101
|
Mazar J, Khaitan D, DeBlasio D, Zhong C, Govindarajan SS, Kopanathi S, Zhang S, Ray A, Perera RJ. Epigenetic regulation of microRNA genes and the role of miR-34b in cell invasion and motility in human melanoma. PLoS One 2011; 6:e24922. [PMID: 21949788 PMCID: PMC3176288 DOI: 10.1371/journal.pone.0024922] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/18/2011] [Indexed: 01/20/2023] Open
Abstract
Invasive melanoma is the most lethal form of skin cancer. The treatment of melanoma-derived cell lines with 5-aza-2′-deoxycytidine (5-Aza-dC) markedly increases the expression of several miRNAs, suggesting that the miRNA-encoding genes might be epigenetically regulated, either directly or indirectly, by DNA methylation. We have identified a group of epigenetically regulated miRNA genes in melanoma cells, and have confirmed that the upstream CpG island sequences of several such miRNA genes are hypermethylated in cell lines derived from different stages of melanoma, but not in melanocytes and keratinocytes. We used direct DNA bisulfite and immunoprecipitated DNA (Methyl-DIP) to identify changes in CpG island methylation in distinct melanoma patient samples classified as primary in situ, regional metastatic, and distant metastatic. Two melanoma cell lines (WM1552C and A375 derived from stage 3 and stage 4 human melanoma, respectively) were engineered to ectopically express one of the epigenetically modified miRNA: miR-34b. Expression of miR-34b reduced cell invasion and motility rates of both WM1552C and A375, suggesting that the enhanced cell invasiveness and motility observed in metastatic melanoma cells may be related to their reduced expression of miR-34b. Total RNA isolated from control or miR-34b-expressing WM1552C cells was subjected to deep sequencing to identify gene networks around miR-34b. We identified network modules that are potentially regulated by miR-34b, and which suggest a mechanism for the role of miR-34b in regulating normal cell motility and cytokinesis.
Collapse
Affiliation(s)
- Joseph Mazar
- Sanford Burnham Medical Research Institute, Orlando, Florida, United States of America
| | - Divya Khaitan
- Sanford Burnham Medical Research Institute, Orlando, Florida, United States of America
| | - Dan DeBlasio
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, United States of America
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, United States of America
| | | | - Sharmila Kopanathi
- Keck Graduate Institute, Claremont, California, United States of America
| | - Shaojie Zhang
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, United States of America
| | - Animesh Ray
- Keck Graduate Institute, Claremont, California, United States of America
| | - Ranjan J. Perera
- Sanford Burnham Medical Research Institute, Orlando, Florida, United States of America
- * E-mail:
| |
Collapse
|
102
|
Ischemia caused by time to freezing induces systematic microRNA and mRNA responses in cancer tissue. Mol Oncol 2011; 5:564-76. [PMID: 21917534 DOI: 10.1016/j.molonc.2011.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/18/2011] [Accepted: 08/21/2011] [Indexed: 12/17/2022] Open
Abstract
Time to freezing tumor tissue for RNA expression analysis will always vary to some extent. To evaluate the effect of ischemia time, tumor tissue from ten breast cancer patients was collected and aliquots of tissue were snap frozen at different time points after surgery (0, 0.5, 1, 3 and 6 h). Using miRNA and mRNA expression microarrays and statistical analysis, 56 miRNAs and 1788 mRNAs were found to be significantly altered with ischemia time up to six hours. Several of the 56 miRNAs have been reported to play a role in cancer, such as hsa-miR-663 and hsa-miR-125a-3p. Known stress response genes such as GADD45B, JUND and FOSB were among the mRNAs most significantly affected by time to freezing. A novel statistical method for identification of consistently correlated miRNA-mRNA pairs and miRNA-associated biological processes in time course data is presented. Application of this method revealed that several miRNAs, including hsa-miR-1228, hsa-miR-1225-5p and hsa-miR-574-5p, were associated through their correlation to mRNAs to biological processes such as "response to stimulus" and "stress response". These miRNAs also showed enrichment of predicted targets among either their positively or negatively correlated mRNAs. The induced miRNAs may play both direct and indirect roles in biological responses. Caution should be taken when the miRNAs and mRNAs reported to be affected by ischemia time are included in a prognostic or predictive signature.
Collapse
|
103
|
Silencing of the imprinted DLK1-MEG3 locus in human clinically nonfunctioning pituitary adenomas. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2120-30. [PMID: 21871428 DOI: 10.1016/j.ajpath.2011.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/13/2011] [Accepted: 07/01/2011] [Indexed: 01/04/2023]
Abstract
DLK1-MEG3 is an imprinted locus consisting of multiple maternally expressed noncoding RNA genes and paternally expressed protein-coding genes. The expression of maternally expressed gene 3 (MEG3) is selectively lost in clinically nonfunctioning adenomas (NFAs) of gonadotroph origin; however, expression status of other genes at this locus in human pituitary adenomas has not previously been reported. Using quantitative real-time RT-PCR, we evaluated expression of 24 genes from the DLK1-MEG3 locus in 44 human pituitary adenomas (25 NFAs, 7 ACTH-secreting, 7 GH-secreting, and 5 PRL-secreting adenomas) and 10 normal pituitaries. The effects on cell proliferation of five miRNAs whose expression was lost in NFAs were investigated by flow cytometry analysis. We found that 18 genes, including 13 miRNAs at the DLK1-MEG3 locus, were significantly down-regulated in human NFAs. In ACTH-secreting and PRL-secreting adenomas, 12 and 7 genes were significantly down-regulated, respectively; no genes were significantly down-regulated in GH-secreting tumors. One of the five miRNAs tested induced cell cycle arrest at the G2/M phase in PDFS cells derived from a human NFA. Our data indicate that the DLK1-MEG3 locus is silenced in NFAs. The growth suppression by miRNAs in PDFS cells is consistent with the hypothesis that the DLK1-MEG3 locus plays a tumor suppressor role in human NFAs.
Collapse
|
104
|
Sotillo E, Thomas-Tikhonenko A. Shielding the messenger (RNA): microRNA-based anticancer therapies. Pharmacol Ther 2011; 131:18-32. [PMID: 21514318 PMCID: PMC3124007 DOI: 10.1016/j.pharmthera.2011.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 03/29/2011] [Indexed: 02/08/2023]
Abstract
It has been a decade since scientists realized that microRNAs (miRNAs) are not an oddity invented by worms to regulate gene expression at post-transcriptional levels. Rather, many of these 21-22-nucleotide-short RNAs exist in invertebrates and vertebrates alike and some of them are in fact highly conserved. miRNAs are now recognized as an important class of non-coding small RNAs that inhibit gene expression by targeting mRNA stability and translation. In the last ten years, our knowledge of the miRNAs world was expanding at vertiginous speed, propelled by the development of computational engines for miRNA identification and target prediction, biochemical tools and techniques to modulate miRNA activity, and last but not least, the emergence of miRNA-centric animal models. One important conclusion that has emerged from this effort is that many microRNAs and their cognate targets are strongly implicated in cancer, either as oncogenes or tumor and metastasis suppressors. In this review we will discuss the diverse role that miRNAs play in cancer initiation and progression and also the tools with which miRNA expression could be corrected in vivo. While the idea of targeting microRNAs towards therapeutic ends is getting considerable traction, basic, translational, and clinical research done in the next few years will tell whether this promise is well-founded.
Collapse
Affiliation(s)
- Elena Sotillo
- Division of Cancer Pathobiology, Department of Pathology & Laboratory Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Department of Pathology & Laboratory Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
105
|
Lee JH, Voortman J, Dingemans AMC, Voeller DM, Pham T, Wang Y, Giaccone G. MicroRNA expression and clinical outcome of small cell lung cancer. PLoS One 2011; 6:e21300. [PMID: 21731696 PMCID: PMC3120860 DOI: 10.1371/journal.pone.0021300] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/25/2011] [Indexed: 12/31/2022] Open
Abstract
The role of microRNAs in small-cell lung carcinoma (SCLC) is largely unknown. miR-34a is known as a p53 regulated tumor suppressor microRNA in many cancer types. However, its therapeutic implication has never been studied in SCLC, a cancer type with frequent dysfunction of p53. We investigated the expression of a panel of 7 microRNAs (miR-21, miR-29b, miR-34a/b/c, miR-155, and let-7a) in 31 SCLC tumors, 14 SCLC cell lines, and 26 NSCLC cell lines. We observed significantly lower miR-21, miR-29b, and miR-34a expression in SCLC cell lines than in NSCLC cell lines. The expression of the 7 microRNAs was unrelated to SCLC patients' clinical characteristics and was neither prognostic in term of overall survival or progression-free survival nor predictive of treatment response. Overexpression or downregulation of miR-34a did not influence SCLC cell viability. The expression of these 7 microRNAs also did not predict in vitro sensitivity to cisplatin or etoposide in SCLC cell lines. Overexpression or downregulation of miR-34a did not influence sensitivity to cisplatin or etoposide in SCLC cell lines. In contrast to downregulation of the miR-34a target genes cMET and Axl by overexpression of miR-34a in NSCLC cell lines, the intrinsic expression of cMET and Axl was low in SCLC cell lines and was not influenced by overexpression of miR-34a. Our results suggest that the expression of the 7 selected microRNAs are not prognostic in SCLC patients, and miR-34a is unrelated to the malignant behavior of SCLC cells and is unlikely to be a therapeutic target.
Collapse
Affiliation(s)
- Jih-Hsiang Lee
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Johannes Voortman
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anne-Marie C. Dingemans
- Department of Respiratory Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Donna M. Voeller
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Trung Pham
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yisong Wang
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Giuseppe Giaccone
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
106
|
William WN, Glisson BS. Novel strategies for the treatment of small-cell lung carcinoma. Nat Rev Clin Oncol 2011; 8:611-9. [PMID: 21691321 DOI: 10.1038/nrclinonc.2011.90] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Small-cell lung cancer (SCLC) is a disease with a poor prognosis and limited treatment options. Over the past 30 years, basic and clinical research have translated to little innovation in the treatment of this disease. The Study of Picoplatin Efficacy After Relapse (SPEAR) evaluated best supportive care with or without picoplatin for second-line SCLC treatment and failed to meet its primary end point of overall survival. As the largest second-line, randomized study in patients with SCLC, SPEAR provides an opportunity to critically examine the drug development model in this disease. In this Review, we discuss the current standard approach for the management of SCLC that progresses after first-line therapy, analyze the preliminary data that supported the evaluation of picoplatin in this setting, and critically evaluate the SPEAR trial design and results. Lastly, we present advances in the understanding of the molecular biology of SCLC that could potentially inform future clinical trials and hopefully lead to the successful development of molecular targeted agents for the treatment of this disease.
Collapse
Affiliation(s)
- William N William
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas M D Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 432, Houston, TX 77030, USA
| | | |
Collapse
|
107
|
Skrzypski M, Dziadziuszko R, Jassem J. MicroRNA in lung cancer diagnostics and treatment. Mutat Res 2011; 717:25-31. [PMID: 21540042 DOI: 10.1016/j.mrfmmm.2011.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 04/01/2011] [Accepted: 04/06/2011] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRs) are short RNA chains that regulate gene expression by inhibition of mRNA translation. Their expression is often deranged in cancer. Increasing evidence indicates that these molecules play an important role in oncogenesis and cancer progression. This review focuses on the clinical application of miRs in lung cancer, with the emphasis on detection of early lung cancer, prognostication and chemotherapy sensitivity prediction. Methodological aspects of studies on prognostic markers in early NSCLC are outlined in detail. Finally, modulation of miR expression in lung cancer as a therapeutic possibility is discussed.
Collapse
Affiliation(s)
- Marcin Skrzypski
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdańsk, Poland.
| | | | | |
Collapse
|
108
|
Bolleyn J, Fraczek J, Vinken M, Lizarraga D, Gaj S, van Delft JHM, Rogiers V, Vanhaecke T. Effect of Trichostatin A on miRNA expression in cultures of primary rat hepatocytes. Toxicol In Vitro 2011; 25:1173-82. [PMID: 21513791 DOI: 10.1016/j.tiv.2011.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 03/01/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
In the present study, the effect of Trichostatin A (TSA), a histone deacetylase inhibitor, was investigated on the microRNA (miR, miRNA) expression profile in cultured primary rat hepatocytes by means of microarray analysis. Simultaneously, albumin secretory capacity and morphological features of the hepatocytes were evaluated throughout the culture time. In total, 25 out of 348 miRNAs were found to be differentially expressed between freshly isolated hepatocytes and 7-day cultured cells. Nineteen of these miRNAs were connected with 'general metabolism'. miR-21 and miR-126 were shown to be the most up and down regulated miRs upon cultivation and could be linked to the proliferative response triggered in the hepatocytes upon their isolation from the liver. miR-379 and miR-143, on the other hand, were found to be the most up and down regulated miRs upon TSA treatment. Together with the higher expression of miR-122 observed in TSA-treated versus non-treated cultures, we hypothesize that the changes observed for miR-122, miR-143 and miR-379 could be related to the inhibitory effects of TSA on hepatocellular proliferation.
Collapse
Affiliation(s)
- Jennifer Bolleyn
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
CHO WCS. [MicroRNAs as therapeutic targets for lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 13:C58-60. [PMID: 21159239 PMCID: PMC6134415 DOI: 10.3779/j.issn.1009-3419.2010.12.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
肺癌是当今世界的主要致死原因之一,亟待新的治疗方法。近年来,microRNAs已成为调节基因表达的关键因子之一。许多研究表明,microRNAs几乎参与肺癌癌变过程的每一阶段,包括肿瘤的发展、细胞凋亡、癌细胞的侵袭和转移,以及抗癌药物的耐药。MicroRNA的强制表达或抑制可调节癌变过程中的生物学改变,表明了microRNAs在肺癌中具有治疗潜能。本社论总结调节肺癌癌变过程的一些重要microRNAs的最新报道,并阐释其作用机制,介绍一些调控microRNAs作用的方法,并探讨了microRNAs作为肺癌治疗靶标的前景。
Collapse
Affiliation(s)
- William C S CHO
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong.
| |
Collapse
|
110
|
Li X, Pan YZ, Seigel GM, Hu ZH, Huang M, Yu AM. Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, -519c and -520h) and their differential expression in stem-like ABCG2+ cancer cells. Biochem Pharmacol 2011; 81:783-92. [PMID: 21219875 PMCID: PMC3042498 DOI: 10.1016/j.bcp.2010.12.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/30/2010] [Accepted: 12/30/2010] [Indexed: 01/16/2023]
Abstract
Recent studies have shown that a number of microRNAs (miRNA or miR) may regulate human breast cancer resistance protein (BCRP/ABCG2), an important efflux transporter responsible for cellular drug disposition, whereas their effects on ABCG2 protein expression are not compared. In this study, we first identified a new proximal miRNA response element (MRE) for hsa-miR-519c within ABCG2 3'-untranslated region (3'UTR) through computational analyses. This miR-519c MRE site was confirmed using dual luciferase reporter assay and site-directed mutagenesis. Immunoblot analyses indicated that ABCG2 protein expression was significantly down-regulated in MCF-7/MX100 cells after transfection with hsa-miR-328- or -519c expression plasmids, and was markedly up-regulated in MCF-7 cells after transfection with miR-328 or -519c antagomir. However, ABCG2 protein expression was unchanged in MCF-7/MX100 cells after transfection with hsa-miR-520h expression plasmids, which was associated with undetectable miR-520h expression. Furthermore, ABCG2 mRNA degradation was accelerated dramatically in cells transfected with miR-519c expression plasmid, suggesting the involvement of mRNA degradation mechanism. Intervention of miR-328 or -519c signaling led to significant change in intracellular mitoxantrone accumulation, as determined by flow cytometry analyses. In addition, we separated RB143 human retinoblastoma cells into stem-like (ABCG2+) and non-stem-like (ABCG2-) populations through immunomagnetic selection, and found that miR-328, -519c and -520h levels were 9-, 15- and 3-fold lower in the ABCG2+ cells, respectively. Our data suggest that miR-519c and -328 have greater impact on ABCG2 expression than miR-520h in MCF-7 human breast cancer cells, and the presence of proximal miR-519c MRE explains the action of miR-519c on shortened ABCG2 3'UTR.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yu-Zhuo Pan
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| | - Gail M. Seigel
- Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
- SUNY Eye Institute, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| | - Zi-Hua Hu
- Department of Ophthalmology, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ai-Ming Yu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| |
Collapse
|
111
|
Abstract
Lung cancer is one of the leading causes of mortality in the world, indicating the need for innovative therapies for the disease. In recent years, microRNAs have emerged as one of the key players in regulating gene expression. Numerous studies have documented the implications of microRNAs in nearly every carcinogenesis process of lung cancer, including tumor development, apoptosis, invasion and metastasis, as well as anti-cancer drug resistance. Forced expression or suppression of microRNA can regulate the biological alteration during carcinogenesis, underscoring the therapeutic potential of microRNAs in lung cancer. This editorial summarizes recent reports of some key microRNAs that can modulate the lung cancer carcinogenesis process, expound the mechanisms by which they exert their functions, introduce some approaches for manipulating the action of microRNAs, and discuss the perspectives of microRNAs as therapeutic targets for lung cancer.
Collapse
|
112
|
Abstract
Genomic imprinting is an epigenetic marking of genes in the parental germline that ensures the stable transmission of monoallelic gene expression patterns in a parent-of-origin-specific manner. Epigenetic marking systems are thus able to regulate gene activity independently of the underlying DNA sequence. Several imprinted gene products regulate cell proliferation and fetal growth; loss of their imprinted state, which effectively alters their dosage, might promote or suppress tumourigenic processes. Conversely, global epigenetic changes that underlie tumourigenesis might affect imprinted gene expression. Here, we review imprinted genes with regard to their roles in epigenetic predisposition to cancer, and discuss acquired epigenetic changes (DNA methylation, histone modifications and chromatin conformation) either as a result of cancer or as an early event in neoplasia. We also address recent work showing the potential role of noncoding RNA in modifying chromatin and affecting imprinted gene expression, and summarise the effects of loss of imprinting in cancer with regard to the roles that imprinted genes play in regulating growth signalling cascades. Finally, we speculate on the clinical applications of epigenetic drugs in cancer.
Collapse
|