101
|
De Caroli M, Barozzi F, Renna L, Piro G, Di Sansebastiano GP. Actin and Microtubules Differently Contribute to Vacuolar Targeting Specificity during the Export from the ER. MEMBRANES 2021; 11:membranes11040299. [PMID: 33924184 PMCID: PMC8074374 DOI: 10.3390/membranes11040299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Plants rely on both actin and microtubule cytoskeletons to fine-tune sorting and spatial targeting of membranes during cell growth and stress adaptation. Considerable advances have been made in recent years in the comprehension of the relationship between the trans-Golgi network/early endosome (TGN/EE) and cytoskeletons, but studies have mainly focused on the transport to and from the plasma membrane. We address here the relationship of the cytoskeleton with different endoplasmic reticulum (ER) export mechanisms toward vacuoles. These emergent features of the plant endomembrane traffic are explored with an in vivo approach, providing clues on the traffic regulation at different levels beyond known proteins’ functions and interactions. We show how traffic of vacuolar markers, characterized by different vacuolar sorting determinants, diverges at the export from the ER, clearly involving different components of the cytoskeleton.
Collapse
Affiliation(s)
- Monica De Caroli
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
| | - Fabrizio Barozzi
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
- Department of Plant Physiology, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Luciana Renna
- Department of Biology, University of Florence, 50121 Firenze, Italy;
| | - Gabriella Piro
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
| | - Gian-Pietro Di Sansebastiano
- DISTEBA (Department of Biological and Environmental Sciences and Technologies), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy; (M.D.C.); (F.B.); (G.P.)
- Correspondence: ; Tel.: +39-0832-298-714
| |
Collapse
|
102
|
Huo XS, Jian XE, Ou-Yang J, Chen L, Yang F, Lv DX, You WW, Rao JJ, Zhao PL. Discovery of highly potent tubulin polymerization inhibitors: Design, synthesis, and structure-activity relationships of novel 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidines. Eur J Med Chem 2021; 220:113449. [PMID: 33895499 DOI: 10.1016/j.ejmech.2021.113449] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 02/08/2023]
Abstract
By removing 5-methyl and 6-acetyl groups in our previously reported compound 3, we designed a series of novel 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidine derivatives as potential tubulin polymerization inhibitors. Among them, compound 5e displayed low nanomolar antiproliferative efficacy on HeLa cells which was 166-fold higher than the lead analogue 3. Interestingly, 5e displayed significant selectivity in inhibiting cancer cells over HEK-293 (normal human embryonic kidney cells). In addition, 5e dose-dependently arrested HeLa in G2/M phase through the alterations of the expression levels of p-cdc2 and cyclin B1, and caused HeLa cells apoptosis by regulation of expressions of cleaved PARP. Further evidence demonstrated that 5e effectively inhibited tubulin polymerization and was 3-fold more powerful than positive control CA-4. Moreover, molecular docking analysis indicated that 5e overlapped well with CA-4 in the colchicine-binding site. These studies demonstrated that 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidine skeleton might be used as the leading unit to develop novel tubulin polymerization inhibitors as potential anticancer agents.
Collapse
Affiliation(s)
- Xian-Sen Huo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Jie Ou-Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Fang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Dong-Xin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Jin-Jun Rao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
103
|
Yang F, Chen L, Lai JM, Jian XE, Lv DX, Yuan LL, Liu YX, Liang FT, Zheng XL, Li XL, Wei LY, You WW, Zhao PL. Synthesis, biological evaluation, and structure-activity relationships of new tubulin polymerization inhibitors based on 5-amino-1,2,4-triazole scaffold. Bioorg Med Chem Lett 2021; 38:127880. [PMID: 33636303 DOI: 10.1016/j.bmcl.2021.127880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Based on our previous research, thirty new 5-amino-1H-1,2,4-triazoles possessing 3,4,5-trimethoxyphenyl moiety were synthesized, and evaluated for antiproliferative activities. Among them, compounds IIa, IIIh, and IIIm demonstrated significant antiproliferative activities against a panel of tumor cell lines, and the promising compound IIIm dose-dependently caused G2/M phase arrest in HeLa cells. Furthermore, analogue IIa exhibited the most potent tubulinpolymerization inhibitory activity with an IC50 value of 9.4 μM, and molecular modeling studies revealed that IIa formed stable interactions in the colchicine-binding site of tubulin, suggesting that 5-amino-1H-1,2,4-triazole scaffold has potential for further investigation to develop novel tubulin polymerization inhibitors with anticancer activity.
Collapse
Affiliation(s)
- Fang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Jin-Mei Lai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Dong-Xin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Li-Li Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Yu-Xia Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Feng-Ting Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xiao-Lan Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xiong-Li Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Li-Yuan Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
104
|
Recent advances in research of colchicine binding site inhibitors and their interaction modes with tubulin. Future Med Chem 2021; 13:839-858. [PMID: 33821673 DOI: 10.4155/fmc-2020-0376] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microtubules have been a concerning target of cancer chemotherapeutics for decades, and several tubulin-targeted agents, such as paclitaxel, vincristine and vinorelbine, have been approved. The colchicine binding site is one of the primary targets on microtubules and possesses advantages compared with other tubulin-targeted agents, such as inhibitors of tumor vessels and overcoming P-glycoprotein overexpression-mediated multidrug resistance. This study reviews and summarizes colchicine binding site inhibitors reported in recent years with structural studies via the crystal structures of complexes or computer simulations to discover new lead compounds. We are attempting to resolve the challenge of colchicine site agent research.
Collapse
|
105
|
Al-Kuraishy HM, Al-Gareeb AI, Qusty N, Cruz-Martins N, El-Saber Batiha G. Sequential doxycycline and colchicine combination therapy in Covid-19: The salutary effects. Pulm Pharmacol Ther 2021; 67:102008. [PMID: 33727066 PMCID: PMC7955803 DOI: 10.1016/j.pupt.2021.102008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus virus disease 2019 (COVID-19) is a viral infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), actually considered as a global pandemic. The entry-point for SARS-CoV-2 is angiotensin converting enzyme 2 (ACE2) and dipeptidyl peptidase 4 (DPP4), which are highly expressed in the lung. Among other complications, COVID-19leads to fatal pneumonia, acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) due to development of cytokine storm (CS). The pathogenesis of SARS-CoV-2 infection depends on the viral load and human innate/adaptive immune response that are required for viral elimination in the first phase of COVID-19. However, an exaggerated immune response in the second phase of COVID-19 results in immune overreaction and CS-induced ALI and ARDS. Thus, in view of these considerations, we report here a series of five patients with COVID-19 pneumonia who developed ALI. In addition to the supportive therapy, the patients received doxycycline in the first week and doxycycline plus colchicine in the second week. Following sequential therapy with doxycycline and/or colchicine in patients with COVID-19 pneumonia, the patients had reduction of disease severity and symptoms with better clinical and radiological outcomes. However, it is tough to confirm the link between this therapeutic combination and recovery from COVID-19 pneumonia, as it is a small case-series report. Nevertheless, this study gives a rational for large-scale prospective studies to evaluate the dual sequential effect of doxycycline and colchicine on the COVID-19 severity. This case-series illustrated that use of colchicine: doxycycline combination is linked with marked improvements in the clinical, laboratory and radiological outcomes in patients with COVID-19 pneumonia. However, we cannot sketch any definitive conclusion from our observation, despite we hypothesize that this combination therapeutic regimen may attenuate and treat COVID-19. Further, namely prospective, randomized, and controlled clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, AL-Mustansiriyiah University, Iraq.
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, AL-Mustansiriyiah University, Iraq.
| | - Naeem Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia.
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319, Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal; Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Portugal.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
106
|
Li F, Huang T, Tang Y, Li Q, Wang J, Cheng X, Zhang W, Zhang B, Zhou C, Tu S. Utidelone inhibits growth of colorectal cancer cells through ROS/JNK signaling pathway. Cell Death Dis 2021; 12:338. [PMID: 33795638 PMCID: PMC8016927 DOI: 10.1038/s41419-021-03619-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022]
Abstract
Utidelone (UTD1), a novel microtubule stabilizing agent, is an epothilone B analogue which was produced by genetic engineering. UTD1 has exhibited broad antitumor activity in multiple solid tumors. However, its activity and mechanism in colorectal cancer (CRC) remain to be studied. In this study, UTD1 dramatically inhibited CRC cell proliferation (with 0.38 µg/ml, 0.77 µg/ml IC50 in RKO and HCT116, respectively) in vitro. Immunofluorescence staining showed that UTD1 induced the formation of microtubule bundling and asters in RKO cells. Flow cytometry analysis demonstrated that UTD1 induced cell cycle to arrest in G2/M phase, subsequent apoptosis. Significantly, UTD1 exhibited stronger effect on inducing apoptosis than paclitaxel and 5-FU, especially in HCT15 cells which is ABCB1 high-expression. UTD1 exposure cleaved caspase-3 and poly ADP-ribose polymerase (PARP), decreased mitochondrial membrane potential, released cytochrome c, increased the production of active oxygen and activated c-Jun N-terminal kinase (JNK), suggesting ROS/JNK pathway was involved in this process. Moreover, UTD1 inhibited tumor growth and was more effective and safer compared with paclitaxel and 5-FU in RKO xenograft in nude mice. Taken together, our findings first indicate that UDT1 inhibits tumor growth in CRC xenograft model and may be a promising agent for CRC treatment.
Collapse
Affiliation(s)
- Fuli Li
- State Key Laboratory of Oncogenes and related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Tinglei Huang
- State Key Laboratory of Oncogenes and related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yao Tang
- State Key Laboratory of Oncogenes and related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qingli Li
- State Key Laboratory of Oncogenes and related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianzheng Wang
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, NO.127, Dongming Road, Zhengzhou, 450008, China
| | - Xiaojiao Cheng
- State Key Laboratory of Oncogenes and related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wenhui Zhang
- Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Baiwen Zhang
- State Key Laboratory of Oncogenes and related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Cong Zhou
- State Key Laboratory of Oncogenes and related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuiping Tu
- State Key Laboratory of Oncogenes and related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
107
|
Ergul M, Bakar-Ates F. Investigation of molecular mechanisms underlying the antiproliferative effects of colchicine against PC3 prostate cancer cells. Toxicol In Vitro 2021; 73:105138. [PMID: 33684465 DOI: 10.1016/j.tiv.2021.105138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
This work examined the cytotoxic effects of colchicine on PC3 cells and elucidated the possible underlying mechanisms of its cytotoxicity. The cells were exposed to colchicine at different concentrations ranging from 1 to 100 ng/mL for 24 h, and it showed considerable cytotoxicity with an IC50 value of 22.99 ng/mL. Mechanistic studies also exhibited that colchicine treatment results in cell cycle arrest at the G2/M phase as well as decreased mitochondrial membrane potential and increased early and late apoptotic cells. The apoptotic and DNA-damaging effects of colchicine have also been verified by fluorescence imaging and ELISA experiments, and they revealed that while colchicine treatment significantly modulated expression as increases in Bax, cleaved caspase 3, cleaved PARP, and 8-hydroxy-desoxyguanosine levels and as a decrease of BCL-2 protein expression. Besides, colchicine treatment significantly increased the total oxidant (TOS) level, which is a signal of oxidative stress and potential cause of DNA damage. Finally, the results of quantitative real-time PCR experiments demonstrated that colchicine treatment concentration-dependently suppressed MMP-9 mRNA expression. Overall, colchicine provides meaningful cytotoxicity on PC3 cells due to induced oxidative stress, reduced mitochondrial membrane potential, increased DNA damage, and finally increased apoptosis in PC3 cells. Nevertheless, further research needs to be conducted to assess the potential of colchicine as an anticancer drug for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
108
|
Sana S, Reddy VG, Srinivasa Reddy T, Tokala R, Kumar R, Bhargava SK, Shankaraiah N. Cinnamide derived pyrimidine-benzimidazole hybrids as tubulin inhibitors: Synthesis, in silico and cell growth inhibition studies. Bioorg Chem 2021; 110:104765. [PMID: 33677248 DOI: 10.1016/j.bioorg.2021.104765] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022]
Abstract
An approach in modern medicinal chemistry to discover novel bioactive compounds is by mimicking diverse complementary pharmacophores. In extension of this strategy, a new class of piperazine-linked cinnamide derivatives of benzimidazole-pyrimidine hybrids have been designed and synthesized. Their in vitro cytotoxicity profiles were explored on selected human cancer cell lines. Specifically, structural comparison of target hybrids with tubulin-DAMA-colchicine and tubulin-nocodazole complexes has exposed a deep position of benzimidazole ring into the αT5 loop. All the synthesized compounds were demonstrated modest to interesting cytotoxicity against different cancer cell lines. The utmost cytotoxicity has shown with an amine linker of benzimidazole-pyrimidine series, with specificity toward A549 (lung cancer) cell line. The most potent compound in this series was 18i, which inhibited cancer cell growth at micromolar concentrations ranging 2.21-7.29 µM. Flow cytometry studies disclosed that 18i inhibited the cells in G2/M phase of cell cycle. The potent antitumor activity of 18i resulted from enhanced microtubule disruption at a similar level as nocodazole on β-tubulin antibody, explored using immunofluorescence staining. The most active compound 18i also inhibited tubulin polymerization with an IC50 of 5.72 ± 0.51 µM. In vitro biological analysis of 18i presented apoptosis induction on A549 cells with triggering of ROS generation and loss of mitochondrial membrane potential, resulting in DNA injury. In addition, 18i displayed impairment in cellular migration and inhibited the colony formation. Notably, the safety profile of most potent compound 18i was revealed by screening against normal human pulmonary epithelial cells (L132: IC50: 69.25 ± 5.95 μM). The detailed binding interactions of 18i with tubulin was investigated by employing molecular docking, superimposition and free energy analyses. Thus remarks made in this study established that pyrimidine-benzimidazole hybrids as a new class of tubulin polymerization inhibitors with significant anticancer activity.
Collapse
Affiliation(s)
- Sravani Sana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Velma Ganga Reddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| | - T Srinivasa Reddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Rahul Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Suresh K Bhargava
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
109
|
Zeng M, Ren Y, Zhang B, Wang S, Liu M, Jia J, Guo P, Zhang Q, Zheng X, Feng W. In vitro Non-Small Cell Lung Cancer Inhibitory Effect by New Diphenylethane Isolated From Stems and Leaves of Dioscorea oppositifolia L. via ERβ-STAT3 Pathway. Front Pharmacol 2021; 12:622681. [PMID: 33708130 PMCID: PMC7941213 DOI: 10.3389/fphar.2021.622681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the most leading cause of cancer mortality throughout the world, of which about 85% cases comprise the non-small cell lung cancer (NSCLC). Estrogen and estrogen receptors are known to be involved in the pathogenesis and development of lung cancer. Dioscorea oppositifolia L. is a traditional Chinese medicine and a nutritious food, and can be an excellent candidate as an anti-cancer agent owing to its estrogen-like effects. However, the stems and leaves of D. oppositifolia L. are piled up in the field as a waste, causing environmental pollution and waste of resources. In the present study, a new diphenylethane (D1) was isolated from the stems and leaves of D. oppositifolia L. It was observed that D1 reduced the cell viability, migration, energy metabolism, and induced apoptosis in the A549 cells. Mechanistic studies showed that D1 reduced the STAT3 nuclear localization and downregulated the expression of the STAT3 target genes like Mcl-1, Bcl-xL and MMP-2 that are involved in the cell survival and mobility. Moreover, our results indicated that D1 exhibited estrogenic activities mediated by ERβ, and antagonising ERβ decreased the cytotoxic effect of D1 in A549 cells. In addition, inhibition of the nuclear translocation of STAT3 did not interfere with the binding of D1 and ERβ. However, after antagonizing ERβ, the nuclear translocation of STAT3 increased, thereby demonstrating that STAT3 was the downstream signaling molecule of ERβ. In conclusion, the D1 mediated anti-NSCLC in vitro effects or at least in part can be attributed to the ERβ-STAT3 signaling. Our findings suggest the role of D1 in treating NSCLC on a molecular level, and can help to improve the comprehensive utilization rate of D. oppositifolia L.
Collapse
Affiliation(s)
- Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Yingjie Ren
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Shengchao Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Meng Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Jufang Jia
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Pengli Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Qinqin Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| |
Collapse
|
110
|
Lian MJ, Huang CL, Lee TM. Novel system in vitro of classifying oral carcinogenesis based on feature extraction for gray-level co-occurrence matrix using scanned laser pico projector. Lasers Med Sci 2021; 37:215-224. [PMID: 33528670 DOI: 10.1007/s10103-020-03215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
Oral cancer is among the top 10 causes of death due to cancer worldwide. The prognosis for oral cancer patients is not good, with a 5-year survival rate of only 50%. Earlier and more precise classification will help clinicians make a diagnosis and patients survive. With the advancement of technology, computer-aided detection methods are used to help clinicians form therapy strategies. Gray-level co-occurrence matrix (GLCM) feature extraction of images describing the spatial distribution of gray levels is widely used in medical imaging analysis. Scanned laser pico projector (SLPP) has advantages such as high intensity, directivity, coherence, and mono-color with low bandwidth. In this study, GLCM feature extraction and SLPP reflex images were combined to make a small, non-staining, noninvasive classification system. According to the various image characteristics in oral carcinogenesis, SLPP reflex images better define the borders and three-dimensional structures and provide effective GLCM features such as contrast, energy, and homogeneity to classify carcinogenesis in dysplastic oral keratinocyte (DOK) and normal oral keratinocyte (NOK) cells. Moreover, it also reliably classifies highly metastatic (HSC-3) and tongue cancer (CAL-27) cells. A promising computer-aided classification system for oral cancer was developed to build a reliable intraoral examination system for in situ computer-aided diagnosis in normal clinics.
Collapse
Affiliation(s)
- Meng-Jia Lian
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chih-Ling Huang
- Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Tzer-Min Lee
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
111
|
Hao SY, Qi ZY, Wang S, Wang XR, Chen SW. Synthesis and bioevaluation of N-(3,4,5-trimethoxyphenyl)-1H-pyrazolo[3,4-b]pyridin-3-amines as tubulin polymerization inhibitors with anti-angiogenic effects. Bioorg Med Chem 2021; 31:115985. [DOI: 10.1016/j.bmc.2020.115985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023]
|
112
|
Abosalim HM, Nael MA, El‐Moselhy TF. Design, Synthesis and Molecular Docking of Chalcone Derivatives as Potential Anticancer Agents. ChemistrySelect 2021. [DOI: 10.1002/slct.202004088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Heba M. Abosalim
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Tanta University Tanta 31527 Egypt
| | - Manal A. Nael
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Tanta University Tanta 31527 Egypt
| | - Tarek F. El‐Moselhy
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Tanta University Tanta 31527 Egypt
| |
Collapse
|
113
|
Liu Z, Wang C, Wang Y, Wang L, Zhang Y, Yan G. 4'-O-Methylbroussochalcone B as a novel tubulin polymerization inhibitor suppressed the proliferation and migration of acute myeloid leukaemia cells. BMC Cancer 2021; 21:91. [PMID: 33482772 PMCID: PMC7825173 DOI: 10.1186/s12885-020-07759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recent years, survival rates of human with high-risk acute myeloid leukaemia (AML) have not raised substantially. This research aimed to investigate the role of 4'-O-Methylbroussochalcone B, for the treatment of human AML. METHODS Firstly, we evaluated the effects of six chalcones on AML cells activity by MTT assay. Immunofluorescence staining, tubulin polymerization assay and N,N'-ethylenebis (iodoacetamide) (EBI) competition assay were performed on ML-2 cells. Transwell and apoptosis assay were also utilized in ML-2 cells and OCI-AML5 cells. The expressions of migration-related proteins, apoptosis-related proteins and Wnt/β-catenin pathway were detected by Western Blot. RESULTS The results found six chalcones exhibited the anti-proliferative activity against different AML cell lines. Based on the results of immunofluorescence staining, tubulin polymerization assay and EBI competition assay, 4'-O-Methylbroussochalcone B was discovered to be a novel colchicine site tubulin polymerization inhibitor. 4'-O-Methylbroussochalcone B could induce apoptosis, inhibit proliferation and migration of ML-2 cells and OCI-AML5 cells. The cells were arrested in the G2-M phase by the treatment of 4'-O-Methylbroussochalcone B. In addition, 4'-O-Methylbroussochalcone B regulated MAPK and Wnt/β-catenin pathways in AML cells. CONCLUSION 4'-O-Methylbroussochalcone B might inhibit proliferation and migration of the AML cells by MAPK and Wnt/β-catenin pathways as a tubulin polymerization inhibitor. It is promising for 4'-O-Methylbroussochalcone B to become a new drug to treat AML.
Collapse
Affiliation(s)
- Ziying Liu
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Changshui Wang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, China
| | - Yali Wang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, China
| | - Lei Wang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, China
| | - Yueyuan Zhang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, China
| | - Genquan Yan
- Department of pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
114
|
Yang F, Jian XE, Chen L, Ma YF, Liu YX, You WW, Zhao PL. Discovery of new indole-based 1,2,4-triazole derivatives as potent tubulin polymerization inhibitors with anticancer activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj03892c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thirty-six novel indole-based 1,2,4-triazole derivatives were designed and synthesized through the molecular hybrid strategy.
Collapse
Affiliation(s)
- Fang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yu-Feng Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yu-Xia Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
115
|
Wan Y, Long J, Gao H, Tang Z. 2-Aminothiazole: A privileged scaffold for the discovery of anti-cancer agents. Eur J Med Chem 2020; 210:112953. [PMID: 33148490 DOI: 10.1016/j.ejmech.2020.112953] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022]
Abstract
Cancer has been the second heath killer being next only to cardiovascular diseases in human society. Although many efforts have been taken for cancer therapy and many achievements have been yielded in the diagnosis and treatment of cancer, the current first-line anti-cancer agents are insufficient owing to the emergence of multi-drug resistance and side effects. Therefore, it is urgent to develop new anti-cancer agents with high activity and low toxicity. 2-Aminothiazole is a class of important scaffold which widely distributes in many natural and synthetic compounds with many pharmacological effects including the potential anti-cancer activity. In this review, we summarized the recent progress of 2-aminothiazole as a privileged scaffold for the discovery of anti-cancer agents based on biological targets, such as tubulin protein, histone acetylase/histone deacetylase (HAT/HDAC), phosphatidylinositol 3-kinases (PI3Ks), Src/Abl kinase, BRAF kinase, epidermal growth factor receptor (EGFR) kinase and sphingosine kinase (SphK), and also investigated the structure-activity relationships (SARs) of most compounds. It is believed that this review could be helpful for medicinal chemists in the discovery of more anti-cancer agents bearing 2-aminothiazole scaffold with excellent activity and high therapeutic index.
Collapse
Affiliation(s)
- Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China.
| | - Jiabing Long
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Han Gao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China; Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| |
Collapse
|
116
|
Yang F, Jian XE, Diao PC, Huo XS, You WW, Zhao PL. Synthesis, and biological evaluation of 3,6-diaryl-[1,2,4]triazolo[4,3-a]pyridine analogues as new potent tubulin polymerization inhibitors. Eur J Med Chem 2020; 204:112625. [DOI: 10.1016/j.ejmech.2020.112625] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/08/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
|
117
|
Borys F, Joachimiak E, Krawczyk H, Fabczak H. Intrinsic and Extrinsic Factors Affecting Microtubule Dynamics in Normal and Cancer Cells. Molecules 2020; 25:E3705. [PMID: 32823874 PMCID: PMC7464520 DOI: 10.3390/molecules25163705] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Microtubules (MTs), highly dynamic structures composed of α- and β-tubulin heterodimers, are involved in cell movement and intracellular traffic and are essential for cell division. Within the cell, MTs are not uniform as they can be composed of different tubulin isotypes that are post-translationally modified and interact with different microtubule-associated proteins (MAPs). These diverse intrinsic factors influence the dynamics of MTs. Extrinsic factors such as microtubule-targeting agents (MTAs) can also affect MT dynamics. MTAs can be divided into two main categories: microtubule-stabilizing agents (MSAs) and microtubule-destabilizing agents (MDAs). Thus, the MT skeleton is an important target for anticancer therapy. This review discusses factors that determine the microtubule dynamics in normal and cancer cells and describes microtubule-MTA interactions, highlighting the importance of tubulin isoform diversity and post-translational modifications in MTA responses and the consequences of such a phenomenon, including drug resistance development.
Collapse
Affiliation(s)
- Filip Borys
- Laboratory of Cytoskeleton and Cilia Biology Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland;
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland;
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
| |
Collapse
|
118
|
He J, Zhang M, Tang L, liu J, Zhong J, Wang W, Xu JP, Wang HT, Li XF, Zhou ZZ. Synthesis, Biological Evaluation, and Molecular Docking of Arylpyridines as Antiproliferative Agent Targeting Tubulin. ACS Med Chem Lett 2020; 11:1611-1619. [PMID: 32832031 DOI: 10.1021/acsmedchemlett.0c00278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Mimicking different pharmacophoric units into one scaffold is a promising structural modification tool to design new drugs with enhanced biological properties. To continue our research on the tubulin inhibitors, the synthesis and biological evaluation of arylpyridine derivatives (9-29) are described herein. Among these compounds, 6-arylpyridines (13-23) bearing benzo[d]imidazole side chains at the 2-position of pyridine ring displayed selective antiproliferative activities against HT-29 cells. More interestingly, 2-trimethoxyphenylpyridines 25, 27, and 29 bearing benzo[d]imidazole and benzo[d]oxazole side chains displayed more broad-spectrum antitumor activities against all tested cancer cell lines. 29 bearing a 6-methoxybenzo[d]oxazole group exhibited comparable activities against A549 and U251 cells to combretastatin A-4 (CA-4) and lower cytotoxicities than CA-4 and 5-Fu. Further investigations revealed 29 displays strong tubulin polymerization inhibitory activity (IC50 = 2.1 μM) and effectively binds at the colchicine binding site and arrests the cell cycle of A549 in the G2/M phase by disrupting the microtubules network.
Collapse
Affiliation(s)
- JiaPeng He
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mao Zhang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lv Tang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jie liu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - JiaHong Zhong
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenya Wang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiang-Ping Xu
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry Education, Southern Medical University, Guangzhou 510515, China
| | - Hai-Tao Wang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Fang Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
119
|
Deng LJ, Qi M, Li N, Lei YH, Zhang DM, Chen JX. Natural products and their derivatives: Promising modulators of tumor immunotherapy. J Leukoc Biol 2020; 108:493-508. [PMID: 32678943 PMCID: PMC7496826 DOI: 10.1002/jlb.3mr0320-444r] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
A wealth of evidence supports the role of tumor immunotherapy as a vital therapeutic option in cancer. In recent decades, accumulated studies have revealed the anticancer activities of natural products and their derivatives. Increasing interest has been driven toward finding novel potential modulators of tumor immunotherapy from natural products, a hot research topic worldwide. These works of research mainly focused on natural products, including polyphenols (e.g., curcumin, resveratrol), cardiotonic steroids (e.g., bufalin and digoxin), terpenoids (e.g., paclitaxel and artemisinins), and polysaccharide extracts (e.g., lentinan). Compelling data highlight that natural products have a promising future in tumor immunotherapy. Considering the importance and significance of this topic, we initially discussed the integrated research progress of natural products and their derivatives, including target T cells, macrophages, B cells, NKs, regulatory T cells, myeloid‐derived suppressor cells, inflammatory cytokines and chemokines, immunogenic cell death, and immune checkpoints. Furthermore, these natural compounds inactivate several key pathways, including NF‐κB, PI3K/Akt, MAPK, and JAK/STAT pathways. Here, we performed a deep generalization, analysis, and summarization of the previous achievements, recent progress, and the bottlenecks in the development of natural products as tumor immunotherapy. We expect this review to provide some insight for guiding future research.
Collapse
Affiliation(s)
- Li-Juan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Nan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu-He Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Jia-Xu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
120
|
Shuai W, Li X, Li W, Xu F, Lu L, Yao H, Yang L, Zhu H, Xu S, Zhu Z, Xu J. Design, synthesis and anticancer properties of isocombretapyridines as potent colchicine binding site inhibitors. Eur J Med Chem 2020; 197:112308. [DOI: 10.1016/j.ejmech.2020.112308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
|
121
|
Wu Z, Knapp S, Hruby V. Template-based alignment modeling: an innovative ligand-based approach for medicinal chemists. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
122
|
Li S, Zhao W, Liang N, Xu Y, Kawashima Y, Sun S. Multifunctional micelles self-assembled from hyaluronic acid conjugate for enhancing anti-tumor effect of paclitaxel. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
123
|
Willis C, Nyffeler J, Harrill J. Phenotypic Profiling of Reference Chemicals across Biologically Diverse Cell Types Using the Cell Painting Assay. SLAS DISCOVERY 2020; 25:755-769. [PMID: 32546035 DOI: 10.1177/2472555220928004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell Painting is a high-throughput phenotypic profiling assay that uses fluorescent cytochemistry to visualize a variety of organelles and high-content imaging to derive a large number of morphological features at the single-cell level. Most Cell Painting studies have used the U-2 OS cell line for chemical or functional genomics screening. The Cell Painting assay can be used with many other human-derived cell types, given that the assay is based on the use of fluoroprobes that label organelles that are present in most (if not all) human cells. Questions remain, however, regarding the optimization steps required and overall ease of deployment of the Cell Painting assay to novel cell types. Here, we used the Cell Painting assay to characterize the phenotypic effects of 14 phenotypic reference chemicals in concentration-response screening mode across six biologically diverse human-derived cell lines (U-2 OS, MCF7, HepG2, A549, HTB-9 and ARPE-19). All cell lines were labeled using the same cytochemistry protocol, and the same set of phenotypic features was calculated. We found it necessary to optimize image acquisition settings and cell segmentation parameters for each cell type, but did not adjust the cytochemistry protocol. For some reference chemicals, similar subsets of phenotypic features corresponding to a particular organelle were associated with the highest-effect magnitudes in each affected cell type. Overall, for certain chemicals, the Cell Painting assay yielded qualitatively similar biological activity profiles among a group of diverse, morphologically distinct human-derived cell lines without the requirement for cell type-specific optimization of cytochemistry protocols.
Collapse
Affiliation(s)
- Clinton Willis
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA.,Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, USA
| | - Johanna Nyffeler
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA.,Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA
| |
Collapse
|
124
|
Jasmer DP, Rosa BA, Tyagi R, Bulman CA, Beerntsen B, Urban JF, Sakanari J, Mitreva M. De novo identification of toxicants that cause irreparable damage to parasitic nematode intestinal cells. PLoS Negl Trop Dis 2020; 14:e0007942. [PMID: 32453724 PMCID: PMC7274465 DOI: 10.1371/journal.pntd.0007942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/05/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Efforts to identify new drugs for therapeutic and preventive treatments against parasitic nematodes have gained increasing interest with expanding pathogen omics databases and drug databases from which new anthelmintic compounds might be identified. Here, a novel approach focused on integrating a pan-Nematoda multi-omics data targeted to a specific nematode organ system (the intestinal tract) with evidence-based filtering and chemogenomic screening was undertaken. Based on de novo computational target prioritization of the 3,564 conserved intestine genes in A. suum, exocytosis was identified as a high priority pathway, and predicted inhibitors of exocytosis were tested using the large roundworm (Ascaris suum larval stages), a filarial worm (Brugia pahangi adult and L3), a whipworm (Trichuris muris adult), and the non-parasitic nematode Caenorhabditis elegans. 10 of 13 inhibitors were found to cause rapid immotility in A. suum L3 larvae, and five inhibitors were effective against the three phylogenetically diverse parasitic nematode species, indicating potential for a broad spectrum anthelmintics. Several distinct pathologic phenotypes were resolved related to molting, motility, or intestinal cell and tissue damage using conventional and novel histologic methods. Pathologic profiles characteristic for each inhibitor will guide future research to uncover mechanisms of the anthelmintic effects and improve on drug designs. This progress firmly validates the focus on intestinal cell biology as a useful resource to develop novel anthelmintic strategies.
Collapse
Affiliation(s)
- Douglas P Jasmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Rahul Tyagi
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christina A Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Brenda Beerntsen
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Joseph F Urban
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, Maryland, United States of America
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
125
|
Liu H, Fu Q, Lu Y, Zhang W, Yu P, Liu Z, Sun X. Anti-tubulin agent vinorelbine inhibits metastasis of cancer cells by regulating epithelial-mesenchymal transition. Eur J Med Chem 2020; 200:112332. [PMID: 32473523 DOI: 10.1016/j.ejmech.2020.112332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer invasion and metastasis are the leading causes of death. The process of metastasis or tumor cell dissemination is still much of a mystery. Emerging evidence has shown that epithelial-mesenchymal transition (EMT) plays a vital role in the progression of malignant tumor including the inducing cell invasion and metastasis as well as promoting drug resistance. Vinorelbine is a traditional chemotherapeutic agent for treatment of lung cancer and breast cancer by the selectivity to mitotic microtubules. The aim of this study was to investigate the effect of vinorelbine on three metastatic cancer cells including lung cancer (H1975), liver cancer (HepG2), and colon cancer (HCT116) cells through inhibition of metastatic abilities and EMT program. Vinorelbine inhibited the cancer cell proliferation by MTT and colony formation assays and inducing G2/M arrest and cell apoptosis via regulation of Bax, Bcl-2, and Bcl-xL. Vinorelbine decrease the migration and invasion ability of the cancer cells by wound healing assay and Tran swell test. The molecular mechanisms of vinorelbine suppressing the metastatic phenotypes of cancer cells through modulation of E-cadherin, N-cadherin, vimentin and transcription factors Snail, MMP-2 and MMP-9. Our results demonstrated that vinorelbine inhibited the cancer cell metastasis through a reduction in metastatic mobility, such as migration, invasion, and the EMT. It provided the evidence that vinorelbine can be used alone or with other agents for treatment of metastatic lung cancer, liver cancer and colon cancer.
Collapse
Affiliation(s)
- Hongyu Liu
- School of Basic Medical Sciences, Guangzhou University of Traditional Chinese Medicine, Guangdong, 510000, PR China
| | - Qingshan Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Yao Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Wenqiang Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Xiaosheng Sun
- School of Basic Medical Sciences, Guangzhou University of Traditional Chinese Medicine, Guangdong, 510000, PR China.
| |
Collapse
|
126
|
Synthesis and Biological Evaluation of 2-Substituted Benzyl-/Phenylethylamino-4-amino-5-aroylthiazoles as Apoptosis-Inducing Anticancer Agents. Molecules 2020; 25:molecules25092177. [PMID: 32384805 PMCID: PMC7248693 DOI: 10.3390/molecules25092177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Abstract
Induction of apoptosis is a common chemotherapeutic mechanism to kill cancer cells The thiazole system has been reported over the past decades as a building block for the preparation of anticancer agents. A novel series of 2-arylalkylamino-4-amino-5-(3′,4′,5′-trimethoxybenzoyl)-thiazole derivatives designed as dual inhibitors of tubulin and cyclin-dependent kinases (CDKs) were synthesized and evaluated for their antiproliferative activity in vitro against two cancer cell lines and, for selected highly active compounds, for interactions with tubulin and cyclin-dependent kinases and for cell cycle and apoptosis effects. Structure-activity relationships were elucidated for various substituents at the 2-position of the thiazole skeleton. Among the synthesized compounds, the most active analogues were found to be the p-chlorobenzylamino derivative 8e as well as the p-chloro and p-methoxyphenethylamino analogues 8f and 8k, respectively, which inhibited the growth of U-937 and SK-MEL-1 cancer cell lines with IC50 values ranging from 5.7 to 12.2 μM. On U-937 cells, the tested compounds 8f and 8k induced apoptosis in a time and concentration dependent manner. These two latter molecules did not affect tubulin polymerization (IC50 > 20 μM) nor CDK activity at a single concentration of 10 μM, suggesting alternative targets than tubulin and CDK for the compounds.
Collapse
|
127
|
Synthesis and Biological Evaluation of New Antitubulin Agents Containing 2-(3',4',5'-trimethoxyanilino)-3,6-disubstituted-4,5,6,7-tetrahydrothieno[2,3- c]pyridine Scaffold. Molecules 2020; 25:molecules25071690. [PMID: 32272719 PMCID: PMC7181277 DOI: 10.3390/molecules25071690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 01/02/2023] Open
Abstract
Two novel series of compounds based on the 4,5,6,7-tetrahydrothieno[2,3-c]pyridine and 4,5,6,7-tetrahydrobenzo[b]thiophene molecular skeleton, characterized by the presence of a 3′,4′,5′-trimethoxyanilino moiety and a cyano or an alkoxycarbonyl group at its 2- or 3-position, respectively, were designed, synthesized, and evaluated for antiproliferative activity on a panel of cancer cell lines and for selected highly active compounds, inhibition of tubulin polymerization, and cell cycle effects. We have identified the 2-(3′,4′,5′-trimethoxyanilino)-3-cyano-6-methoxycarbonyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivative 3a and its 6-ethoxycarbonyl homologue 3b as new antiproliferative agents that inhibit cancer cell growth with IC50 values ranging from 1.1 to 4.7 μM against a panel of three cancer cell lines. Their interaction with tubulin at micromolar levels leads to the accumulation of cells in the G2/M phase of the cell cycle and to an apoptotic cell death. The cell apoptosis study found that compounds 3a and 3b were very effective in the induction of apoptosis in a dose-dependent manner. These two derivatives did not induce cell death in normal human peripheral blood mononuclear cells, suggesting that they may be selective against cancer cells. Molecular docking studies confirmed that the inhibitory activity of these molecules on tubulin polymerization derived from binding to the colchicine site.
Collapse
|
128
|
Dhuguru J, Skouta R. Role of Indole Scaffolds as Pharmacophores in the Development of Anti-Lung Cancer Agents. Molecules 2020; 25:E1615. [PMID: 32244744 PMCID: PMC7181244 DOI: 10.3390/molecules25071615] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of death in men and women worldwide, affecting millions of people. Between the two types of lung cancers, non-small cell lung cancer (NSCLC) is more common than small cell lung cancer (SCLC). Besides surgery and radiotherapy, chemotherapy is the most important method of treatment for lung cancer. Indole scaffold is considered one of the most privileged scaffolds in heterocyclic chemistry. Indole may serve as an effective probe for the development of new drug candidates against challenging diseases, including lung cancer. In this review, we will focus on discussing the existing indole based pharmacophores in the clinical and pre-clinical stages of development against lung cancer, along with the synthesis of some of the selected anti-lung cancer drugs. Moreover, the basic mechanism of action underlying indole based anti-lung cancer treatment, such as protein kinase inhibition, histone deacetylase inhibition, DNA topoisomerase inhibition, and tubulin inhibition will also be discussed.
Collapse
Affiliation(s)
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
129
|
Lin BY, Liu WL, Huang H, Hu YG, Gong S, Meng YH, Yan J, Lu YZ, Chen HL. AQ-4, a deuterium-containing molecule, acts as a microtubule-targeting agent for cancer treatment. Eur J Pharmacol 2020; 877:173093. [PMID: 32234525 DOI: 10.1016/j.ejphar.2020.173093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 11/25/2022]
Abstract
The important physiological function of microtubules makes them an indispensable and clinically effective target of anti-tumor agents. Herein, we sought to design, synthesize, and evaluate a novel 4-anilinoquinazoline derivative and identify its anti-tumor activity in vitro and in vivo. The novel compound, N-(4-methoxyphenyl)-N-methyl-2-(methyl-d3)quinazolin-4-amine (AQ-4), was identified as a representative scaffold and potent microtubule-targeting agent. As a promising antimitotic agent, AQ-4 displayed remarkable anti-tumor activity with an average IC50 value of 19 nM across a panel of 14 human cancer cell lines. AQ-4 also exhibited nearly identical potent activities against drug-resistant cells, with no evidence of toxicity towards normal cells. A further target verification study revealed that AQ-4 targets the tubulin-microtubule system by significantly inhibiting tubulin polymerization and disrupting the intracellular microtubule spindle dynamics. According to the results of mechanism study, AQ-4 induced cell cycle arrest in the G2/M phase, promoting evident apoptosis and a collapses of mitochondrial membrane potential. The superior anti-tumor effect of AQ-4 in vivo suggests that it should be further investigated to validate its use for cancer therapy.
Collapse
Affiliation(s)
- Bi-Yun Lin
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Wen-Lin Liu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Ya-Guang Hu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Sha Gong
- Laboratory of Pathology Department, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yu-Hua Meng
- Laboratory of Pathology Department, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Jun Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Yuan-Zhi Lu
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| | - Hua-Lin Chen
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
130
|
Liu Y, Wu Y, Sun L, Gu Y, Hu L. Synthesis and structure-activity relationship study of water-soluble carbazole sulfonamide derivatives as new anticancer agents. Eur J Med Chem 2020; 191:112181. [PMID: 32113125 DOI: 10.1016/j.ejmech.2020.112181] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Here, we formulated and investigated the structure-activity relationships of novel N-substituted carbazole sulfonamide derivatives with improved physicochemical properties. Most of these new compounds displayed good aqueous solubility. Certain molecules presented strong in vitro antiproliferative and in vivo antitumor activity. Relative to the control, 50 mg/kg compound 3v substantially reduced human HepG2 xenograft mouse tumor growth by 54.5% and its efficacy was comparable to that of CA-4P. Compound 3h demonstrated anticancer efficacy in both subcutaneous and orthotopic HepG2 xenograft mouse models. We also developed a novel synthetic method for 7-hydroxy-substituted carbazole sulfonamides. Compared with the control, 25 mg/kg compound 4c inhibited human HepG2 xenograft mouse tumor growth by 71.7% and was more potent than 50 mg/kg CA-4P with only 50% tumor shrinkage efficacy. Among the three water-soluble carbazole sulfonamide derivatives formulated in the present study, compound 4c displayed the most effective tumor growth inhibition in vivo and merit further investigation as potential antitumor agents for cancer therapy.
Collapse
Affiliation(s)
- Yonghua Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yanbin Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China
| | - Lianqi Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China
| | - Yuxi Gu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China
| | - Laixing Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
131
|
Wang T, Wu C, Wang C, Zhang G, Arnst KE, Yao Y, Zhang Z, Wang Y, Pu D, Li W. Unraveling the molecular mechanism of BNC105, a phase II clinical trial vascular disrupting agent, provides insights into drug design. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30008-5. [PMID: 32085900 DOI: 10.1016/j.bbrc.2019.12.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023]
Abstract
Microtubules are made up of tubulin protein and play a very important part in numerous cellular events of eukaryotic cells, which is why they are seen as attractive targets for tumor chemotherapy. BNC105, a known vascular targeting agent, has entered in phase II clinical trials. It has previously been confirmed that BNC105 is an effective microtubule targeting agent for various cancers. BNC105 exhibits selectivity for tumor cells, elicits vascular disrupting effects, and inhibits tumor growth. However, the molecular mechanism of BNC105 is still elusive. Herein, the crystal structure of BNC105 in complex with tubulin protein is revealed, demonstrating the its interaction with the colchicine binding site. In order to thoroughly evaluate its molecular mechanism from a structural-activity-relationship standpoint, the binding mode of tubulin to BNC-105 is compared with colchicine, CA-4 and other BNC-105 derivatives. Our study not only confirms the detailed interactions of the BNC105-tubulin complex, but also offer substantial structural foundation for the design and development of novel benzo[b]furan derivatives as microtubule targeting agents.
Collapse
Affiliation(s)
- Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, PR China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Guiping Zhang
- Bontac Bio-Engineering (Shenzhen) Co., Ltd, Shenzhen, Guangdong, 518102, PR China
| | - Kinsie E Arnst
- The University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, Memphis, TN, 38163, United States
| | - Yijun Yao
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Zhixiong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, PR China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Dan Pu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
132
|
Rocha-Garduño G, Hernández-Martínez NA, Colín-Lozano B, Estrada-Soto S, Hernández-Núñez E, Prieto-Martínez FD, Medina-Franco JL, Chale-Dzul JB, Moo-Puc R, Navarrete-Vázquez G. Metronidazole and Secnidazole Carbamates: Synthesis, Antiprotozoal Activity, and Molecular Dynamics Studies. Molecules 2020; 25:molecules25040793. [PMID: 32059495 PMCID: PMC7071106 DOI: 10.3390/molecules25040793] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
We prepared a series of 10 carbamates derivatives based on two common antiprotozoal drugs: metronidazole (1–5) and secnidazole (6–10). The compounds were tested in vitro against a set of two amitochondriate protozoa: Giardia duodenalis and Trichomonas vaginalis. Compounds 1–10 showed strong antiprotozoal activities, with potency values in the low micromolar-to-nanomolar range, being more active than their parent drugs. Metronidazole carbamate (1) was the most active of the series, with nanomolar activities against G. duodenalis (IC50 = 460 nM) and T. vaginalis (IC50 = 60 nM). The potency of compound 1 was 10 times greater than that of metronidazole against both parasites. None of compounds showed in vitro cytotoxicity against VERO cells tested at 100 µM. Molecular dynamics of compounds 1–10, secnidazole, and metronidazole onto the ligand binding site of pyruvate–ferredoxin oxidoreductase of T. vaginalis and the modeled β-tubulin of G. duodenalis revealed putative molecular interactions with key residues in the binding site of both proteins implicated in the mode of action of the parent drugs.
Collapse
Affiliation(s)
- Genaro Rocha-Garduño
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico; (G.R.-G.); (N.A.H.-M.); (B.C.-L.); (S.E.-S.)
| | - Norma Angélica Hernández-Martínez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico; (G.R.-G.); (N.A.H.-M.); (B.C.-L.); (S.E.-S.)
| | - Blanca Colín-Lozano
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico; (G.R.-G.); (N.A.H.-M.); (B.C.-L.); (S.E.-S.)
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico; (G.R.-G.); (N.A.H.-M.); (B.C.-L.); (S.E.-S.)
| | - Emanuel Hernández-Núñez
- Cátedra CONACyT, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, Yucatán 97310, Mexico;
| | - Fernando Daniel Prieto-Martínez
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, México City 04510, Mexico; (F.D.P.-M.); (J.L.M.-F.)
| | - José L. Medina-Franco
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, México City 04510, Mexico; (F.D.P.-M.); (J.L.M.-F.)
| | - Juan Bautista Chale-Dzul
- Laboratorio de Apoyo a la Vigilancia Epidemiológica, Hospital de Especialidades 1, Centro Médico Nacional Ignacio García Téllez, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico;
| | - Rosa Moo-Puc
- Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad, Centro Médico Nacional Ignacio García Téllez, Instituto Mexicano del Seguro Social, Mérida 97000, Yucatán, Mexico;
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico; (G.R.-G.); (N.A.H.-M.); (B.C.-L.); (S.E.-S.)
- Correspondence: ; Tel.: +52-777-329-7089
| |
Collapse
|
133
|
Ansari M, Shokrzadeh M, Karima S, Rajaei S, Fallah M, Ghassemi-Barghi N, Ghasemian M, Emami S. New thiazole-2(3H)-thiones containing 4-(3,4,5-trimethoxyphenyl) moiety as anticancer agents. Eur J Med Chem 2020; 185:111784. [DOI: 10.1016/j.ejmech.2019.111784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
|
134
|
Indole: A privileged scaffold for the design of anti-cancer agents. Eur J Med Chem 2019; 183:111691. [DOI: 10.1016/j.ejmech.2019.111691] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022]
|
135
|
Yong C, Devine SM, Gao X, Yan A, Callaghan R, Capuano B, Scammells PJ. A Novel Class of N-Sulfonyl and N-Sulfamoyl Noscapine Derivatives that Promote Mitotic Arrest in Cancer Cells. ChemMedChem 2019; 14:1968-1981. [PMID: 31714012 DOI: 10.1002/cmdc.201900477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/12/2019] [Indexed: 01/14/2023]
Abstract
Noscapine displays weak anticancer efficacy and numerous research efforts have attempted to generate more potent noscapine analogues. These modifications included the replacement of the N-methyl group in the 6'-position with a range of substituents, where N-ethylcarbamoyl substitution was observed to possess enhanced anticancer activity. Herein, we describe advances in this area, namely the synthesis and pharmacological evaluation of a series of N-sulfonyl and N-sulfamoyl noscapine derivatives. A number of these sulfonyl-containing noscapinoids demonstrated improved activities compared to noscapine. ((R)-5-((S)-4,5-Dimethoxy-1,3-dihydroisobenzofuran-1-yl)-4-methoxy-6-((1-methyl-1H-imidazol-4-yl)sulfonyl)-5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinoline) (14 q) displayed sub-micromolar activities of 560, 980, 271 and 443 nM against MCF-7, PANC-1, MDA-MB-435 and SK-MEL-5 cells, respectively. This antiproliferative effect was also maintained against drug-resistant NCI/AdrRES cells despite high expression of the multidrug efflux pump, P-glycoprotein.
Collapse
Affiliation(s)
- Cassandra Yong
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Shane M Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Xuexin Gao
- Research School of Biology and Medical School, Australian National University, Canberra, ACT 0200, Australia
| | - Angelina Yan
- Research School of Biology and Medical School, Australian National University, Canberra, ACT 0200, Australia
| | - Richard Callaghan
- Research School of Biology and Medical School, Australian National University, Canberra, ACT 0200, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
136
|
Zhang Q, Hu X, Wan G, Wang J, Li L, Wu X, Liu Z, Yu L. Discovery of 3-(((9H-purin-6-yl)amino)methyl)-4,6-dimethylpyridin-2(1H)-one derivatives as novel tubulin polymerization inhibitors for treatment of cancer. Eur J Med Chem 2019; 184:111728. [PMID: 31610375 DOI: 10.1016/j.ejmech.2019.111728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 02/05/2023]
Abstract
A new series of 3-(((9H-purin-6-yl)amino)methyl)-4,6-dimethylpyridin-2(1H)-one derivatives were designed, synthesized and demonstrated to act as tubulin polymerization inhibitors. These new derivatives showed significant antitumor activities, among which SKLB0533 demonstrated to be the most potent compound, with IC50 values ranging from 44.5 to 135.5 nM against seven colorectal carcinoma (CRC) cell lines. Remarkably, SKLB0533 exhibited no activity against other potential targets, such as 420 kinases and EZH2. Besides, SKLB0533 inhibited tubulin polymerization, arrested the cell cycle at the G2/M phase and induced apoptosis in CRC cells. Furthermore, SKLB0533 suppressed tumour growth in the HCT116 xenograft model without inducing notable major organ-related toxicity, suggesting that SKLB0533 could be used as a promising lead compound for the development of new antitumor agents.
Collapse
Affiliation(s)
- Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Xi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Guoquan Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Jia Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Lu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Xiuli Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Zhihao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China.
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China.
| |
Collapse
|