turn suppressed sc expression. Our work presents a novel function of lncRNA and offers insights into the molecular mechanism underlying mechanoreceptor development.
Collapse
Affiliation(s)
- Mengbo Xu
- a State Key Laboratory of Brain and Cognitive Science , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Yuanhang Xiang
- a State Key Laboratory of Brain and Cognitive Science , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| | - Xiaojun Liu
- c State Key Laboratory of Medical Molecular Biology , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College , Beijing , China
| | - Baoyan Bai
- d Key Laboratory of Noncoding RNA , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Runsheng Chen
- d Key Laboratory of Noncoding RNA , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Li Liu
- a State Key Laboratory of Brain and Cognitive Science , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China.,e Key Laboratory of Mental Health , Chinese Academy of Sciences , Beijing , China
| | - Meixia Li
- a State Key Laboratory of Brain and Cognitive Science , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
144
|
Bioinspired and bristled microparticles for ultrasensitive pressure and strain sensors. Nat Commun 2018; 9:5161. [PMID: 30514869 PMCID: PMC6279775 DOI: 10.1038/s41467-018-07672-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/08/2018] [Indexed: 11/14/2022] Open
Abstract
Biological sensory organelles are often structurally optimized for high sensitivity. Tactile hairs or bristles are ubiquitous mechanosensory organelles in insects. The bristle features a tapering spine that not only serves as a lever arm to promote signal transduction, but also a clever design to protect it from mechanical breaking. A hierarchical distribution over the body further improves the signal detection from all directions. We mimic these features by using synthetic zinc oxide microparticles, each having spherically-distributed, high-aspect-ratio, and high-density nanostructured spines resembling biological bristles. Sensors based on thin films assembled from these microparticles achieve static-pressure detection down to 0.015 Pa, sensitivity up to 121 kPa−1, and a strain gauge factor >104, showing supreme overall performance. Other properties including a robust cyclability >2000, fast response time ~7 ms, and low-temperature synthesis compatible to various integrations further indicate the potential of this sensor technology in applying to wearable technologies and human interfaces. The potential of electromechanical sensors has been limited by low volumetric density in sensing sites. Here, the authors demonstrate ultrasensitive pressure and strain sensors using ZnO microparticles that have high-aspect ratio and high-density nanostructured spines mimicking bristles in insects.
Collapse
|
145
|
Mamiya A, Gurung P, Tuthill JC. Neural Coding of Leg Proprioception in Drosophila. Neuron 2018; 100:636-650.e6. [PMID: 30293823 PMCID: PMC6481666 DOI: 10.1016/j.neuron.2018.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/01/2018] [Accepted: 09/05/2018] [Indexed: 01/12/2023]
Abstract
Animals rely on an internal sense of body position and movement to effectively control motor behavior. This sense of proprioception is mediated by diverse populations of mechanosensory neurons distributed throughout the body. Here, we investigate neural coding of leg proprioception in Drosophila, using in vivo two-photon calcium imaging of proprioceptive sensory neurons during controlled movements of the fly tibia. We found that the axons of leg proprioceptors are organized into distinct functional projections that contain topographic representations of specific kinematic features. Using subclass-specific genetic driver lines, we show that one group of axons encodes tibia position (flexion/extension), another encodes movement direction, and a third encodes bidirectional movement and vibration frequency. Overall, our findings reveal how proprioceptive stimuli from a single leg joint are encoded by a diverse population of sensory neurons, and provide a framework for understanding how proprioceptive feedback signals are used by motor circuits to coordinate the body.
Collapse
Affiliation(s)
- Akira Mamiya
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
146
|
Astreinidi Blandin A, Bernardeschi I, Beccai L. Biomechanics in Soft Mechanical Sensing: From Natural Case Studies to the Artificial World. Biomimetics (Basel) 2018; 3:E32. [PMID: 31105254 PMCID: PMC6352697 DOI: 10.3390/biomimetics3040032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 12/25/2022] Open
Abstract
Living beings use mechanical interaction with the environment to gather essential cues for implementing necessary movements and actions. This process is mediated by biomechanics, primarily of the sensory structures, meaning that, at first, mechanical stimuli are morphologically computed. In the present paper, we select and review cases of specialized sensory organs for mechanical sensing-from both the animal and plant kingdoms-that distribute their intelligence in both structure and materials. A focus is set on biomechanical aspects, such as morphology and material characteristics of the selected sensory organs, and on how their sensing function is affected by them in natural environments. In this route, examples of artificial sensors that implement these principles are provided, and/or ways in which they can be translated artificially are suggested. Following a biomimetic approach, our aim is to make a step towards creating a toolbox with general tailoring principles, based on mechanical aspects tuned repeatedly in nature, such as orientation, shape, distribution, materials, and micromechanics. These should be used for a future methodical design of novel soft sensing systems for soft robotics.
Collapse
Affiliation(s)
- Afroditi Astreinidi Blandin
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, 56025 Pisa, Italy.
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, 56025 Pisa, Italy.
| | - Irene Bernardeschi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, 56025 Pisa, Italy.
| | - Lucia Beccai
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, 56025 Pisa, Italy.
| |
Collapse
|
147
|
Joel AC, Adamova H, Bräunig P. Mechanoreceptive sensillum fields at the tarsal tip of insect legs. J Morphol 2018; 279:1654-1664. [DOI: 10.1002/jmor.20898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/28/2018] [Accepted: 08/21/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Anna-Christin Joel
- Institute of Biology II, Unit of Developmental Biology and Morphology of Animals; RWTH Aachen University; Aachen Germany
| | - Hana Adamova
- Institute of Biology II, Unit of Developmental Biology and Morphology of Animals; RWTH Aachen University; Aachen Germany
| | - Peter Bräunig
- Institute of Biology II, Unit of Developmental Biology and Morphology of Animals; RWTH Aachen University; Aachen Germany
| |
Collapse
|
148
|
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J. Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli. J Neurophysiol 2018; 120:1807-1823. [PMID: 30020837 DOI: 10.1152/jn.00371.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many sensory systems are tuned to specific parameters of behaviors and have effects that are task-specific. We have studied how force feedback contributes to activation of synergist muscles in serially homologous legs of stick insects. Forces were applied using conventional half-sine or ramp and hold functions. We also utilized waveforms of joint torques calculated from experiments in freely walking animals. In all legs, forces applied to either the tarsus (foot) or proximal leg segment (trochanter) activated synergist muscles that generate substrate grip and support, but coupling of the depressor muscle to tarsal forces was weak in the front legs. Activation of trochanteral receptors using ramp and hold functions generated positive feedback to the depressor muscle in all legs when animals were induced to seek substrate grip. However, discharges of the synergist flexor muscle showed adaptation at moderate force levels. In contrast, application of forces using torque waveforms, which do not have a static hold phase, produced sustained discharges in muscle synergies with little adaptation. Firing frequencies reflected the magnitude of ground reaction forces, were graded to changes in force amplitude, and could also be modulated by transient force perturbations added to the waveforms. Comparison of synergist activation by torques and ramp and hold functions revealed a strong influence of force dynamics (dF/d t). These studies support the idea that force receptors can act to tune muscle synergies synchronously to the range of force magnitudes and dynamics that occur in each leg according to their specific use in behavior. NEW & NOTEWORTHY The effects of force receptors (campaniform sensilla) on leg muscles and synergies were characterized in stick insects using both ramp and hold functions and waveforms of joint torques calculated by inverse dynamics. Motor responses were sustained and showed reduced adaptation to the more "natural" and nonlinear torque stimuli. Calculation of the first derivative (dF/d t) of the torque waveforms demonstrated that this difference was correlated with the dynamic sensitivities of the system.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Chris J Dallmann
- Department of Biological Cybernetics, Bielefeld University , Bielefeld , Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter, University of Cologne , Cologne , Germany
| | - Sumaiya Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University , Bielefeld , Germany
| |
Collapse
|
149
|
Dallmann CJ, Hoinville T, Dürr V, Schmitz J. A load-based mechanism for inter-leg coordination in insects. Proc Biol Sci 2018; 284:rspb.2017.1755. [PMID: 29187626 PMCID: PMC5740276 DOI: 10.1098/rspb.2017.1755] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
Animals rely on an adaptive coordination of legs during walking. However, which specific mechanisms underlie coordination during natural locomotion remains largely unknown. One hypothesis is that legs can be coordinated mechanically based on a transfer of body load from one leg to another. To test this hypothesis, we simultaneously recorded leg kinematics, ground reaction forces and muscle activity in freely walking stick insects (Carausius morosus). Based on torque calculations, we show that load sensors (campaniform sensilla) at the proximal leg joints are well suited to encode the unloading of the leg in individual steps. The unloading coincides with a switch from stance to swing muscle activity, consistent with a load reflex promoting the stance-to-swing transition. Moreover, a mechanical simulation reveals that the unloading can be ascribed to the loading of a specific neighbouring leg, making it exploitable for inter-leg coordination. We propose that mechanically mediated load-based coordination is used across insects analogously to mammals.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany .,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld, 33615, Germany
| | - Thierry Hoinville
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld, 33615, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld, 33615, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany .,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|
150
|
A sensory-motor neuron type mediates proprioceptive coordination of steering in C. elegans via two TRPC channels. PLoS Biol 2018; 16:e2004929. [PMID: 29883446 PMCID: PMC6010301 DOI: 10.1371/journal.pbio.2004929] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/20/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022] Open
Abstract
Animal locomotion is mediated by a sensory system referred to as proprioception. Defects in the proprioceptive coordination of locomotion result in uncontrolled and inefficient movements. However, the molecular mechanisms underlying proprioception are not fully understood. Here, we identify two transient receptor potential cation (TRPC) channels, trp-1 and trp-2, as necessary and sufficient for proprioceptive responses in C. elegans head steering locomotion. Both channels are expressed in the SMDD neurons, which are required and sufficient for head bending, and mediate coordinated head steering by sensing mechanical stretches due to the contraction of head muscle and orchestrating dorsal head muscle contractions. Moreover, the SMDD neurons play dual roles to sense muscle stretch as well as to control muscle contractions. These results demonstrate that distinct locomotion patterns require dynamic and homeostatic modulation of feedback signals between neurons and muscles. Proprioception provides the nervous system with feedback about body posture in animals and is essential for the generation of coherent locomotive behaviors, such as walking, running, or crawling. However, little is known about the identity of proprioceptive receptors that sense body movement to regulate locomotion and the extent to which proprioception modulates sensorimotor coordination. Here, we analyze the molecular mechanisms that control head steering locomotion of Caenorhabditis elegans. We show that this movement is regulated by the transient receptor potential cation (TRPC) channels TRP-1 and TRP-2 and the SMDD proprioceptive neurons. We observe that mutant animals for both channels are defective in head steering locomotion and that ectopic expression of TRP-1 or TPR-2 in a C. elegans chemosensory neuron confers head bending–dependent responses, suggesting roles for these channels in proprioception. We also find that SMDD neurons are both necessary and sufficient to generate head steering locomotion via the two channels. Moreover, we demonstrate that the proprioceptive system mediates locomotion coordination by desynchronizing activities in motor systems. We conclude that two TRPC channels in collaboration with the proprioceptive receptor SMDD neurons control head steering in worms during forward locomotion.
Collapse
|