101
|
Welburn JPI. The molecular basis for kinesin functional specificity during mitosis. Cytoskeleton (Hoboken) 2013; 70:476-93. [PMID: 24039047 PMCID: PMC4065354 DOI: 10.1002/cm.21135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/24/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
Abstract
Microtubule-based motor proteins play key roles during mitosis to assemble the bipolar spindle, define the cell division axis, and align and segregate the chromosomes. The majority of mitotic motors are members of the kinesin superfamily. Despite sharing a conserved catalytic core, each kinesin has distinct functions and localization, and is uniquely regulated in time and space. These distinct behaviors and functional specificity are generated by variations in the enzymatic domain as well as the non-conserved regions outside of the kinesin motor domain and the stalk. These flanking regions can directly modulate the properties of the kinesin motor through dimerization or self-interactions, and can associate with extrinsic factors, such as microtubule or DNA binding proteins, to provide additional functional properties. This review discusses the recently identified molecular mechanisms that explain how the control and functional specification of mitotic kinesins is achieved. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| |
Collapse
|
102
|
Primorac I, Weir JR, Chiroli E, Gross F, Hoffmann I, van Gerwen S, Ciliberto A, Musacchio A. Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling. eLife 2013; 2:e01030. [PMID: 24066227 PMCID: PMC3779320 DOI: 10.7554/elife.01030] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/21/2013] [Indexed: 12/31/2022] Open
Abstract
Regulation of macromolecular interactions by phosphorylation is crucial in signaling networks. In the spindle assembly checkpoint (SAC), which enables errorless chromosome segregation, phosphorylation promotes recruitment of SAC proteins to tensionless kinetochores. The SAC kinase Mps1 phosphorylates multiple Met-Glu-Leu-Thr (MELT) motifs on the kinetochore subunit Spc105/Knl1. The phosphorylated MELT motifs (MELTP) then promote recruitment of downstream signaling components. How MELTP motifs are recognized is unclear. In this study, we report that Bub3, a 7-bladed β-propeller, is the MELTP reader. It contains an exceptionally well-conserved interface that docks the MELTP sequence on the side of the β-propeller in a previously unknown binding mode. Mutations targeting the Bub3 interface prevent kinetochore recruitment of the SAC kinase Bub1. Crucially, they also cause a checkpoint defect, showing that recognition of phosphorylated targets by Bub3 is required for checkpoint signaling. Our data provide the first detailed mechanistic insight into how phosphorylation promotes recruitment of checkpoint proteins to kinetochores. DOI:http://dx.doi.org/10.7554/eLife.01030.001 The cell cycle is the process by which a cell divides to produce two near-identical daughter cells. Two crucial parts of the cell cycle are the duplication of the chromosomes in the original cell, and the segregation of these chromosomes between the two daughter cells. These and other parts of the cell cycle are strictly regulated to prevent errors, which can lead to cancer and other diseases. After chromosome duplication has taken place, the pairs of identical chromosomes, known as sister chromatids, remain tightly bound to each other. These sister chromatids line up in the middle of the cell, with protein filaments called microtubules connecting them to a bipolar structure called the spindle. For the cell to divide correctly, the sister chromatids in each pair must be connected to opposite poles of the spindle. A signalling network known as the spindle assembly checkpoint (SAC) ensures that the sister chromatids have enough time to line up correctly and to correct possible problems. Once everything is in place, the SAC releases its ‘break’, and the microtubules then pull the sister chromatids away from each other. This way, each daughter cell receives the same complement of chromosomes that was present in the mother cell. The microtubules are not directly attached to the sister chromatids but to protein complexes called kinetochores that assemble on each sister chromatid. In particular, each microtubule binds to a very large protein complex called the KMN network. Knl1, which is part of this network, recruits two SAC proteins–Bub1 and Bub3–to the kinetochore. It is known that a phosphate group is added to Knl1 when the SAC is active, and that Knl1 can only recruit Bub1 and Bub3 after it has been phosphorylated. However, the details of the interactions between Knl1, Bub1 and Bub3 are not understood, and it is not clear whether these interactions are essential for the SAC. Now Primorac et al. have shown that Bub3 binds directly to Knl1 through a region that contains multiple MELT motifs (where M, E, L and T are all amino acids), and that this interaction only happens if these ‘MELT repeats’ have been phosphorylated. Moreover, once bound to the Knl1, Bub3 then recruits Bub1 to the kinetochore. By showing that the recognition of phosphorylated Knl1 by the Bub1-Bub3 complex has a central role in the spindle assembly checkpoint, these results highlight the importance of phosphorylation as a way of regulating the timing of events during the cell cycle. DOI:http://dx.doi.org/10.7554/eLife.01030.002
Collapse
Affiliation(s)
- Ivana Primorac
- Department of Mechanistic Cell Biology , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
A new study shows that phospho-dependent expulsion of type-1-phosphatase (PP1) from the spindle pole by Fin1 (NIMA) kinase ensures switch-like activation of Cyclin B-Cdk1 at the G2/M transition.
Collapse
|
104
|
Ghosh A, Cannon JF. Analysis of protein phosphatase-1 and aurora protein kinase suppressors reveals new aspects of regulatory protein function in Saccharomyces cerevisiae. PLoS One 2013; 8:e69133. [PMID: 23894419 PMCID: PMC3718817 DOI: 10.1371/journal.pone.0069133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/01/2013] [Indexed: 01/31/2023] Open
Abstract
Protein phosphatase-1 (PP1) controls many processes in eukaryotic cells. Modulation of mitosis by reversing phosphorylation of proteins phosphorylated by aurora protein kinase is a critical function for PP1. Overexpression of the sole PP1, Glc7, in budding yeast, Saccharomyces cerevisiae, is lethal. This work shows that lethality requires the function of Glc7 regulatory proteins Sds22, Reg2, and phosphorylated Glc8. This finding shows that Glc7 overexpression induced cell death requires a specific subset of the many Glc7-interacting proteins and therefore is likely caused by promiscuous dephosphorylation of a variety of substrates. Additionally, suppression can occur by reducing Glc7 protein levels by high-copy Fpr3 without use of its proline isomerase domain. This divulges a novel function of Fpr3. Most suppressors of GLC7 overexpression also suppress aurora protein kinase, ipl1, temperature-sensitive mutations. However, high-copy mutant SDS22 genes show reciprocal suppression of GLC7 overexpression induced cell death or ipl1 temperature sensitivity. Sds22 binds to many proteins besides Glc7. The N-terminal 25 residues of Sds22 are sufficient to bind, directly or indirectly, to seven proteins studied here including the spindle assembly checkpoint protein, Bub3. These data demonstrate that Sds22 organizes several proteins in addition to Glc7 to perform functions that counteract Ipl1 activity or lead to hyper Glc7 induced cell death. These data also emphasize that Sds22 targets Glc7 to nuclear locations distinct from Ipl1 substrates.
Collapse
Affiliation(s)
- Anuprita Ghosh
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - John F. Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
105
|
Funabiki H, Wynne DJ. Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 2013; 122:135-58. [PMID: 23512483 DOI: 10.1007/s00412-013-0401-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 01/23/2023]
Abstract
The kinetochore, the proteinaceous structure on the mitotic centromere, functions as a mechanical latch that hooks onto microtubules to support directional movement of chromosomes. The structure also brings in a number of signaling molecules, such as kinases and phosphatases, which regulate microtubule dynamics and cell cycle progression. Erroneous microtubule attachment is destabilized by Aurora B-mediated phosphorylation of multiple microtubule-binding protein complexes at the kinetochore, such as the KMN network proteins and the Ska/Dam1 complex, while Plk-dependent phosphorylation of BubR1 stabilizes kinetochore-microtubule attachment by recruiting PP2A-B56. Spindle assembly checkpoint (SAC) signaling, which is activated by unattached kinetochores and inhibits the metaphase-to-anaphase transition, depends on kinetochore recruitment of the kinase Bub1 through Mps1-mediated phosphorylation of the kinetochore protein KNL1 (also known as Blinkin in mammals, Spc105 in budding yeast, and Spc7 in fission yeast). Recruitment of protein phosphatase 1 to KNL1 is necessary to silence the SAC upon bioriented microtubule attachment. One of the key unsolved questions in the mitosis field is how a mechanical change at the kinetochore upon microtubule attachment is converted to these and other chemical signals that control microtubule attachment and the SAC. Rapid progress in the field is revealing the existence of an intricate signaling network created right on the kinetochore. Here we review the current understanding of phosphorylation-mediated regulation of kinetochore functions and discuss how this signaling network generates an accurate switch that turns on and off the signaling output in response to kinetochore-microtubule attachment.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | | |
Collapse
|
106
|
Kawashima SA, Takemoto A, Nurse P, Kapoor TM. A chemical biology strategy to analyze rheostat-like protein kinase-dependent regulation. CHEMISTRY & BIOLOGY 2013; 20:262-71. [PMID: 23438755 PMCID: PMC3626098 DOI: 10.1016/j.chembiol.2013.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/04/2012] [Accepted: 01/02/2013] [Indexed: 01/05/2023]
Abstract
Protein kinases may function more like variable rheostats rather than two-state switches. However, we lack approaches to properly analyze this aspect of kinase-dependent regulation. To address this, we develop a strategy in which a kinase inhibitor is identified using genetics-based screens, kinase mutations that confer resistance are characterized, and dose-dependent responses of isogenic drug-sensitive and resistant cells to inhibitor treatments are compared. This approach has the advantage that function of wild-type kinase, rather than mutants, is examined. To develop this approach, we focus on Ark1, the fission yeast member of the conserved Aurora kinase family. Applying this approach reveals that proper chromosome compaction in fission yeast needs high Ark1 activity, while other processes depend on significantly lower activity levels. Our strategy is general and can be used to examine the functions of other molecular rheostats.
Collapse
Affiliation(s)
| | - Ai Takemoto
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY10065
| | - Paul Nurse
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY10065
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, NY10065
| |
Collapse
|
107
|
Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 2013; 14:25-37. [PMID: 23258294 DOI: 10.1038/nrm3494] [Citation(s) in RCA: 497] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In eukaryotes, chromosome segregation during cell division is facilitated by the kinetochore, a multiprotein structure that is assembled on centromeric DNA. The kinetochore attaches chromosomes to spindle microtubules, modulates the stability of these attachments and relays the microtubule-binding status to the spindle assembly checkpoint (SAC), a cell cycle surveillance pathway that delays chromosome segregation in response to unattached kinetochores. Recent studies are shaping current thinking on how each of these kinetochore-centred processes is achieved, and how their integration ensures faithful chromosome segregation, focusing on the essential roles of kinase-phosphatase signalling and the microtubule-binding KMN protein network.
Collapse
|
108
|
Varma D, Salmon ED. The KMN protein network--chief conductors of the kinetochore orchestra. J Cell Sci 2013; 125:5927-36. [PMID: 23418356 DOI: 10.1242/jcs.093724] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Successful completion of mitosis requires that sister kinetochores become attached end-on to the plus ends of spindle microtubules (MTs) in prometaphase, thereby forming kinetochore microtubules (kMTs) that tether one sister to one spindle pole and the other sister to the opposite pole. Sites for kMT attachment provide at least four key functions: robust and dynamic kMT anchorage; force generation that can be coupled to kMT plus-end dynamics; correction of errors in kMT attachment; and control of the spindle assembly checkpoint (SAC). The SAC typically delays anaphase until chromosomes achieve metaphase alignment with each sister kinetochore acquiring a full complement of kMTs. Although it has been known for over 30 years that MT motor proteins reside at kinetochores, a highly conserved network of protein complexes, called the KMN network, has emerged in recent years as the primary interface between the kinetochore and kMTs. This Commentary will summarize recent advances in our understanding of the role of the KMN network for the key kinetochore functions, with a focus on human cells.
Collapse
Affiliation(s)
- Dileep Varma
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| | | |
Collapse
|
109
|
Böhm S, Buchberger A. The budding yeast Cdc48(Shp1) complex promotes cell cycle progression by positive regulation of protein phosphatase 1 (Glc7). PLoS One 2013; 8:e56486. [PMID: 23418575 PMCID: PMC3572051 DOI: 10.1371/journal.pone.0056486] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/10/2013] [Indexed: 12/11/2022] Open
Abstract
The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the budding yeast S. cerevisiae. Even though Shp1 has been proposed to be a positive regulator of Glc7, the catalytic subunit of protein phosphatase 1 in S. cerevisiae, its cellular functions in complex with Cdc48 remain largely unknown. Here we show that deletion of the SHP1 gene results in severe growth defects and a cell cycle delay at the metaphase to anaphase transition caused by reduced Glc7 activity. Using an engineered Cdc48 binding-deficient variant of Shp1, we establish the Cdc48Shp1 complex as a critical regulator of mitotic Glc7 activity. We demonstrate that shp1 mutants possess a perturbed balance of Glc7 phosphatase and Ipl1 (Aurora B) kinase activities and show that hyper-phosphorylation of the kinetochore protein Dam1, a key mitotic substrate of Glc7 and Ipl1, is a critical defect in shp1. We also show for the first time a physical interaction between Glc7 and Shp1 in vivo. Whereas loss of Shp1 does not significantly affect Glc7 protein levels or localization, it causes reduced binding of the activator protein Glc8 to Glc7. Our data suggest that the Cdc48Shp1 complex controls Glc7 activity by regulating its interaction with Glc8 and possibly further regulatory subunits.
Collapse
Affiliation(s)
- Stefanie Böhm
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alexander Buchberger
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
110
|
Tanaka K. Regulatory mechanisms of kinetochore-microtubule interaction in mitosis. Cell Mol Life Sci 2013; 70:559-79. [PMID: 22752158 PMCID: PMC11113415 DOI: 10.1007/s00018-012-1057-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/29/2012] [Accepted: 06/11/2012] [Indexed: 12/17/2022]
Abstract
Interaction of microtubules with kinetochores is fundamental to chromosome segregation. Kinetochores initially associate with lateral surfaces of microtubules and subsequently become attached to microtubule ends. During these interactions, kinetochores can move by sliding along microtubules or by moving together with depolymerizing microtubule ends. The interplay between kinetochores and microtubules leads to the establishment of bi-orientation, which is the attachment of sister kinetochores to microtubules from opposite spindle poles, and subsequent chromosome segregation. Molecular mechanisms underlying these processes have been intensively studied over the past 10 years. Emerging evidence suggests that the KNL1-Mis12-Ndc80 (KMN) network plays a central role in connecting kinetochores to microtubules, which is under fine regulation by a mitotic kinase, Aurora B. However, a growing number of additional molecules are being shown to be involved in the kinetochore-microtubule interaction. Here I overview the current range of regulatory mechanisms of the kinetochore-microtubule interaction, and discuss how these multiple molecules contribute cooperatively to allow faithful chromosome segregation.
Collapse
Affiliation(s)
- Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Miyagi, Japan.
| |
Collapse
|
111
|
Sedgwick GG, Hayward DG, Di Fiore B, Pardo M, Yu L, Pines J, Nilsson J. Mechanisms controlling the temporal degradation of Nek2A and Kif18A by the APC/C-Cdc20 complex. EMBO J 2013; 32:303-14. [PMID: 23288039 PMCID: PMC3553385 DOI: 10.1038/emboj.2012.335] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/26/2012] [Indexed: 12/23/2022] Open
Abstract
The Anaphase Promoting Complex/Cyclosome (APC/C) in complex with its co-activator Cdc20 is responsible for targeting proteins for ubiquitin-mediated degradation during mitosis. The activity of APC/C-Cdc20 is inhibited during prometaphase by the Spindle Assembly Checkpoint (SAC) yet certain substrates escape this inhibition. Nek2A degradation during prometaphase depends on direct binding of Nek2A to the APC/C via a C-terminal MR dipeptide but whether this motif alone is sufficient is not clear. Here, we identify Kif18A as a novel APC/C-Cdc20 substrate and show that Kif18A degradation depends on a C-terminal LR motif. However in contrast to Nek2A, Kif18A is not degraded until anaphase showing that additional mechanisms contribute to Nek2A degradation. We find that dimerization via the leucine zipper, in combination with the MR motif, is required for stable Nek2A binding to and ubiquitination by the APC/C. Nek2A and the mitotic checkpoint complex (MCC) have an overlap in APC/C subunit requirements for binding and we propose that Nek2A binds with high affinity to apo-APC/C and is degraded by the pool of Cdc20 that avoids inhibition by the SAC.
Collapse
Affiliation(s)
- Garry G Sedgwick
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- BRIC, University of Copenhagen, Copenhagen, Denmark
| | - Daniel G Hayward
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- BRIC, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Di Fiore
- The Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, UK
| | - Mercedes Pardo
- Proteomics Mass Spectrometry Laboratory, The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Lu Yu
- Proteomics Mass Spectrometry Laboratory, The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Jonathon Pines
- The Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- BRIC, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
112
|
De Antoni A, Maffini S, Knapp S, Musacchio A, Santaguida S. A small-molecule inhibitor of Haspin alters the kinetochore functions of Aurora B. ACTA ACUST UNITED AC 2013; 199:269-84. [PMID: 23071153 PMCID: PMC3471222 DOI: 10.1083/jcb.201205119] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A chemical biology study characterizes the role of Haspin kinase in centromere recruitment of the chromosome passenger complex and in spindle assembly checkpoint function. By phosphorylating Thr3 of histone H3, Haspin promotes centromeric recruitment of the chromosome passenger complex (CPC) during mitosis. Aurora B kinase, a CPC subunit, sustains chromosome bi-orientation and the spindle assembly checkpoint (SAC). Here, we characterize the small molecule 5-iodotubercidin (5-ITu) as a potent Haspin inhibitor. In vitro, 5-ITu potently inhibited Haspin but not Aurora B. Consistently, 5-ITu counteracted the centromeric localization of the CPC without affecting the bulk of Aurora B activity in HeLa cells. Mislocalization of Aurora B correlated with dephosphorylation of CENP-A and Hec1 and SAC override at high nocodazole concentrations. 5-ITu also impaired kinetochore recruitment of Bub1 and BubR1 kinases, and this effect was reversed by concomitant inhibition of phosphatase activity. Forcing localization of Aurora B to centromeres in 5-ITu also restored Bub1 and BubR1 localization but failed to rescue the SAC override. This result suggests that a target of 5-ITu, possibly Haspin itself, may further contribute to SAC signaling downstream of Aurora B.
Collapse
Affiliation(s)
- Anna De Antoni
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | | | | | | | | |
Collapse
|
113
|
Zhang G, Lischetti T, Nilsson J. A minimal number of MELT repeats supports all functions of KNL1 in chromosome segregation. J Cell Sci 2013; 127:871-84. [DOI: 10.1242/jcs.139725] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Bub1-Bub3 and BubR1-Bub3 checkpoint complexes, or the Bubs, contribute to the accurate segregation of chromosomes during mitosis by promoting chromosome bi-orientation and halting exit from mitosis if this fails. The complexes associate with kinetochores during mitosis, which is required for proper chromosome segregation. The outer kinetochore protein KNL1 (also known as CASC5/Blinkin/AF15Q14) is the receptor for Bub proteins but the exact nature of the functional binding sites on KNL1 are yet to be determined. Here, we show that KNL1 contains multiple binding sites for the Bub proteins, with the Mps1-phosphorylated MELT repeats constituting individual functional docking sites for direct binding of Bub3. Surprisingly, chromosome congression and the Spindle Assembly Checkpoint (SAC) are still functional when KNL1 is deleted of all but four of its twelve MELT repeats. Systematically reducing the number of MELT repeats to less than four reduced KNL1 functionality. Furthermore, we show that Protein Phosphatase 1 (PP1) binding to KNL1 in prometaphase reduces the levels of Bub proteins at kinetochores to approximately the level recruited by four active MELT repeats.
Collapse
|
114
|
Carmena M, Wheelock M, Funabiki H, Earnshaw WC. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 2012; 13:789-803. [PMID: 23175282 PMCID: PMC3729939 DOI: 10.1038/nrm3474] [Citation(s) in RCA: 675] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Successful cell division requires the precise and timely coordination of chromosomal, cytoskeletal and membrane trafficking events. These processes are regulated by the competing actions of protein kinases and phosphatases. Aurora B is one of the most intensively studied kinases. In conjunction with inner centromere protein (INCENP), borealin (also known as Dasra) and survivin it forms the chromosomal passenger complex (CPC). This complex targets to different locations at differing times during mitosis, where it regulates key mitotic events: correction of chromosome-microtubule attachment errors; activation of the spindle assembly checkpoint; and construction and regulation of the contractile apparatus that drives cytokinesis. Our growing understanding of the CPC has seen it develop from a mere passenger riding on the chromosomes to one of the main controllers of mitosis.
Collapse
Affiliation(s)
- Mar Carmena
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, ICB Michael Swann Building, King's Buildings Mayfield Road, Edinburgh EH9 3JR Scotland, UK.
| | | | | | | |
Collapse
|
115
|
Suppressors of ipl1-2 in components of a Glc7 phosphatase complex, Cdc48 AAA ATPase, TORC1, and the kinetochore. G3-GENES GENOMES GENETICS 2012; 2:1687-701. [PMID: 23275890 PMCID: PMC3516489 DOI: 10.1534/g3.112.003814] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/24/2012] [Indexed: 01/26/2023]
Abstract
Ipl1/Aurora B is the catalytic subunit of a protein kinase complex required for chromosome segregation and nuclear division. Before anaphase, Ipl1 is required to establish proper kinetochore-microtubule associations and to regulate the spindle assembly checkpoint (SAC). The phosphatase Glc7/PP1 opposes Ipl1 for these activities. To investigate Ipl1 and Glc7 regulation in more detail, we isolated and characterized mutations in the yeast Saccharomyces cerevisiae that raise the restrictive temperature of the ipl-2 mutant. These suppressors include three intragenic, second-site revertants in IPL1; 17 mutations in Glc7 phosphatase components (GLC7, SDS22, YPI1); two mutations in SHP1, encoding a regulator of the AAA ATPase Cdc48; and a mutation in TCO89, encoding a subunit of the TOR Complex 1. Two revertants contain missense mutations in microtubule binding components of the kinetochore. rev76 contains the missense mutation duo1-S115F, which alters an essential component of the DAM1/DASH complex. The mutant is cold sensitive and arrests in G2/M due to activation of the SAC. rev8 contains the missense mutation ndc80-K204E. K204 of Ndc80 corresponds to K166 of human Ndc80 and the human Ndc80 K166E variant was previously shown to be defective for microtubule binding in vitro. In a wild-type IPL1 background, ndc80-K204E cells grow slowly and the SAC is activated. The slow growth and cell cycle delay of ndc80-K204E cells are partially alleviated by the ipl1-2 mutation. These data provide biological confirmation of a biochemically based model for the effect of phosphorylation on Ndc80 function.
Collapse
|
116
|
Vleugel M, Hoogendoorn E, Snel B, Kops GJPL. Evolution and function of the mitotic checkpoint. Dev Cell 2012; 23:239-50. [PMID: 22898774 DOI: 10.1016/j.devcel.2012.06.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/26/2012] [Accepted: 06/26/2012] [Indexed: 11/18/2022]
Abstract
The mitotic checkpoint evolved to prevent cell division when chromosomes have not established connections with the chromosome segregation machinery. Many of the fundamental molecular principles that underlie the checkpoint, its spatiotemporal activation, and its timely inactivation have been uncovered. Most of these are conserved in eukaryotes, but important differences between species exist. Here we review current concepts of mitotic checkpoint activation and silencing. Guided by studies in model organisms and our phylogenomics analysis of checkpoint constituents and their functional domains and motifs, we highlight ancient and taxa-specific aspects of the core checkpoint modules in the context of mitotic checkpoint function.
Collapse
Affiliation(s)
- Mathijs Vleugel
- Department of Medical Oncology, Department of Molecular Cancer Research and Cancer Genomics Centre, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | | | |
Collapse
|
117
|
Move in for the kill: motile microtubule regulators. Trends Cell Biol 2012; 22:567-75. [PMID: 22959403 DOI: 10.1016/j.tcb.2012.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/01/2012] [Accepted: 08/09/2012] [Indexed: 12/18/2022]
Abstract
The stereotypical function of kinesin superfamily motors is to transport cargo along microtubules. However, some kinesins also shape the microtubule track by regulating microtubule assembly and disassembly. Recent work has shown that the kinesin-8 family of motors emerge as key regulators of cellular microtubule length. The studied kinesin-8s are highly processive motors that walk towards the microtubule plus-end. Once at plus-ends, they have complex effects on polymer dynamics; kinesin-8s either destabilize or stabilize microtubules, depending on the context. This review focuses on the mechanisms underlying kinesin-8-microtubule interactions and microtubule length control. We compare and contrast kinesin-8s with the other major microtubule-regulating kinesins (kinesin-4 and kinesin-13), to survey the current understanding of the diverse ways that kinesins control microtubule dynamics.
Collapse
|
118
|
Akiyoshi B, Biggins S. Reconstituting the kinetochore–microtubule interface: what, why, and how. Chromosoma 2012; 121:235-50. [PMID: 22289864 DOI: 10.1007/s00412-012-0362-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/15/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
The kinetochore is the proteinaceous complex that governs the movement of duplicated chromosomes by interacting with spindle microtubules during mitosis and meiosis. Faithful chromosome segregation requires that kinetochores form robust load-bearing attachments to the tips of dynamic spindle microtubules, correct microtubule attachment errors, and delay the onset of anaphase until all chromosomes have made proper attachments. To understand how this macromolecular machine operates to segregate duplicated chromosomes with exquisite accuracy, it is critical to reconstitute and study kinetochore–microtubule interactions in vitro using defined components. Here, we review the current status of reconstitution as well as recent progress in understanding the microtubule-binding functions of kinetochores in vivo.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | | |
Collapse
|
119
|
Connecting up and clearing out: how kinetochore attachment silences the spindle assembly checkpoint. Chromosoma 2012; 121:509-25. [DOI: 10.1007/s00412-012-0378-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 02/06/2023]
|
120
|
Sos7, an essential component of the conserved Schizosaccharomyces pombe Ndc80-MIND-Spc7 complex, identifies a new family of fungal kinetochore proteins. Mol Cell Biol 2012; 32:3308-20. [PMID: 22711988 DOI: 10.1128/mcb.00212-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chromosome segregation is powered by the kinetochore, a large macromolecular structure assembled on centromeric chromatin. Attachment of sister chromatids to microtubules is mediated by the highly conserved tripartite KMN (acronym for KNL-1-Mis12-Ndc80) kinetochore network. In the fission yeast Schizosaccharomyces pombe, the equivalent complex is called NMS (Ndc80-MIND-Spc7). Here, we show that not all components of the NMS complex had been identified previously. A 10th NMS component exists, the essential Sos7 protein, which is a genetic and physical interaction partner of Spc7. The analysis of sos7 kinetochore-null mutant yeast strains demonstrated that Sos7 is central to NMS function. In particular, Sos7 is required for kinetochore targeting of Spc7 as well as components of the MIND complex. sos7 mutant strains show severe chromosome missegregation phenotypes and have compromised microtubule-kinetochore interactions. Sos7 is the founding member of a functionally conserved fungal kinetochore family not present in the point centromere carrying Saccharomycotina clusters, suggesting that the new Sos7 family might be a signature motif of fungi with regional centromeres.
Collapse
|
121
|
Shepperd LA, Meadows JC, Sochaj AM, Lancaster TC, Zou J, Buttrick GJ, Rappsilber J, Hardwick KG, Millar JB. Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr Biol 2012; 22:891-9. [PMID: 22521786 PMCID: PMC3780767 DOI: 10.1016/j.cub.2012.03.051] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/22/2012] [Accepted: 03/12/2012] [Indexed: 11/21/2022]
Abstract
The spindle assembly checkpoint (SAC) is the major surveillance system that ensures that sister chromatids do not separate until all chromosomes are correctly bioriented during mitosis. Components of the checkpoint include Mad1, Mad2, Mad3 (BubR1), Bub3, and the kinases Bub1, Mph1 (Mps1), and Aurora B. Checkpoint proteins are recruited to kinetochores when individual kinetochores are not bound to spindle microtubules or not under tension. Kinetochore association of Mad2 causes it to undergo a conformational change, which promotes its association to Mad3 and Cdc20 to form the mitotic checkpoint complex (MCC). The MCC inhibits the anaphase-promoting complex/cyclosome (APC/C) until the checkpoint is satisfied. SAC silencing derepresses Cdc20-APC/C activity. This triggers the polyubiquitination of securin and cyclin, which promotes the dissolution of sister chromatid cohesion and mitotic progression. We, and others, recently showed that association of PP1 to the Spc7/Spc105/KNL1 family of kinetochore proteins is necessary to stabilize microtubule-kinetochore attachments and silence the SAC. We now report that phosphorylation of the conserved MELT motifs in Spc7 by Mph1 (Mps1) recruits Bub1 and Bub3 to the kinetochore and that this is required to maintain the SAC signal.
Collapse
Affiliation(s)
- Lindsey A. Shepperd
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - John C. Meadows
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Alicja M. Sochaj
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Theresa C. Lancaster
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Juan Zou
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Graham J. Buttrick
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Kevin G. Hardwick
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Jonathan B.A. Millar
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| |
Collapse
|
122
|
Bock LJ, Pagliuca C, Kobayashi N, Grove RA, Oku Y, Shrestha K, Alfieri C, Golfieri C, Oldani A, Maschio MD, Bermejo R, Hazbun TR, Tanaka TU, De Wulf P. Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat Cell Biol 2012; 14:614-24. [PMID: 22561345 PMCID: PMC3438452 DOI: 10.1038/ncb2495] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 04/02/2012] [Indexed: 12/16/2022]
Abstract
Kinetochores attach the replicated chromosomes to the mitotic spindle and orchestrate their transmission to the daughter cells. Kinetochore-spindle binding and chromosome segregation are mediated by the multi-copy KNL1(Spc105), MIS12(Mtw1) and NDC80(Ndc80) complexes that form the so-called KMN network. KMN-spindle attachment is regulated by the Aurora B(Ipl1) and MPS1(Mps1) kinases. It is unclear whether other mechanisms exist that support KMN activity during the cell cycle. Using budding yeast, we show that kinetochore protein Cnn1 localizes to the base of the Ndc80 complex and promotes a functionally competent configuration of the KMN network. Cnn1 regulates KMN activity in a spatiotemporal manner by inhibiting the interaction between its complexes. Cnn1 activity peaks in anaphase and is driven by the Cdc28, Mps1 and Ipl1 kinases.
Collapse
Affiliation(s)
- Lucy J. Bock
- European Institute of Oncology, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Cinzia Pagliuca
- European Institute of Oncology, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Norihiko Kobayashi
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ryan A. Grove
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907-2091, USA
| | - Yusuke Oku
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kriti Shrestha
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907-2091, USA
| | - Claudio Alfieri
- European Institute of Oncology, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Cristina Golfieri
- European Institute of Oncology, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Amanda Oldani
- FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | - Marianna Dal Maschio
- European Institute of Oncology, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Rodrigo Bermejo
- Instituto de Biología Funcional y Genómica, CSIC, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Tony R. Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907-2091, USA
| | - Tomoyuki U. Tanaka
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter De Wulf
- European Institute of Oncology, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
123
|
van der Waal MS, Hengeveld RCC, van der Horst A, Lens SMA. Cell division control by the Chromosomal Passenger Complex. Exp Cell Res 2012; 318:1407-20. [PMID: 22472345 DOI: 10.1016/j.yexcr.2012.03.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 11/15/2022]
Abstract
The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.
Collapse
Affiliation(s)
- Maike S van der Waal
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
124
|
Buttrick GJ, Lancaster TC, Meadows JC, Millar JBA. Plo1 phosphorylates Dam1 to promote chromosome bi-orientation in fission yeast. J Cell Sci 2012; 125:1645-51. [PMID: 22375062 DOI: 10.1242/jcs.096826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The fungal-specific heterodecameric outer kinetochore DASH complex facilitates the interaction of kinetochores with spindle microtubules. In budding yeast, where kinetochores bind a single microtubule, the DASH complex is essential, and phosphorylation of Dam1 by the Aurora kinase homologue, Ipl1, causes detachment of kinetochores from spindle microtubules. We demonstrate that in the distantly related fission yeast, where the DASH complex is not essential for viability and kinetochores bind multiple microtubules, Dam1 is instead phosphorylated on serine 143 by the Polo kinase homologue, Plo1, during prometaphase and metaphase. This phosphorylation site is conserved in most fungal Dam1 proteins, including budding yeast Dam1. We show that Dam1 phosphorylation by Plo1 is dispensable for DASH assembly and chromosome retrieval but instead aids tension-dependent chromosome bi-orientation.
Collapse
Affiliation(s)
- Graham J Buttrick
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK.
| | | | | | | |
Collapse
|
125
|
Zich J, Sochaj A, Syred H, Milne L, Cook A, Ohkura H, Rappsilber J, Hardwick K. Kinase activity of fission yeast Mph1 is required for Mad2 and Mad3 to stably bind the anaphase promoting complex. Curr Biol 2012; 22:296-301. [PMID: 22281223 PMCID: PMC3315010 DOI: 10.1016/j.cub.2011.12.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 11/14/2011] [Accepted: 12/16/2011] [Indexed: 01/19/2023]
Abstract
Defects in chromosome segregation result in aneuploidy, which can lead to disease or cell death [1, 2]. The spindle checkpoint delays anaphase onset until all chromosomes are attached to spindle microtubules in a bipolar fashion [3, 4]. Mad2 is a key checkpoint component that undergoes conformational activation, catalyzed by a Mad1-Mad2 template enriched at unattached kinetochores [5]. Mad2 and Mad3 (BubR1) then bind and inhibit Cdc20 to form the mitotic checkpoint complex (MCC), which binds and inhibits the anaphase promoting complex (APC/C). Checkpoint kinases (Aurora, Bub1, and Mps1) are critical for checkpoint signaling, yet they have poorly defined roles and few substrates have been identified [6-8]. Here we demonstrate that a kinase-dead allele of the fission yeast MPS1 homolog (Mph1) is checkpoint defective and that levels of APC/C-associated Mad2 and Mad3 are dramatically reduced in this mutant. Thus, MCC binding to fission yeast APC/C is dependent on Mph1 kinase activity. We map and mutate several phosphorylation sites in Mad2, producing mutants that display reduced Cdc20-APC/C binding and an inability to maintain checkpoint arrest. We conclude that Mph1 kinase regulates the association of Mad2 with its binding partners and thereby mitotic arrest.
Collapse
Affiliation(s)
- Judith Zich
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Alicja M. Sochaj
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Heather M. Syred
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Laura Milne
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Atlanta G. Cook
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Hiro Ohkura
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Kevin G. Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| |
Collapse
|
126
|
Leslie M. Knl1 shows another face. J Biophys Biochem Cytol 2012. [PMCID: PMC3283989 DOI: 10.1083/jcb.1964if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kinetochore protein might not recruit key parts of spindle assembly checkpoint and instead might help silence the checkpoint.
Collapse
|
127
|
Erent M, Drummond DR, Cross RA. S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules. PLoS One 2012; 7:e30738. [PMID: 22363481 PMCID: PMC3282699 DOI: 10.1371/journal.pone.0030738] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
The kinesins-8 were originally thought to be microtubule depolymerases, but are now emerging as more versatile catalysts of microtubule dynamics. We show here that S. pombe Klp5-436 and Klp6-440 are non-processive plus-end-directed motors whose in vitro velocities on S. pombe microtubules at 7 and 23 nm s(-1) are too slow to keep pace with the growing tips of dynamic interphase microtubules in living S. pombe. In vitro, Klp5 and 6 dimers exhibit a hitherto-undescribed combination of strong enhancement of microtubule nucleation with no effect on growth rate or catastrophe frequency. By contrast in vivo, both Klp5 and Klp6 promote microtubule catastrophe at cell ends whilst Klp6 also increases the number of interphase microtubule arrays (IMAs). Our data support a model in which Klp5/6 bind tightly to free tubulin heterodimers, strongly promoting the nucleation of new microtubules, and then continue to land as a tubulin-motor complex on the tips of growing microtubules, with the motors then dissociating after a few seconds residence on the lattice. In vivo, we predict that only at cell ends, when growing microtubule tips become lodged and their growth slows down, will Klp5/6 motor activity succeed in tracking growing microtubule tips. This mechanism would allow Klp5/6 to detect the arrival of microtubule tips at cells ends and to amplify the intrinsic tendency for microtubules to catastrophise in compression at cell ends. Our evidence identifies Klp5 and 6 as spatial regulators of microtubule dynamics that enhance both microtubule nucleation at the cell centre and microtubule catastrophe at the cell ends.
Collapse
Affiliation(s)
- Muriel Erent
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Douglas R. Drummond
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Robert A. Cross
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
128
|
Espeut J, Cheerambathur DK, Krenning L, Oegema K, Desai A. Microtubule binding by KNL-1 contributes to spindle checkpoint silencing at the kinetochore. ACTA ACUST UNITED AC 2012; 196:469-82. [PMID: 22331849 PMCID: PMC3284002 DOI: 10.1083/jcb.201111107] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A microtubule-binding site in the extreme N terminus of KNL-1 is dispensable for load-bearing attachments but participates in checkpoint silencing at the kinetochore. Accurate chromosome segregation requires coordination between microtubule attachment and spindle checkpoint signaling at the kinetochore. The kinetochore-localized KMN (KNL-1/Mis12 complex/Ndc80 complex) network, which mediates microtubule attachment and scaffolds checkpoint signaling, harbors two distinct microtubule-binding activities: the load-bearing activity of the Ndc80 complex and a less well-understood activity in KNL-1. In this paper, we show that KNL-1 microtubule-binding and -bundling activity resides in its extreme N terminus. Selective perturbation of KNL-1 microtubule binding in Caenorhabditis elegans embryos revealed that this activity is dispensable for both load-bearing attachment formation and checkpoint activation but plays a role in checkpoint silencing at the kinetochore. Perturbation of both microtubule binding and protein phosphatase 1 docking at the KNL-1 N terminus additively affected checkpoint silencing, indicating that, despite their proximity in KNL-1, these two activities make independent contributions. We propose that microtubule binding by KNL-1 functions in checkpoint silencing by sensing microtubules attached to kinetochores and relaying their presence to eliminate generation of the checkpoint signal.
Collapse
Affiliation(s)
- Julien Espeut
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
129
|
Abstract
'…in Italy, for thirty years under the Borgias, they had warfare, terror, murder and bloodshed, but they produced Michelangelo, Leonardo da Vinci and the Renaissance. In Switzerland, they had brotherly love, they had five hundred years of democracy and peace-and what did that produce? The cuckoo clock'. Orson Welles as Harry Lime: The Third Man. Orson Welles might have been a little unfair on the Swiss, after all cuckoo clocks were developed in the Schwartzwald, but, more importantly, Swiss democracy gives remarkably stable government with considerable decision-making at the local level. The alternative is the battling city-states of Renaissance Italy: culturally rich but chaotic at a higher level of organization. As our understanding of the cell cycle improves, it appears that the cell is organized more along the lines of Switzerland than Renaissance Italy, and one major challenge is to determine how local decisions are made and coordinated to produce the robust cell cycle mechanisms that we observe in the cell as a whole.
Collapse
Affiliation(s)
- Jonathon Pines
- Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Iain Hagan
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
130
|
Barr FA, Elliott PR, Gruneberg U. Protein phosphatases and the regulation of mitosis. J Cell Sci 2011; 124:2323-34. [PMID: 21709074 DOI: 10.1242/jcs.087106] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dynamic control of protein phosphorylation is necessary for the regulation of many cellular processes, including mitosis and cytokinesis. Indeed, although the central role of protein kinases is widely appreciated and intensely studied, the importance of protein phosphatases is often overlooked. Recent studies, however, have highlighted the considerable role of protein phosphatases in both the spatial and temporal control of protein kinase activity, and the modulation of substrate phosphorylation. Here, we will focus on recent advances in our understanding of phosphatase structure, and the importance of phosphatase function in the control of mitotic spindle formation, chromosome architecture and cohesion, and cell division.
Collapse
Affiliation(s)
- Francis A Barr
- University of Liverpool, Cancer Research Centre, 200 London Road, Liverpool L3 9TA, UK.
| | | | | |
Collapse
|
131
|
|
132
|
Petsalaki E, Akoumianaki T, Black EJ, Gillespie DAF, Zachos G. Phosphorylation at serine 331 is required for Aurora B activation. ACTA ACUST UNITED AC 2011; 195:449-66. [PMID: 22024163 PMCID: PMC3206340 DOI: 10.1083/jcb.201104023] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aurora B kinase activity is required for successful cell division. In this paper, we show that Aurora B is phosphorylated at serine 331 (Ser331) during mitosis and that phosphorylated Aurora B localizes to kinetochores in prometaphase cells. Chk1 kinase is essential for Ser331 phosphorylation during unperturbed prometaphase or during spindle disruption by taxol but not nocodazole. Phosphorylation at Ser331 is required for optimal phosphorylation of INCENP at TSS residues, for Survivin association with the chromosomal passenger complex, and for complete Aurora B activation, but it is dispensable for Aurora B localization to centromeres, for autophosphorylation at threonine 232, and for association with INCENP. Overexpression of Aurora B(S331A), in which Ser331 is mutated to alanine, results in spontaneous chromosome missegregation, cell multinucleation, unstable binding of BubR1 to kinetochores, and impaired mitotic delay in the presence of taxol. We propose that Chk1 phosphorylates Aurora B at Ser331 to fully induce Aurora B kinase activity. These results indicate that phosphorylation at Ser331 is an essential mechanism for Aurora B activation.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Heraklion 71409, Greece
| | | | | | | | | |
Collapse
|
133
|
|
134
|
Buttrick GJ, Meadows JC, Lancaster TC, Vanoosthuyse V, Shepperd LA, Hoe KL, Kim DU, Park HO, Hardwick KG, Millar JBA. Nsk1 ensures accurate chromosome segregation by promoting association of kinetochores to spindle poles during anaphase B. Mol Biol Cell 2011; 22:4486-502. [PMID: 21965289 PMCID: PMC3226469 DOI: 10.1091/mbc.e11-07-0608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nsk1 is a novel fission yeast protein that binds the nucleolus during interphase and the nucleoplasm during early mitosis. After anaphase and following dephosphorylation by Clp1, Nsk1 binds the kinetochore–spindle pole junction and maintains accurate chromosome segregation by promoting the association of kinetochores to spindle poles during anaphase B. Type 1 phosphatase (PP1) antagonizes Aurora B kinase to stabilize kinetochore–microtubule attachments and to silence the spindle checkpoint. We screened for factors that exacerbate the growth defect of Δdis2 cells, which lack one of two catalytic subunits of PP1 in fission yeast, and identified Nsk1, a novel protein required for accurate chromosome segregation. During interphase, Nsk1 resides in the nucleolus but spreads throughout the nucleoplasm as cells enter mitosis. Following dephosphorylation by Clp1 (Cdc14-like) phosphatase and at least one other phosphatase, Nsk1 localizes to the interface between kinetochores and the inner face of the spindle pole body during anaphase. In the absence of Nsk1, some kinetochores become detached from spindle poles during anaphase B. If this occurs late in anaphase B, then the sister chromatids of unclustered kinetochores segregate to the correct daughter cell. These unclustered kinetochores are efficiently captured, retrieved, bioriented, and segregated during the following mitosis, as long as Dis2 is present. However, if kinetochores are detached from a spindle pole early in anaphase B, then these sister chromatids become missegregated. These data suggest Nsk1 ensures accurate chromosome segregation by promoting the tethering of kinetochores to spindle poles during anaphase B.
Collapse
Affiliation(s)
- Graham J Buttrick
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
Spindle checkpoint silencing is crucial for cell-cycle progression, but mechanisms underlying this process remain mysterious. Two papers, one in this issue of Developmental Cell (Meadows et al., 2011) and one in Current Biology (Rosenberg et al., 2011), begin to show how phosphatase PP1-gamma connects chromosome-microtubule attachment with anaphase entry.
Collapse
Affiliation(s)
- María Maldonado
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|