101
|
A Role for Monomethylation of Histone H3-K27 in Gene Activity in Drosophila. Genetics 2017; 208:1023-1036. [PMID: 29242288 DOI: 10.1534/genetics.117.300585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a conserved chromatin-modifying enzyme that methylates histone H3 on lysine-27 (K27). PRC2 can add one, two, or three methyl groups and the fully methylated product, H3-K27me3, is a hallmark of Polycomb-silenced chromatin. Less is known about functions of K27me1 and K27me2 and the dynamics of flux through these states. These modifications could serve mainly as intermediates to produce K27me3 or they could each convey distinct epigenetic information. To investigate this, we engineered a variant of Drosophila melanogaster PRC2 which is converted into a monomethyltransferase. A single substitution, F738Y, in the lysine-substrate binding pocket of the catalytic subunit, E(Z), creates an enzyme that retains robust K27 monomethylation but dramatically reduced di- and trimethylation. Overexpression of E(Z)-F738Y in fly cells triggers desilencing of Polycomb target genes significantly more than comparable overexpression of catalytically deficient E(Z), suggesting that H3-K27me1 contributes positively to gene activity. Consistent with this, normal genomic distribution of H3-K27me1 is enriched on actively transcribed Drosophila genes, with localization overlapping the active H3-K36me2/3 chromatin marks. Thus, distinct K27 methylation states link to either repression or activation depending upon the number of added methyl groups. If so, then H3-K27me1 deposition may involve alternative methyltransferases beyond PRC2, which is primarily repressive. Indeed, assays on fly embryos with PRC2 genetically inactivated, and on fly cells with PRC2 chemically inhibited, show that substantial H3-K27me1 accumulates independently of PRC2. These findings imply distinct roles for K27me1 vs. K27me3 in transcriptional control and an expanded machinery for methylating H3-K27.
Collapse
|
102
|
Choi J, Bachmann AL, Tauscher K, Benda C, Fierz B, Müller J. DNA binding by PHF1 prolongs PRC2 residence time on chromatin and thereby promotes H3K27 methylation. Nat Struct Mol Biol 2017; 24:1039-1047. [DOI: 10.1038/nsmb.3488] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
|
103
|
Ichikawa Y, Connelly CF, Appleboim A, Miller TC, Jacobi H, Abshiru NA, Chou HJ, Chen Y, Sharma U, Zheng Y, Thomas PM, Chen HV, Bajaj V, Müller CW, Kelleher NL, Friedman N, Bolon DN, Rando OJ, Kaufman PD. A synthetic biology approach to probing nucleosome symmetry. eLife 2017; 6:28836. [PMID: 28895528 PMCID: PMC5626479 DOI: 10.7554/elife.28836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/12/2017] [Indexed: 11/13/2022] Open
Abstract
The repeating subunit of chromatin, the nucleosome, includes two copies of each of the four core histones, and several recent studies have reported that asymmetrically-modified nucleosomes occur at regulatory elements in vivo. To probe the mechanisms by which histone modifications are read out, we designed an obligate pair of H3 heterodimers, termed H3X and H3Y, which we extensively validated genetically and biochemically. Comparing the effects of asymmetric histone tail point mutants with those of symmetric double mutants revealed that a single methylated H3K36 per nucleosome was sufficient to silence cryptic transcription in vivo. We also demonstrate the utility of this system for analysis of histone modification crosstalk, using mass spectrometry to separately identify modifications on each H3 molecule within asymmetric nucleosomes. The ability to generate asymmetric nucleosomes in vivo and in vitro provides a powerful and generalizable tool to probe the mechanisms by which H3 tails are read out by effector proteins in the cell.
Collapse
Affiliation(s)
- Yuichi Ichikawa
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Caitlin F Connelly
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Alon Appleboim
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thomas Cr Miller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hadas Jacobi
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nebiyu A Abshiru
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, United States
| | - Hsin-Jung Chou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Yuanyuan Chen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Upasna Sharma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Yupeng Zheng
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, United States
| | - Paul M Thomas
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, United States
| | - Hsuiyi V Chen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Vineeta Bajaj
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Neil L Kelleher
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, United States
| | - Nir Friedman
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Na Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
104
|
Dorafshan E, Kahn TG, Schwartz YB. Hierarchical recruitment of Polycomb complexes revisited. Nucleus 2017; 8:496-505. [PMID: 28910569 PMCID: PMC5703234 DOI: 10.1080/19491034.2017.1363136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022] Open
Abstract
Polycomb Group (PcG) proteins epigenetically repress key developmental genes and thereby control alternative cell fates. PcG proteins act as complexes that can modify histones and these histone modifications play a role in transmitting the "memory" of the repressed state as cells divide. Here we consider mainstream models that link histone modifications to hierarchical recruitment of PcG complexes and compare them to results of a direct test of interdependence between PcG complexes for recruitment to Drosophila genes. The direct test indicates that PcG complexes do not rely on histone modifications to recognize their target genes but use them to stabilize the interactions within large chromatin domains. It also shows that multiple strategies are used to coordinate the targeting of PcG complexes to different genes, which may make the repression of these genes more or less robust.
Collapse
Affiliation(s)
| | - Tatyana G. Kahn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
105
|
Marzluff WF, Koreski KP. Birth and Death of Histone mRNAs. Trends Genet 2017; 33:745-759. [PMID: 28867047 DOI: 10.1016/j.tig.2017.07.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022]
Abstract
In metazoans, histone mRNAs are not polyadenylated but end in a conserved stem-loop. Stem-loop binding protein (SLBP) binds to the stem-loop and is required for all steps in histone mRNA metabolism. The genes for the five histone proteins are linked. A histone locus body (HLB) forms at each histone gene locus. It contains factors essential for transcription and processing of histone mRNAs, and couples transcription and processing. The active form of U7 snRNP contains the HLB component FLASH (FLICE-associated huge protein), the histone cleavage complex (HCC), and a subset of polyadenylation factors including the endonuclease CPSF73. Histone mRNAs are rapidly degraded when DNA replication is inhibited by a 3' to 5' pathway that requires extensive uridylation of mRNA decay intermediates.
Collapse
Affiliation(s)
- William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kaitlin P Koreski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
106
|
Rieder LE, Koreski KP, Boltz KA, Kuzu G, Urban JA, Bowman SK, Zeidman A, Jordan WT, Tolstorukov MY, Marzluff WF, Duronio RJ, Larschan EN. Histone locus regulation by the Drosophila dosage compensation adaptor protein CLAMP. Genes Dev 2017; 31:1494-1508. [PMID: 28838946 PMCID: PMC5588930 DOI: 10.1101/gad.300855.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023]
Abstract
Rieder et al. report that conserved GA repeat cis elements within the bidirectional histone3–histone4 promoter direct histone locus body (HLB) formation in Drosophila. In addition, the CLAMP zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. The conserved histone locus body (HLB) assembles prior to zygotic gene activation early during development and concentrates factors into a nuclear domain of coordinated histone gene regulation. Although HLBs form specifically at replication-dependent histone loci, the cis and trans factors that target HLB components to histone genes remained unknown. Here we report that conserved GA repeat cis elements within the bidirectional histone3–histone4 promoter direct HLB formation in Drosophila. In addition, the CLAMP (chromatin-linked adaptor for male-specific lethal [MSL] proteins) zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. We demonstrated previously that CLAMP also promotes the formation of another domain of coordinated gene regulation: the dosage-compensated male X chromosome. Therefore, CLAMP binding to GA repeat motifs promotes the formation of two distinct domains of coordinated gene activation located at different places in the genome.
Collapse
Affiliation(s)
- Leila E Rieder
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Kaitlin P Koreski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kara A Boltz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Guray Kuzu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jennifer A Urban
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Sarah K Bowman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Anna Zeidman
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - William T Jordan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
107
|
Brustel J, Kirstein N, Izard F, Grimaud C, Prorok P, Cayrou C, Schotta G, Abdelsamie AF, Déjardin J, Méchali M, Baldacci G, Sardet C, Cadoret JC, Schepers A, Julien E. Histone H4K20 tri-methylation at late-firing origins ensures timely heterochromatin replication. EMBO J 2017; 36:2726-2741. [PMID: 28778956 DOI: 10.15252/embj.201796541] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/19/2017] [Accepted: 07/07/2017] [Indexed: 01/09/2023] Open
Abstract
Among other targets, the protein lysine methyltransferase PR-Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4-20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in Drosophila, partially impairs S-phase progression and protects from DNA re-replication induced by stabilization of PR-Set7. Using Epstein-Barr virus-derived episomes, we further demonstrate that conversion of H4K20me1 to higher H4K20me2/3 states by Suv4-20h is not sufficient to define an efficient origin per se, but rather serves as an enhancer for MCM2-7 helicase loading and replication activation at defined origins. Consistent with this, we find that Suv4-20h-mediated H4K20 tri-methylation (H4K20me3) is required to sustain the licensing and activity of a subset of ORCA/LRWD1-associated origins, which ensure proper replication timing of late-replicating heterochromatin domains. Altogether, these results reveal Suv4-20h-mediated H4K20 tri-methylation as a critical determinant in the selection of active replication initiation sites in heterochromatin regions of mammalian genomes.
Collapse
Affiliation(s)
- Julien Brustel
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier, France.,University of Montpellier, Montpellier, France
| | - Nina Kirstein
- Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Fanny Izard
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier, France.,University of Montpellier, Montpellier, France
| | - Charlotte Grimaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier, France.,University of Montpellier, Montpellier, France
| | - Paulina Prorok
- Institute of Human Genetics (IGH), CNRS, Montpellier, France
| | | | | | | | - Jérôme Déjardin
- Institute of Human Genetics (IGH), CNRS, Montpellier, France
| | - Marcel Méchali
- Institute of Human Genetics (IGH), CNRS, Montpellier, France
| | - Giuseppe Baldacci
- Institut Jacques Monod, UMR7592, CNRS and University Paris-Diderot, Paris, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier, France.,University of Montpellier, Montpellier, France
| | - Jean-Charles Cadoret
- Institut Jacques Monod, UMR7592, CNRS and University Paris-Diderot, Paris, France
| | - Aloys Schepers
- Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Eric Julien
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier, France .,University of Montpellier, Montpellier, France
| |
Collapse
|
108
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
109
|
Abstract
In this review, Prioleau and MacAlpine summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages.
Collapse
Affiliation(s)
- Marie-Noëlle Prioleau
- Institut Jacques Monod, UMR7592, Centre National de la Recherche Scientifique, Universite Paris Diderot, Equipe Labellisee Association pour la Recherche sur le Cancer, Paris 75013, France
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710. USA
| |
Collapse
|
110
|
Coleman RT, Struhl G. Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science 2017; 356:eaai8236. [PMID: 28302795 PMCID: PMC5595140 DOI: 10.1126/science.aai8236] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022]
Abstract
Many eukaryotic cells can respond to transient environmental or developmental stimuli with heritable changes in gene expression that are associated with nucleosome modifications. However, it remains uncertain whether modified nucleosomes play a causal role in transmitting such epigenetic memories, as opposed to controlling or merely reflecting transcriptional states inherited by other means. Here, we provide in vivo evidence that H3K27 trimethylated nucleosomes, once established at a repressed Drosophila HOX gene, remain heritably associated with that gene and can carry the memory of the silenced state through multiple rounds of replication, even when the capacity to copy the H3K27me3 mark to newly incorporated nucleosomes is diminished or abolished. Hence, in this context, the inheritance of H3K27 trimethylation conveys epigenetic memory.
Collapse
Affiliation(s)
- Rory T Coleman
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA
| | - Gary Struhl
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
111
|
Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 2017; 74:3317-3334. [PMID: 28386724 DOI: 10.1007/s00018-017-2517-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
Abstract
Chromatin structure is a major barrier to gene transcription that must be disrupted and re-set during each round of transcription. Central to this process is the Set2/SETD2 methyltransferase that mediates co-transcriptional methylation to histone H3 at lysine 36 (H3K36me). Studies reveal that H3K36me not only prevents inappropriate transcriptional initiation from arising within gene bodies, but that it has other conserved functions that include the repair of damaged DNA and regulation of pre-mRNA splicing. Consistent with the importance of Set2/SETD2 in chromatin biology, mutations of SETD2, or mutations at or near H3K36 in H3.3, have recently been found to underlie cancer development. This review will summarize the latest insights into the functions of Set2/SETD2 in genome regulation and cancer development.
Collapse
|
112
|
Meers MP, Henriques T, Lavender CA, McKay DJ, Strahl BD, Duronio RJ, Adelman K, Matera AG. Histone gene replacement reveals a post-transcriptional role for H3K36 in maintaining metazoan transcriptome fidelity. eLife 2017; 6. [PMID: 28346137 PMCID: PMC5404926 DOI: 10.7554/elife.23249] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/23/2017] [Indexed: 12/17/2022] Open
Abstract
Histone H3 lysine 36 methylation (H3K36me) is thought to participate in a host of co-transcriptional regulatory events. To study the function of this residue independent from the enzymes that modify it, we used a ‘histone replacement’ system in Drosophila to generate a non-modifiable H3K36 lysine-to-arginine (H3K36R) mutant. We observed global dysregulation of mRNA levels in H3K36R animals that correlates with the incidence of H3K36me3. Similar to previous studies, we found that mutation of H3K36 also resulted in H4 hyperacetylation. However, neither cryptic transcription initiation, nor alternative pre-mRNA splicing, contributed to the observed changes in expression, in contrast with previously reported roles for H3K36me. Interestingly, knockdown of the RNA surveillance nuclease, Xrn1, and members of the CCR4-Not deadenylase complex, restored mRNA levels for a class of downregulated, H3K36me3-rich genes. We propose a post-transcriptional role for modification of replication-dependent H3K36 in the control of metazoan gene expression. DOI:http://dx.doi.org/10.7554/eLife.23249.001 In a single human cell there is enough DNA to stretch over a meter if laid end to end. To fit this DNA inside the cell – which is less than 20 micrometers in diameter – the DNA is tightly wrapped around millions of proteins known as histones, which look like “beads” along a “string” of DNA. These histones can prevent other proteins from binding to DNA and activating specific genes. Therefore, cells use enzymes to chemically modify histones to allow particular stretches of DNA to be unwrapped at specific times. Proteins are made up of building blocks called amino acids. A specific amino acid on histones known as H3K36 is modified in certain sections of DNA that suggest it affects the activities of many genes. However, the precise role of this amino acid remains unclear. Previous studies have tried to investigate this by removing the enzymes that modify it, but these enzymes can also modify many other proteins, making it difficult to know what exactly causes the changes in gene activity. Fruit flies are often used in experiments as models of how genetic processes work in humans and other animals. Like us, fruit flies also package their DNA using histones. To investigate the role of H3K36, Meers et al. generated a mutant fruit fly that has a version of the amino acid that cannot be chemically modified by the normal enzymes. Unexpectedly, the experiments suggest that some changes in gene activity that have been previously reported to be caused by modifying H3K36 might actually be due to other factors. Meers et al. found that H3K36 modifications may instead “mark” certain genes to be more active than they otherwise would be. These findings provide a starting point for understanding exactly how H3K36 regulates gene activity. The next challenge is to refine our understanding of how H3K36 modification affects genes in cancer and other diseases, which may aid the development of new therapies to treat these conditions. DOI:http://dx.doi.org/10.7554/eLife.23249.002
Collapse
Affiliation(s)
- Michael P Meers
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Telmo Henriques
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Durham, United States
| | - Christopher A Lavender
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Science, Durham, United States
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Karen Adelman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Durham, United States
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
113
|
Molecular basis of PRC1 targeting to Polycomb response elements by PhoRC. Genes Dev 2017; 30:1116-27. [PMID: 27151979 PMCID: PMC4863741 DOI: 10.1101/gad.279141.116] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022]
Abstract
Here, Frey et al. report the structural basis by which the Drosophila Pho-repressive complex (PhoRC), the only Polycomb group protein complex with sequence-specific DNA-binding activity, binds to Polycomb-repressive complex 1 (PRC1) and thereby recruits it to Polycomb response elements in target genes. Polycomb group (PcG) protein complexes repress transcription by modifying target gene chromatin. In Drosophila, this repression requires association of PcG protein complexes with cis-regulatory Polycomb response elements (PREs), but the interactions permitting formation of these assemblies are poorly understood. We show that the Sfmbt subunit of the DNA-binding Pho-repressive complex (PhoRC) and the Scm subunit of the canonical Polycomb-repressive complex 1 (PRC1) directly bind each other through their SAM domains. The 1.9 Å crystal structure of the Scm-SAM:Sfmbt-SAM complex reveals the recognition mechanism and shows that Sfmbt-SAM lacks the polymerization capacity of the SAM domains of Scm and its PRC1 partner subunit, Ph. Functional analyses in Drosophila demonstrate that Sfmbt-SAM and Scm-SAM are essential for repression and that PhoRC DNA binding is critical to initiate PRC1 association with PREs. Together, this suggests that PRE-tethered Sfmbt-SAM nucleates PRC1 recruitment and that Scm-SAM/Ph-SAM-mediated polymerization then results in the formation of PRC1-compacted chromatin.
Collapse
|
114
|
Bromberg KD, Mitchell TRH, Upadhyay AK, Jakob CG, Jhala MA, Comess KM, Lasko LM, Li C, Tuzon CT, Dai Y, Li F, Eram MS, Nuber A, Soni NB, Manaves V, Algire MA, Sweis RF, Torrent M, Schotta G, Sun C, Michaelides MR, Shoemaker AR, Arrowsmith CH, Brown PJ, Santhakumar V, Martin A, Rice JC, Chiang GG, Vedadi M, Barsyte-Lovejoy D, Pappano WN. The SUV4-20 inhibitor A-196 verifies a role for epigenetics in genomic integrity. Nat Chem Biol 2017; 13:317-324. [DOI: 10.1038/nchembio.2282] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/23/2016] [Indexed: 12/30/2022]
|
115
|
Duronio RJ, Marzluff WF. Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body. RNA Biol 2017; 14:726-738. [PMID: 28059623 DOI: 10.1080/15476286.2016.1265198] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Metazoan replication-dependent (RD) histone genes encode the only known cellular mRNAs that are not polyadenylated. These mRNAs end instead in a conserved stem-loop, which is formed by an endonucleolytic cleavage of the pre-mRNA. The genes for all 5 histone proteins are clustered in all metazoans and coordinately regulated with high levels of expression during S phase. Production of histone mRNAs occurs in a nuclear body called the Histone Locus Body (HLB), a subdomain of the nucleus defined by a concentration of factors necessary for histone gene transcription and pre-mRNA processing. These factors include the scaffolding protein NPAT, essential for histone gene transcription, and FLASH and U7 snRNP, both essential for histone pre-mRNA processing. Histone gene expression is activated by Cyclin E/Cdk2-mediated phosphorylation of NPAT at the G1-S transition. The concentration of factors within the HLB couples transcription with pre-mRNA processing, enhancing the efficiency of histone mRNA biosynthesis.
Collapse
Affiliation(s)
- Robert J Duronio
- a Department of Biology , University of North Carolina , Chapel Hill , NC , USA.,b Department of Genetics , University of North Carolina , Chapel Hill , NC , USA.,c Integrative Program for Biological and Genome Sciences , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| | - William F Marzluff
- a Department of Biology , University of North Carolina , Chapel Hill , NC , USA.,c Integrative Program for Biological and Genome Sciences , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA.,e Department of Biochemistry and Biophysics , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
116
|
Mikulski P, Komarynets O, Fachinelli F, Weber AP, Schubert D. Characterization of the Polycomb-Group Mark H3K27me3 in Unicellular Algae. FRONTIERS IN PLANT SCIENCE 2017; 8:607. [PMID: 28484477 PMCID: PMC5405695 DOI: 10.3389/fpls.2017.00607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/04/2017] [Indexed: 05/03/2023]
Abstract
Polycomb Group (PcG) proteins mediate chromatin repression in plants and animals by catalyzing H3K27 methylation and H2AK118/119 mono-ubiquitination through the activity of the Polycomb repressive complex 2 (PRC2) and PRC1, respectively. PcG proteins were extensively studied in higher plants, but their function and target genes in unicellular branches of the green lineage remain largely unknown. To shed light on PcG function and modus operandi in a broad evolutionary context, we demonstrate phylogenetic relationship of core PRC1 and PRC2 proteins and H3K27me3 biochemical presence in several unicellular algae of different phylogenetic subclades. We focus then on one of the species, the model red alga Cyanidioschizon merolae, and show that H3K27me3 occupies both, genes and repetitive elements, and mediates the strength of repression depending on the differential occupancy over gene bodies. Furthermore, we report that H3K27me3 in C. merolae is enriched in telomeric and subtelomeric regions of the chromosomes and has unique preferential binding toward intein-containing genes involved in protein splicing. Thus, our study gives important insight for Polycomb-mediated repression in lower eukaryotes, uncovering a previously unknown link between H3K27me3 targets and protein splicing.
Collapse
Affiliation(s)
- Pawel Mikulski
- Institute of Biology, Free University of BerlinBerlin, Germany
- Institute of Genetics, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Olga Komarynets
- Institute of Genetics, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
- Faculty of Medicine, University of GenevaGeneva, Switzerland
| | - Fabio Fachinelli
- Institute of Plant Biochemistry, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Andreas P.M. Weber
- Institute of Plant Biochemistry, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Daniel Schubert
- Institute of Biology, Free University of BerlinBerlin, Germany
- Institute of Genetics, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
- *Correspondence: Daniel Schubert,
| |
Collapse
|
117
|
Enríquez P. CRISPR-Mediated Epigenome Editing. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:471-486. [PMID: 28018139 PMCID: PMC5168826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Mounting evidence has called into question our understanding of the role that the central dogma of molecular biology plays in human pathology. The conventional view that elucidating the mechanisms for translating genes into proteins can account for a panoply of diseases has proven incomplete. Landmark studies point to epigenetics as a missing piece of the puzzle. However, technological limitations have hindered the study of specific roles for histone post-translational modifications, DNA modifications, and non-coding RNAs in regulation of the epigenome and chromatin structure. This feature highlights CRISPR systems, including CRISPR-Cas9, as novel tools for targeted epigenome editing. It summarizes recent developments in the field, including integration of optogenetic and functional genomic approaches to explore new therapeutic opportunities, and underscores the importance of mitigating current limitations in the field. This comprehensive, analytical assessment identifies current research gaps, forecasts future research opportunities, and argues that as epigenome editing technologies mature, overcoming critical challenges in delivery, specificity, and fidelity should clear the path to bring these technologies into the clinic.
Collapse
Affiliation(s)
- Paul Enríquez
- To whom all correspondence should be addressed: Paul Enríquez, Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
118
|
|
119
|
Penke TJR, McKay DJ, Strahl BD, Matera AG, Duronio RJ. Direct interrogation of the role of H3K9 in metazoan heterochromatin function. Genes Dev 2016; 30:1866-80. [PMID: 27566777 PMCID: PMC5024684 DOI: 10.1101/gad.286278.116] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/05/2016] [Indexed: 11/24/2022]
Abstract
A defining feature of heterochromatin is methylation of Lys9 of histone H3 (H3K9me), a binding site for heterochromatin protein 1 (HP1). Penke et al. generated and analyzed H3K9R mutant flies, separating the functions of H3K9 and nonhistone substrates of H3K9 methyltransferases. A defining feature of heterochromatin is methylation of Lys9 of histone H3 (H3K9me), a binding site for heterochromatin protein 1 (HP1). Although H3K9 methyltransferases and HP1 are necessary for proper heterochromatin structure, the specific contribution of H3K9 to heterochromatin function and animal development is unknown. Using our recently developed platform to engineer histone genes in Drosophila, we generated H3K9R mutant flies, separating the functions of H3K9 and nonhistone substrates of H3K9 methyltransferases. Nucleosome occupancy and HP1a binding at pericentromeric heterochromatin are markedly decreased in H3K9R mutants. Despite these changes in chromosome architecture, a small percentage of H3K9R mutants complete development. Consistent with this result, expression of most protein-coding genes, including those within heterochromatin, is similar between H3K9R and controls. In contrast, H3K9R mutants exhibit increased open chromatin and transcription from piRNA clusters and transposons, resulting in transposon mobilization. Hence, transposon silencing is a major developmental function of H3K9.
Collapse
Affiliation(s)
- Taylor J R Penke
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
120
|
The Commercial Antibodies Widely Used to Measure H3 K56 Acetylation Are Non-Specific in Human and Drosophila Cells. PLoS One 2016; 11:e0155409. [PMID: 27187594 PMCID: PMC4871326 DOI: 10.1371/journal.pone.0155409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 12/26/2022] Open
Abstract
Much of our understanding of the function of histone post-translational modifications in metazoans is inferred from their genomic localization and / or extrapolated from yeast studies. For example, acetylation of histone H3 lysine 56 (H3 K56Ac) is assumed to be important for transcriptional regulation in metazoan cells based on its occurrence at promoters and its function in yeast. Here we directly assess the function of H3 K56Ac during chromatin disassembly from gene regulatory regions during transcriptional induction in human cells by using mutations that either mimic or prevent H3 K56Ac. Although there is rapid histone H3 disassembly during induction of some estrogen receptor responsive genes, depletion of the histone chaperone ASF1A/B, which is required for H3 K56 acetylation, has no effect on chromatin disassembly at these regions. During the course of this work, we found that all the commercially available antibodies to H3 K56Ac are non-specific in human cells and in Drosophila. We used H3-YFP fusions to show that the H3 K56Q mutation can promote chromatin disassembly from regulatory regions of some estrogen responsive genes in the context of transcriptional induction. However, neither the H3 K56R nor K56Q mutation significantly altered chromatin disassembly dynamics by FRAP analysis. These results indicate that unlike the situation in yeast, human cells do not use H3 K56Ac to promote chromatin disassembly from regulatory regions or from the genome in general. Furthermore, our work highlights the need for rigorous characterization of the specificity of antibodies to histone post-translational modifications in vivo.
Collapse
|
121
|
Li Y, Armstrong RL, Duronio RJ, MacAlpine DM. Methylation of histone H4 lysine 20 by PR-Set7 ensures the integrity of late replicating sequence domains in Drosophila. Nucleic Acids Res 2016; 44:7204-18. [PMID: 27131378 PMCID: PMC5009726 DOI: 10.1093/nar/gkw333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/15/2016] [Indexed: 12/16/2022] Open
Abstract
The methylation state of lysine 20 on histone H4 (H4K20) has been linked to chromatin compaction, transcription, DNA repair and DNA replication. Monomethylation of H4K20 (H4K20me1) is mediated by the cell cycle-regulated histone methyltransferase PR-Set7. PR-Set7 depletion in mammalian cells results in defective S phase progression and the accumulation of DNA damage, which has been partially attributed to defects in origin selection and activation. However, these studies were limited to only a handful of mammalian origins, and it remains unclear how PR-Set7 and H4K20 methylation impact the replication program on a genomic scale. We employed genetic, cytological, and genomic approaches to better understand the role of PR-Set7 and H4K20 methylation in regulating DNA replication and genome stability in Drosophila cells. We find that deregulation of H4K20 methylation had no impact on origin activation throughout the genome. Instead, depletion of PR-Set7 and loss of H4K20me1 results in the accumulation of DNA damage and an ATR-dependent cell cycle arrest. Coincident with the ATR-dependent cell cycle arrest, we find increased DNA damage that is specifically limited to late replicating regions of the Drosophila genome, suggesting that PR-Set7-mediated monomethylation of H4K20 is critical for maintaining the genomic integrity of late replicating domains.
Collapse
Affiliation(s)
- Yulong Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA Departments of Biology and Genetics, Lineberger Comprehensive Cancer Center, and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
122
|
Affiliation(s)
- Gabriel E Zentner
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
123
|
Graves HK, Wang P, Lagarde M, Chen Z, Tyler JK. Mutations that prevent or mimic persistent post-translational modifications of the histone H3 globular domain cause lethality and growth defects in Drosophila. Epigenetics Chromatin 2016; 9:9. [PMID: 26933451 PMCID: PMC4772521 DOI: 10.1186/s13072-016-0059-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/19/2016] [Indexed: 01/24/2023] Open
Abstract
Background
Understanding the function of histone post-translational modifications is the key to deciphering how genomic activities are regulated. Among the least well-understood histone modifications in vivo are those that occur on the surface of the globular domain of histones, despite their causing the most profound structural alterations of the nucleosome in vitro. We utilized a Drosophila system to replace the canonical histone genes with mutated histone transgenes. Results Mutations predicted to mimic or prevent acetylation on histone H3 lysine (K) 56, K115, K122, and both K115/K122, or to prevent or mimic phosphorylation on H3 threonine (T) 118 and T80, all caused lethality, with the exception of K122R mutants. T118 mutations caused profound growth defects within wing discs, while K115R, K115Q, K56Q, and the K115/K122 mutations caused more subtle growth defects. The H3 K56R and H3 K122R mutations caused no defects in growth, differentiation, or transcription within imaginal discs, indicating that H3 K56 acetylation and K122 acetylation are dispensable for these functions. In agreement, we found the antibody to H3 K122Ac, which was previously used to imply a role for H3 K122Ac in transcription in metazoans, to be non-specific in vivo. Conclusions Our data suggest that chromatin structural perturbations caused by acetylation of K56, K115, or K122 and phosphorylation of T80 or T118 are important for key developmental processes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0059-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hillary K Graves
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Pingping Wang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Matthew Lagarde
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Zhihong Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jessica K Tyler
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| |
Collapse
|
124
|
Sorenson MR, Jha DK, Ucles SA, Flood DM, Strahl BD, Stevens SW, Kress TL. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae. RNA Biol 2016; 13:412-26. [PMID: 26821844 DOI: 10.1080/15476286.2016.1144009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Co-transcriptional splicing takes place in the context of a highly dynamic chromatin architecture, yet the role of chromatin restructuring in coordinating transcription with RNA splicing has not been fully resolved. To further define the contribution of histone modifications to pre-mRNA splicing in Saccharomyces cerevisiae, we probed a library of histone point mutants using a reporter to monitor pre-mRNA splicing. We found that mutation of H3 lysine 36 (H3K36) - a residue methylated by Set2 during transcription elongation - exhibited phenotypes similar to those of pre-mRNA splicing mutants. We identified genetic interactions between genes encoding RNA splicing factors and genes encoding the H3K36 methyltransferase Set2 and the demethylase Jhd1 as well as point mutations of H3K36 that block methylation. Consistent with the genetic interactions, deletion of SET2, mutations modifying the catalytic activity of Set2 or H3K36 point mutations significantly altered expression of our reporter and reduced splicing of endogenous introns. These effects were dependent on the association of Set2 with RNA polymerase II and H3K36 dimethylation. Additionally, we found that deletion of SET2 reduces the association of the U2 and U5 snRNPs with chromatin. Thus, our study provides the first evidence that H3K36 methylation plays a role in co-transcriptional RNA splicing in yeast.
Collapse
Affiliation(s)
- Matthew R Sorenson
- a Graduate Program in Microbiology, The University of Texas at Austin , Austin , Texas , USA
| | - Deepak K Jha
- b Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Stefanie A Ucles
- c Department of Biology , The College of New Jersey , Ewing , NJ , USA
| | - Danielle M Flood
- c Department of Biology , The College of New Jersey , Ewing , NJ , USA
| | - Brian D Strahl
- b Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA.,d Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina , USA
| | - Scott W Stevens
- e Department of Molecular Biosciences , University of Texas at Austin , Austin , Texas , USA.,f Institute for Cellular and Molecular Biology, University of Texas at Austin , Austin , Texas , USA
| | - Tracy L Kress
- c Department of Biology , The College of New Jersey , Ewing , NJ , USA
| |
Collapse
|
125
|
Polycomb inhibits histone acetylation by CBP by binding directly to its catalytic domain. Proc Natl Acad Sci U S A 2016; 113:E744-53. [PMID: 26802126 DOI: 10.1073/pnas.1515465113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila Polycomb (PC), a subunit of Polycomb repressive complex 1 (PRC1), is well known for its role in maintaining repression of the homeotic genes and many others and for its binding to trimethylated histone H3 on Lys 27 (H3K27me3) via its chromodomain. Here, we identify a novel activity of PC: inhibition of the histone acetylation activity of CREB-binding protein (CBP). We show that PC and its mammalian CBX orthologs interact directly with the histone acetyltransferase (HAT) domain of CBP, binding to the previously identified autoregulatory loop, whose autoacetylation greatly enhances HAT activity. We identify a conserved PC motif adjacent to the chromodomain required for CBP binding and show that PC binding inhibits acetylation of histone H3. CBP autoacetylation impairs PC binding in vitro, and PC is preferentially associated with unacetylated CBP in vivo. PC knockdown elevates the acetylated H3K27 (H3K27ac) level globally and at promoter regions of some genes that are bound by both PC and CBP. Conversely, PC overexpression decreases the H3K27ac level in vivo and also suppresses CBP-dependent Polycomb phenotypes caused by overexpression of Trithorax, an antagonist of Polycomb silencing. We find that PC is physically associated with the initiating form of RNA polymerase II (Pol II) and that many promoters co-occupied by PC and CBP are associated with paused Pol II, suggesting that PC may play a role in Pol II pausing. These results suggest that PC/PRC1 inhibition of CBP HAT activity plays a role in regulating transcription of both repressed and active PC-regulated genes.
Collapse
|
126
|
Developmental Dynamics of X-Chromosome Dosage Compensation by the DCC and H4K20me1 in C. elegans. PLoS Genet 2015; 11:e1005698. [PMID: 26641248 PMCID: PMC4671695 DOI: 10.1371/journal.pgen.1005698] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/03/2015] [Indexed: 11/19/2022] Open
Abstract
In Caenorhabditis elegans, the dosage compensation complex (DCC) specifically binds to and represses transcription from both X chromosomes in hermaphrodites. The DCC is composed of an X-specific condensin complex that interacts with several proteins. During embryogenesis, DCC starts localizing to the X chromosomes around the 40-cell stage, and is followed by X-enrichment of H4K20me1 between 100-cell to comma stage. Here, we analyzed dosage compensation of the X chromosome between sexes, and the roles of dpy-27 (condensin subunit), dpy-21 (non-condensin DCC member), set-1 (H4K20 monomethylase) and set-4 (H4K20 di-/tri-methylase) in X chromosome repression using mRNA-seq and ChIP-seq analyses across several developmental time points. We found that the DCC starts repressing the X chromosomes by the 40-cell stage, but X-linked transcript levels remain significantly higher in hermaphrodites compared to males through the comma stage of embryogenesis. Dpy-27 and dpy-21 are required for X chromosome repression throughout development, but particularly in early embryos dpy-27 and dpy-21 mutations produced distinct expression changes, suggesting a DCC independent role for dpy-21. We previously hypothesized that the DCC increases H4K20me1 by reducing set-4 activity on the X chromosomes. Accordingly, in the set-4 mutant, H4K20me1 increased more from the autosomes compared to the X, equalizing H4K20me1 level between X and autosomes. H4K20me1 increase on the autosomes led to a slight repression, resulting in a relative effect of X derepression. H4K20me1 depletion in the set-1 mutant showed greater X derepression compared to equalization of H4K20me1 levels between X and autosomes in the set-4 mutant, indicating that H4K20me1 level is important, but X to autosomal balance of H4K20me1 contributes slightly to X-repression. Thus H4K20me1 is not only a downstream effector of the DCC [corrected].In summary, X chromosome dosage compensation starts in early embryos as the DCC localizes to the X, and is strengthened in later embryogenesis by H4K20me1.
Collapse
|
127
|
van Nuland R, Gozani O. Histone H4 Lysine 20 (H4K20) Methylation, Expanding the Signaling Potential of the Proteome One Methyl Moiety at a Time. Mol Cell Proteomics 2015; 15:755-64. [PMID: 26598646 DOI: 10.1074/mcp.r115.054742] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Indexed: 12/13/2022] Open
Abstract
Covalent post-translational modifications (PTMs) of proteins can regulate the structural and functional state of a protein in the absence of primary changes in the underlying sequence. Common PTMs include phosphorylation, acetylation, and methylation. Histone proteins are critical regulators of the genome and are subject to a highly abundant and diverse array of PTMs. To highlight the functional complexity added to the proteome by lysine methylation signaling, here we will focus on lysine methylation of histone proteins, an important modification in the regulation of chromatin and epigenetic processes. We review the signaling pathways and functions associated with a single residue, H4K20, as a model chromatin and clinically important mark that regulates biological processes ranging from the DNA damage response and DNA replication to gene expression and silencing.
Collapse
Affiliation(s)
- Rick van Nuland
- From the Department of Biology, Stanford University, Stanford, California 94305
| | - Or Gozani
- From the Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
128
|
Histone H1: Lessons from Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:526-32. [PMID: 26361208 DOI: 10.1016/j.bbagrm.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 01/02/2023]
Abstract
Eukaryotic genomes are structured in the form of chromatin with the help of a set of five small basic proteins, the histones. Four of them are highly conserved through evolution, form the basic unit of the chromatin, the nucleosome, and have been intensively studied and are well characterized. The fifth histone, histone H1, adds to this basic structure through its interaction at the entry/exit site of DNA in the nucleosome and makes an essential contribution to the higher order folding of the chromatin fiber. Histone H1 is the less conserved histone and the less known of them. Though for long time considered as a general repressor of gene expression, recent studies in Drosophila have rejected this view and have contributed to uncover important functions on genome stability and development. Here we present some of the most recent data obtained in the Drosophila model system and discuss how the lessons learnt in these studies compare and could be applied to all other eukaryotes.
Collapse
|
129
|
Pengelly AR, Kalb R, Finkl K, Müller J. Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation. Genes Dev 2015; 29:1487-92. [PMID: 26178786 PMCID: PMC4526733 DOI: 10.1101/gad.265439.115] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/24/2015] [Indexed: 11/25/2022]
Abstract
Histone H2A monoubiquitylation (H2Aub) is considered to be a key effector in transcriptional repression by Polycomb-repressive complex 1 (PRC1). We analyzed Drosophila with a point mutation in the PRC1 subunit Sce that abolishes its H2A ubiquitylase activity or with point mutations in the H2A and H2Av residues ubiquitylated by PRC1. H2Aub is essential for viability and required for efficient histone H3 Lys27 trimethylation by PRC2 early in embryogenesis. However, H2Aub-deficient animals fully maintain repression of PRC1 target genes and do not show phenotypes characteristic of Polycomb group mutants. PRC1 thus represses canonical target genes independently of H2Aub.
Collapse
Affiliation(s)
- Ana Raquel Pengelly
- Laboratory of Chromatin Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Reinhard Kalb
- Laboratory of Chromatin Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Katja Finkl
- Laboratory of Chromatin Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jürg Müller
- Laboratory of Chromatin Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
130
|
Yung P, Stuetzer A, Fischle W, Martinez AM, Cavalli G. Histone H3 Serine 28 Is Essential for Efficient Polycomb-Mediated Gene Repression in Drosophila. Cell Rep 2015; 11:1437-45. [DOI: 10.1016/j.celrep.2015.04.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/31/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022] Open
|
131
|
A novel approach for studying histone H1 function in vivo. Genetics 2015; 200:29-33. [PMID: 25805849 DOI: 10.1534/genetics.114.170514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
In this report, we investigate the mechanisms that regulate Drosophila histone H1 expression and its association with chromatin in vivo. We show that histone H1 is subject to negative autoregulation and exploit this result to examine the effects of mutations of the main phosphorylation site of histone H1.
Collapse
|