101
|
Fiorini T, Vianna P, Weidlich P, Musskopf ML, Moreira CHC, Chies JAB, Rösing CK, Oppermann RV, Susin C. Relationship between cytokine levels in serum and gingival crevicular fluid (GCF) in pregnant women. Cytokine 2012; 58:34-9. [DOI: 10.1016/j.cyto.2011.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/24/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
|
102
|
Lee RK, Hittel DS, Nyamandi VZ, Kang L, Soh J, Sensen CW, Shearer J. Unconventional microarray design reveals the response to obesity is largely tissue specific: analysis of common and divergent responses to diet-induced obesity in insulin-sensitive tissues. Appl Physiol Nutr Metab 2012; 37:257-68. [PMID: 22452611 DOI: 10.1139/h11-159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is a chronic condition involving the excessive accumulation of adipose tissue that adversely affects all systems in the body. The aim of the present study was to employ an unbiased, genome-wide assessment of transcript abundance in order to identify common gene expression pathways within insulin-sensitive tissues in response to dietary-induced diabetes. Following 20 weeks of chow or high-fat feeding (60% kcal), age-matched mice underwent a euglycemic-hyperinsulinemic clamp to assess insulin sensitivity. High-fat-fed animals were obese and highly insulin resistant, disposing of ∼75% less glucose compared with their chow-fed counterparts. Tissues were collected, and gene expression was examined by microarray in 4 tissues known to exhibit obesity-related metabolic disturbances: white adipose tissue, skeletal muscle, liver, and heart. A total of 463 genes were differentially expressed between diets. Analysis of individual tissues showed skeletal muscle to exhibit the largest number of differentially expressed genes (191) in response to high-fat feeding, followed by adipose tissue (169), liver (115), and heart (65). Analyses revealed that the response of individual genes to obesity is distinct and largely tissue specific, with less than 10% of transcripts being shared among tissues. Although transcripts are largely tissue specific, a systems approach shows numerous commonly activated pathways, including those involved in signal transduction, inflammation, oxidative stress, substrate transport, and metabolism. This suggests a coordinated attempt by tissues to limit metabolic perturbations occurring in early-stage obesity. Many identified genes were associated with a variety of disorders, thereby serving as potential links between obesity and its related health risks.
Collapse
Affiliation(s)
- Robyn K Lee
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | | | | | | | | | | | | |
Collapse
|
103
|
Mei D, Li J, Liu H, Liu L, Wang X, Guo H, Liu C, Duan R, Liu X. Induction of multidrug resistance-associated protein 2 in liver, intestine and kidney of streptozotocin-induced diabetic rats. Xenobiotica 2012; 42:709-18. [DOI: 10.3109/00498254.2011.654363] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
104
|
Shahbaba B, Shachaf CM, Yu Z. A pathway analysis method for genome-wide association studies. Stat Med 2012; 31:988-1000. [PMID: 22302470 DOI: 10.1002/sim.4477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 10/20/2011] [Accepted: 11/02/2011] [Indexed: 12/20/2022]
Abstract
For genome-wide association studies, we propose a new method for identifying significant biological pathways. In this approach, we aggregate data across single-nucleotide polymorphisms to obtain summary measures at the gene level. We then use a hierarchical Bayesian model, which takes the gene-level summary measures as data, in order to evaluate the relevance of each pathway to an outcome of interest (e.g., disease status). Although shifting the focus of analysis from individual genes to pathways has proven to improve the statistical power and provide more robust results, such methods tend to eliminate a large number of genes whose pathways are unknown. For these genes, we propose to use a Bayesian multinomial logit model to predict the associated pathways by using the genes with known pathways as the training data. Our hierarchical Bayesian model takes the uncertainty regarding the pathway predictions into account while assessing the significance of pathways. We apply our method to two independent studies on type 2 diabetes and show that the overlap between the results from the two studies is statistically significant. We also evaluate our approach on the basis of simulated data.
Collapse
Affiliation(s)
- Babak Shahbaba
- Department of Statistics, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
105
|
Dogru T, Genc H, Bagci S. C reactive protein levels in non-alcoholic fatty liver disease. J Hepatol 2012; 56:507-8; author reply 508-10. [PMID: 21888877 DOI: 10.1016/j.jhep.2011.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 06/11/2011] [Indexed: 12/04/2022]
|
106
|
Alturkmani HJ, Zgheib C, Zouein FA, Alshaaer NEF, Kurdi M, Booz GW. Selenate enhances STAT3 transcriptional activity in endothelial cells: differential actions of selenate and selenite on LIF cytokine signaling and cell viability. J Inorg Biochem 2012; 109:9-15. [PMID: 22366233 DOI: 10.1016/j.jinorgbio.2012.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/22/2011] [Accepted: 01/20/2012] [Indexed: 01/01/2023]
Abstract
Sodium selenate may have utility in treating Alzheimer's disease and diabetes; however, its impact on the associated proinflammatory cytokine signaling of endothelial cells has not been investigated. We report that treatment of human microvascular endothelial cells with sodium selenate at a pharmacological dose (100 μM) enhanced tyrosine phosphorylation of nuclear STAT3 on Y705 in response to IL-6-type cytokine, leukemia inhibitory factor (LIF), indicative of enhanced STAT3 activity. Accordingly, STAT3 nuclear binding to DNA was increased, as well as LIF-induced gene expression of chemokine (C-C motif) ligand 2 (CCL2). CCL2 plays a key role in inflammatory processes associated with neuronal degenerative and vascular diseases. The enhancing action of selenate on LIF-induced STAT3 Y705 phosphorylation was replicated by vanadate and a specific inhibitor of protein tyrosine phosphatase, non-receptor type 1 (PTP1B). Moreover, we observed that selenite, the cellular reduction bioproduct of selenate but not selenate itself, inhibited enzymatic activity of human recombinant PTP1B. Our findings support the conclusion that in human microvascular endothelial cells selenate has a vanadate-like effect in inhibiting PTP1B and enhancing proinflammatory STAT3 activation. These findings raise the possibility that beneficial actions of supranutritional levels of selenate for treating Alzheimer's and diabetes may be offset by a proinflammatory action on endothelial cells.
Collapse
Affiliation(s)
- Hani J Alturkmani
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, 2500 N. State St., Jackson, Mississippi, 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
107
|
Yuan L, Le Bras A, Sacharidou A, Itagaki K, Zhan Y, Kondo M, Carman CV, Davis GE, Aird WC, Oettgen P. ETS-related gene (ERG) controls endothelial cell permeability via transcriptional regulation of the claudin 5 (CLDN5) gene. J Biol Chem 2012; 287:6582-91. [PMID: 22235125 DOI: 10.1074/jbc.m111.300236] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
ETS-related gene (ERG) is a member of the ETS transcription factor family. Our previous studies have shown that ERG expression is highly enriched in endothelial cells (EC) both in vitro and in vivo. ERG expression is markedly repressed in response to inflammatory stimuli. It has been shown that ERG is a positive regulator of several EC-restricted genes including VE-cadherin, endoglin, and von Willebrand factor, and a negative regulator of other genes such as interleukin (IL)-8 and intercellular adhesion molecule (ICAM)-1. In this study we have identified a novel role for ERG in the regulation of EC barrier function. ERG knockdown results in marked increases in EC permeability. This is associated with a significant increase of stress fiber and gap formation in EC. Furthermore, we identify CLDN5 as a downstream target of ERG in EC. Thus, our results suggest that ERG plays a pivotal role in regulating EC barrier function and that this effect is mediated in part through its regulation of CLDN5 gene expression.
Collapse
Affiliation(s)
- Lei Yuan
- Division of Cardiology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Fabregat-Andrés Ó, Tierrez A, Mata M, Estornell-Erill J, Ridocci-Soriano F, Monsalve M. Induction of PGC-1α expression can be detected in blood samples of patients with ST-segment elevation acute myocardial infarction. PLoS One 2011; 6:e26913. [PMID: 22087236 PMCID: PMC3210132 DOI: 10.1371/journal.pone.0026913] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/06/2011] [Indexed: 01/09/2023] Open
Abstract
Following acute myocardial infarction (MI), cardiomyocyte survival depends on its mitochondrial oxidative capacity. Cell death is normally followed by activation of the immune system. Peroxisome proliferator activated receptor γ-coactivator 1α (PGC-1α) is a transcriptional coactivator and a master regulator of cardiac oxidative metabolism. PGC-1α is induced by hypoxia and facilitates the recovery of the contractile capacity of the cardiac muscle following an artery ligation procedure. We hypothesized that PGC-1α activity could serve as a good molecular marker of cardiac recovery after a coronary event. The objective of the present study was to monitor the levels of PGC-1α following an ST-segment elevation acute myocardial infarction (STEMI) episode in blood samples of the affected patients. Analysis of blood mononuclear cells from human patients following an STEMI showed that PGC-1α expression was increased and the level of induction correlated with the infarct size. Infarct size was determined by LGE-CMR (late gadolinium enhancement on cardiac magnetic resonance), used to estimate the percentage of necrotic area. Cardiac markers, maximum creatine kinase (CK-MB) and Troponin I (TnI) levels, left ventricular ejection function (LVEF) and regional wall motion abnormalities (RWMA) as determined by echocardiography were also used to monitor cardiac injury. We also found that PGC-1α is present and active in mouse lymphocytes where its expression is induced upon activation and can be detected in the nuclear fraction of blood samples. These results support the notion that induction of PGC-1α expression can be part of the recovery response to an STEMI and could serve as a prognosis factor of cardiac recovery.
Collapse
Affiliation(s)
- Óscar Fabregat-Andrés
- Servicio de Cardiología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Alberto Tierrez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Manuel Mata
- Fundación Hospital General de Valencia, Valencia, Spain
| | - Jordi Estornell-Erill
- Unidad de TAC y RMN, Eresa, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | | | - María Monsalve
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Instituto de Investigaciones Biológicas Alberto Sols (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
109
|
Li W, Han J, Hu FB, Curhan GC, Qureshi AA. Psoriasis and risk of type 2 diabetes among women and men in the United States: a population-based cohort study. J Invest Dermatol 2011; 132:291-8. [PMID: 21993559 PMCID: PMC3743422 DOI: 10.1038/jid.2011.319] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes (T2D) shares some common risk factors with psoriasis. We evaluated the association between psoriasis and risk of incident T2D among women and men in the United States in a mixed retrospective-prospective cohort study. 184,395 participants were included from an older cohort of women (the Nurses’ Health Study, NHS) (1996–2008), a younger cohort of women (NHS II) (1991–2007) and an older cohort of men (Health Professionals’ Follow-Up Study, HPFS) (1986–2006). During 2,700,958 person-years of follow-up, 9,938 incident T2D cases were confirmed. We found a significantly increased risk of T2D associated with psoriasis only among younger women (NHS II); multivariate-adjusted relative risk (RR) (95% confidence interval (CI)) was 1.25 1.05–1.49). When only including those younger than 60 years during follow-up (NHS and HPFS), we observed a non-significant trend toward increased risk for T2D. In a pooled-analysis of the three cohorts, psoriatics younger than 60 years were at a higher risk of T2D; RR 1.26 (1.08–1.48) for women, and 1.26 (1.08–1.46) for both sexes combined. Further, the risk of T2D was much higher for those developing psoriasis at an early age. In conclusion, we found an association between psoriasis and risk of T2D among individuals younger than 60 years.
Collapse
Affiliation(s)
- Wenqing Li
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
110
|
Chu AJ. Tissue factor, blood coagulation, and beyond: an overview. Int J Inflam 2011; 2011:367284. [PMID: 21941675 PMCID: PMC3176495 DOI: 10.4061/2011/367284] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence shows a broad spectrum of biological functions of tissue factor (TF). TF classical role in initiating the extrinsic blood coagulation and its direct thrombotic action in close relation to cardiovascular risks have long been established. TF overexpression/hypercoagulability often observed in many clinical conditions certainly expands its role in proinflammation, diabetes, obesity, cardiovascular diseases, angiogenesis, tumor metastasis, wound repairs, embryonic development, cell adhesion/migration, innate immunity, infection, pregnancy loss, and many others. This paper broadly covers seminal observations to discuss TF pathogenic roles in relation to diverse disease development or manifestation. Biochemically, extracellular TF signaling interfaced through protease-activated receptors (PARs) elicits cellular activation and inflammatory responses. TF diverse biological roles are associated with either coagulation-dependent or noncoagulation-mediated actions. Apparently, TF hypercoagulability refuels a coagulation-inflammation-thrombosis circuit in “autocrine” or “paracrine” fashions, which triggers a wide spectrum of pathophysiology. Accordingly, TF suppression, anticoagulation, PAR blockade, or general anti-inflammation offers an array of therapeutical benefits for easing diverse pathological conditions.
Collapse
Affiliation(s)
- Arthur J Chu
- Division of Biological and Physical Sciences, Delta State University, Cleveland, MS 38733, USA
| |
Collapse
|
111
|
Hopps E, Canino B, Caimi G. Effects of exercise on inflammation markers in type 2 diabetic subjects. Acta Diabetol 2011; 48:183-9. [PMID: 21431832 DOI: 10.1007/s00592-011-0278-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 03/10/2011] [Indexed: 01/05/2023]
Abstract
Endothelial dysfunction and plasma markers of inflammation are significantly increased in type 2 diabetics. Several proinflammatory cytokines, acute-phase proteins, and cell adhesion molecules, such as C-reactive protein (CRP), interleukines (IL), and tumor necrosis factor alpha (TNF-α), seem to play a role in the low-grade systemic inflammation observed in these subjects. Lifestyle changes are necessary to prevent atherosclerosis and cardiovascular events. Physical exercise is known to reduce markers of inflammation by decreasing adipocytokine production and cytokine release from skeletal muscles, endothelial cells, and immune system and also improving antioxidant status. In type 2 diabetics, aerobic and resistance training have different effects on cytokine levels, and the differences in the modalities of exercise (type, duration, and intensity) and especially in the examined population could produce different results. Recent research showed that combined exercise has greater anti-inflammatory effects than aerobic or resistance exercise alone causing a deepest decrease in CRP, IL-6, IL-1β, TNF-α, leptin, and resistin and a higher increase in anti-inflammatory cytokines such as IL-4, IL-10, and adiponectin.
Collapse
Affiliation(s)
- E Hopps
- Dipartimento di Medicina Interna, Malattie Cardiovascolari e Nefrourologiche, Università degli Studi di Palermo, Italy.
| | | | | |
Collapse
|
112
|
Luo P, Wang MH. Eicosanoids, β-cell function, and diabetes. Prostaglandins Other Lipid Mediat 2011; 95:1-10. [PMID: 21757024 DOI: 10.1016/j.prostaglandins.2011.06.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Arachidonic acid (AA) is metabolized by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes into eicosanoids, which are involved in diverse diseases, including type 1 and type 2 diabetes. During the last 30 years, evidence has been accumulated that suggests important functions for eicosanoids in the control of pancreatic β-cell function and destruction. AA metabolites of the COX pathway, especially prostaglandin E(2) (PGE(2)), appear to be significant factors to β-cell dysfunction and destruction, participating in the pathogenesis of diabetes and its complications. Several elegant studies have contributed to the sorting out of the importance of 12-LOX eicosanoids in cytokine-mediated inflammation in pancreatic β cells. The role of CYP eicosanoids in diabetes is yet to be explored. A recent publication has demonstrated that stabilizing the levels of epoxyeicosatrienoic acids (EETs), CYP eicosanoids, by inhibiting or deleting soluble epoxide hydrolase (sEH) improves β-cell function and reduces β-cell apoptosis in diabetes. In this review we summarize recent findings implicating these eicosanoid pathways in diabetes and its complications. We also discuss the development of animal models with targeted gene deletion and specific enzymatic inhibitors in each pathway to identify potential targets for the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Pengcheng Luo
- Department of Nephrology, Renmin Hospital of Wuhan University, China
| | | |
Collapse
|