101
|
Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res 2016; 126:157-84. [PMID: 27505294 DOI: 10.1016/j.eplepsyres.2016.05.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/06/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
Animal seizure and epilepsy models continue to play an important role in the early discovery of new therapies for the symptomatic treatment of epilepsy. Since 1937, with the discovery of phenytoin, almost all anti-seizure drugs (ASDs) have been identified by their effects in animal models, and millions of patients world-wide have benefited from the successful translation of animal data into the clinic. However, several unmet clinical needs remain, including resistance to ASDs in about 30% of patients with epilepsy, adverse effects of ASDs that can reduce quality of life, and the lack of treatments that can prevent development of epilepsy in patients at risk following brain injury. The aim of this review is to critically discuss the translational value of currently used animal models of seizures and epilepsy, particularly what animal models can tell us about epilepsy therapies in patients and which limitations exist. Principles of translational medicine will be used for this discussion. An essential requirement for translational medicine to improve success in drug development is the availability of animal models with high predictive validity for a therapeutic drug response. For this requirement, the model, by definition, does not need to be a perfect replication of the clinical condition, but it is important that the validation provided for a given model is fit for purpose. The present review should guide researchers in both academia and industry what can and cannot be expected from animal models in preclinical development of epilepsy therapies, which models are best suited for which purpose, and for which aspects suitable models are as yet not available. Overall further development is needed to improve and validate animal models for the diverse areas in epilepsy research where suitable fit for purpose models are urgently needed in the search for more effective treatments.
Collapse
|
102
|
Kaur H, Kumar B, Medhi B. Antiepileptic drugs in development pipeline: A recent update. eNeurologicalSci 2016; 4:42-51. [PMID: 29430548 PMCID: PMC5803110 DOI: 10.1016/j.ensci.2016.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 04/16/2016] [Accepted: 06/15/2016] [Indexed: 12/18/2022] Open
Abstract
Epilepsy is the most common neurological disorder which significantly affects the quality of life and poses a health as well as economic burden on society. Epilepsy affects approximately 70 million people in the world. The present article reviews the scientific rationale, brief pathophysiology of epilepsy and newer antiepileptic drugs which are presently under clinical development. We have searched the investigational drugs using the key words ‘antiepileptic drugs,’ ‘epilepsy,’ ‘Phase I,’ ‘Phase II’ and ‘Phase III’ in American clinical trial registers (clinicaltrials.gov), the relevant published articles using National Library of Medicine's PubMed database, company websites and supplemented results with a manual search of cross-references and conference abstracts. This review provides a brief description about the antiepileptic drugs which are targeting different mechanisms and the clinical development status of these drugs. Besides the presence of old as well as new AEDs, still there is a need of new drugs or the modified version of old drugs in order to make affected people free of seizures. An optimistic approach should be used to translate the success of preclinical testing to clinical practice. There is an urgent need to improve animal models and to explore new targets with better understanding in order to develop the novel drugs with more efficacy and safety. This review primarily focused on antiepileptic drugs under clinical development. The more realistic approach is needed to discover and develop the novel antiepileptic drugs. Modification of conventional drugs or search of newer targets can lead to development of promising antiepileptic drugs. To develop more efficacious and safe drugs for treatment of epilepsy and refractory seizures There are a number of novel antiepileptic compounds which are under various stages of drug development.
Collapse
Affiliation(s)
- Harjeet Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Baldeep Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
103
|
Mawasi H, Bibi D, Shekh-Ahmad T, Shaul C, Blotnik S, Bialer M. Pharmacokinetic-Pharmacodynamic Correlation and Brain Penetration of sec-Butylpropylacetamide, a New CNS Drug Possessing Unique Activity against Status Epilepticus. Mol Pharm 2016; 13:2492-6. [PMID: 27218460 DOI: 10.1021/acs.molpharmaceut.6b00221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
sec-Butylpropylacetamide (SPD) is the amide derivative of valproic acid (VPA). SPD possess a wide-spectrum anticonvulsant profile better than that of VPA and blocks status epilepticus (SE) induced by pilocarpine and organophosphates. The activity of SPD on SE is better than that of benzodiazepines (BZDs) in terms of the ability to block SE when given 20-60 min after the beginning of a seizure. However, intraperitoneal (i.p.) administration to rats cannot be extrapolated to humans. Consequently, in the current study a comparative pharmacokinetic (PK)-pharmacodynamic analysis of SPD was conducted following i.p., intramuscular (i.m.), and intravenous (i.v.) administrations to rats. SPD brain and plasma levels were quantified at various times after dosing following i.p. (60 mg/kg), i.v. (60 mg/kg), and i.m. administrations (120 mg/kg) to rats, and the major PK parameters of SPD were estimated. The antiseizure (SE) efficacies of SPD and its individual stereoisomers were assessed in the pilocarpine-induced BZD-resistant SE model following i.p. and i.m. administrations to rats at 30 min after seizure onset. The absolute bioavailabilities of SPD following i.p. and i.m. administrations were 76% (i.p.) and 96% (i.p.), and its clearance and half-life were 1.8-1.5 L h(-1) kg(-1) and 0.5-1.7 h, respectively. The SPD brain-to-plasma AUC ratios were 1.86 (i.v.), 2.31 (i.p.), and 0.77 (i.m.). Nevertheless, the ED50 values of SPD and its individual stereoisomers were almost identical in the rat pilocarpine-induced SE model following i.p. and i.m. administrations. In conclusion, in rats SPD is completely or almost completely absorbed after i.m. and i.p. administration and readily penetrates into the brain. Consequently, in spite of PK differences, the activities of SPD in the BZD-resistant SE model following i.m. and i.p. administrations are similar.
Collapse
Affiliation(s)
- Hafiz Mawasi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem , Jerusalem 91120, Israel
| | - David Bibi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem , Jerusalem 91120, Israel
| | - Tawfeeq Shekh-Ahmad
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem , Jerusalem 91120, Israel
| | - Chanan Shaul
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem , Jerusalem 91120, Israel.,Clinical Pharmacology Unit, Division of Medicine, Hadassah University Hospital , Jerusalem 91120, Israel
| | - Simcha Blotnik
- Clinical Pharmacology Unit, Division of Medicine, Hadassah University Hospital , Jerusalem 91120, Israel
| | - Meir Bialer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem , Jerusalem 91120, Israel.,David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem , Jerusalem 91120, Israel
| |
Collapse
|
104
|
Dlugos D, Worrell G, Davis K, Stacey W, Szaflarski J, Kanner A, Sunderam S, Rogawski M, Jackson-Ayotunde P, Loddenkemper T, Diehl B, Fureman B, Dingledine R. 2014 Epilepsy Benchmarks Area III: Improve Treatment Options for Controlling Seizures and Epilepsy-Related Conditions Without Side Effects. Epilepsy Curr 2016; 16:192-7. [PMID: 27330452 PMCID: PMC4913858 DOI: 10.5698/1535-7511-16.3.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Dennis Dlugos
- Professor of Neurology and Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Greg Worrell
- Associate Professor of Neurology, Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Kathryn Davis
- Assistant Professor, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - William Stacey
- Assistant Professor of Neurology, Department of Neurology, Department of Biomedical Engineering, University of Michigan
| | - Jerzy Szaflarski
- Professor, Department of Neurology, University of Alabama at Birmingham Department of Neurology and UAB Epilepsy Center, Birmingham, AL
| | - Andres Kanner
- Profressor of Clinical Neurology, Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL
| | - Sridhar Sunderam
- Assistant Professor, Department of Biomedical Engineering, University of Kentucky, Lexington, KY
| | - Mike Rogawski
- Professor, Center for Neurotherapeutics Discovery and Development and Department of Neurology, UC Davis School of Medicine, Sacramento, CA
| | - Patrice Jackson-Ayotunde
- Associate Professor, Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, MD
| | - Tobias Loddenkemper
- Associate Professor, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital & Harvard Medical School, Boston, MA
| | - Beate Diehl
- Clinical Neurophysiologist and Neurologist, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - Brandy Fureman
- Program Director, Channels Synapses and Circuits Cluster, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Ray Dingledine
- Professor and Chair, Department of Pharmacology, Emory University, Atlanta, GA
| | - for the Epilepsy Benchmark Stewards
- Professor of Neurology and Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Associate Professor of Neurology, Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, MN
- Assistant Professor, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Assistant Professor of Neurology, Department of Neurology, Department of Biomedical Engineering, University of Michigan
- Professor, Department of Neurology, University of Alabama at Birmingham Department of Neurology and UAB Epilepsy Center, Birmingham, AL
- Profressor of Clinical Neurology, Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL
- Assistant Professor, Department of Biomedical Engineering, University of Kentucky, Lexington, KY
- Professor, Center for Neurotherapeutics Discovery and Development and Department of Neurology, UC Davis School of Medicine, Sacramento, CA
- Associate Professor, Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, MD
- Associate Professor, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital & Harvard Medical School, Boston, MA
- Clinical Neurophysiologist and Neurologist, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Program Director, Channels Synapses and Circuits Cluster, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Professor and Chair, Department of Pharmacology, Emory University, Atlanta, GA
| |
Collapse
|
105
|
Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A. Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev Neurother 2016; 16:671-80. [PMID: 27086593 DOI: 10.1080/14737175.2016.1175303] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Huperzine A (HupA) is an acetylcholinesterase (AChE) inhibitor extracted from Huperzia Serrata, a firmoss, which has been used for various diseases in traditional Chinese medicine for fever and inflammation. More recently, it has been used in Alzheimer's disease and other forms of dementia with a presumed mechanism of action via central nicotinic and muscarinic receptors. HupA is marketed as a dietary supplement in the U.S. This article reviews newly proposed neuroprotective and anticonvulsant HupA properties based on animal studies. HupA exerts its effects mainly via α7nAChRs and α4β2nAChRs, thereby producing a potent anti-inflammatory response by decreasing IL-1β, TNF-α protein expression, and suppressing transcriptional activation of NF-κB signaling. Thus, it provides protection from excitotoxicity and neuronal death as well as increase in GABAergic transmission associated with anticonvulsant activity.
Collapse
Affiliation(s)
- U Damar
- a F.M. Kirby Neurobiology Center, Department of Neurology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| | - R Gersner
- a F.M. Kirby Neurobiology Center, Department of Neurology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| | - J T Johnstone
- b Research and Development - Neurology , Biscayne Pharmaceuticals, Inc ., Miami , FL , USA
| | - S Schachter
- c Departments of Neurology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital , Harvard Medical School , Boston , MA , USA
| | - A Rotenberg
- a F.M. Kirby Neurobiology Center, Department of Neurology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
106
|
Abstract
Approximately 50% of all pregnancies in women with epilepsy (WWE) occur unplanned. This is worrying, given the increased occurrence of obstetrical complications in WWE, including the risk of seizures and their possible consequences for both the mother and the unborn child. Hormonal contraception is usually regarded as highly effective, but it is subject to numerous bidirectional drug interactions with several antiepileptic drugs. These interactions may lead to loss of seizure control or contraceptive failure. Further concerns are loss of bone mineral density and increased seizure activity due to hormonal effects. Many physicians lack sufficient knowledge regarding these issues, and most WWE have never received adequate counseling. Moreover, several studies show that a large proportion of WWE do not take their medicines regularly. This article reviews all of these issues and offers practical recommendations for the management of contraception in WWE.
Collapse
Affiliation(s)
- Arne Reimers
- Department of Clinical Pharmacology, St Olavs University Hospital.,Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
107
|
|
108
|
Cannabidiol and epilepsy: Rationale and therapeutic potential. Pharmacol Res 2016; 107:85-92. [PMID: 26976797 DOI: 10.1016/j.phrs.2016.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/30/2022]
Abstract
Despite the introduction of new antiepileptic drugs (AEDs), the quality of life and therapeutic response for patients with epilepsy remains still poor. Unfortunately, besides several advantages, these new AEDs have not satisfactorily reduced the number of refractory patients. Therefore, the need for different other therapeutic options to manage epilepsy is still a current issue. To this purpose, emphasis has been given to phytocannabinoids, which have been medicinally used since ancient time in the treatment of neurological disorders including epilepsy. In particular, the nonpsychoactive compound cannabidiol (CBD) has shown anticonvulsant properties, both in preclinical and clinical studies, with a yet not completely clarified mechanism of action. However, it should be made clear that most phytocannabinoids do not act on the endocannabinoid system as in the case of CBD. In in vivo preclinical studies, CBD has shown significant anticonvulsant effects mainly in acute animal models of seizures, whereas restricted data exist in chronic models of epilepsy as well as in animal models of epileptogenesis. Likewise, clinical evidence seems to indicate that CBD is able to manage epilepsy both in adults and children affected by refractory seizures, with a favourable side effect profile. However, to date, clinical trials are both qualitatively and numerically limited, thus yet inconsistent. Therefore, further preclinical and clinical studies are undoubtedly needed to better evaluate the potential therapeutic profile of CBD in epilepsy, although the actually available data is promising.
Collapse
|
109
|
Łukawski K, Gryta P, Łuszczki J, Czuczwar SJ. Exploring the latest avenues for antiepileptic drug discovery and development. Expert Opin Drug Discov 2016; 11:369-82. [DOI: 10.1517/17460441.2016.1154840] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
110
|
Garrido-Acosta O, Meza-Toledo SE, Anguiano-Robledo L, Soriano-Ursúa MA, Correa-Basurto J, Davood A, Chamorro-Cevallos G. Anticonvulsant and Toxicological Evaluation of Parafluorinated/Chlorinated Derivatives of 3-Hydroxy-3-ethyl-3-phenylpropionamide. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3978010. [PMID: 27006945 PMCID: PMC4783531 DOI: 10.1155/2016/3978010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 02/07/2023]
Abstract
Although the anticonvulsant activity of 3-hydroxy-3-ethyl-3-phenylproionamide (HEPP) is well-known, its use is limited by the pharmacotoxicological profile. We herein tested its fluorinated and chlorinated derivatives (F-HEPP and Cl-HEPP) with two seizure models, maximal electroshock seizures (MES), and intraperitoneal pentylenetetrazole (PTZ) administration. Neurotoxicity was examined via the rotarod test. With in silico methods, binding was probed on possible protein targets-GABAA receptors and the sodium channel Nav1.2. The median effective doses (ED50) of HEPP, F-HEPP, and Cl-HEPP in the MES seizure model were 129.6, 87.1, and 62.0 mg/kg, respectively, and 66.4, 43.5, and in the PTZ seizure model 43.5 mg/kg. The HEPP-induced neurotoxic effect, which occurred at twice the ED50 against MES (p < 0.05), did not occur with F-HEPP or Cl-HEPP. Docking studies revealed that all tested ligands bound to GABAA receptors on a site near to the benzodiazepine binding site. However, on the sodium channel open pore Nav1.2, R-HEPP had interactions similar to those reported for phenytoin, while its enantiomer and the ligands F-HEPP and Cl-HEPP reached a site that could disrupt the passage of sodium. Our results show that, as anticonvulsant agents, parahalogen substituted compounds have an advantageous pharmacotoxicological profile compared to their precursor.
Collapse
Affiliation(s)
- Osvaldo Garrido-Acosta
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 15500 México City, DF, Mexico
| | - Sergio E. Meza-Toledo
- Laboratorio de Quimioterapia Experimental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11350 México City, DF, Mexico
| | - Liliana Anguiano-Robledo
- Laboratorio de Farmacología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 México City, DF, Mexico
| | - Marvin A. Soriano-Ursúa
- Departamento de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 México City, DF, Mexico
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 México City, DF, Mexico
| | - Asghar Davood
- Department of Medicinal Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran 19419, Iran
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11350 México City, DF, Mexico
| |
Collapse
|
111
|
Single dose efficacy evaluation of two partial benzodiazepine receptor agonists in photosensitive epilepsy patients: A placebo-controlled pilot study. Epilepsy Res 2016; 122:30-6. [PMID: 26921854 DOI: 10.1016/j.eplepsyres.2016.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 11/20/2022]
Abstract
Benzodiazepines (BZDs) are highly effective to suppress various types of seizures; however, their clinical use is limited due to adverse effects and tolerance and dependence liability. Drugs that act only as partial agonists at the BZD recognition site (initially termed "BZD receptor") of the GABAA receptor chloride ionophore complex or exhibit a GABAA receptor subtype-selectivity are thought to have advantages vs. full agonists such as diazepam and most other clinically used BZDs in that such compounds have less adverse effects and reduced or absent tolerance and dependence liability. One of such compounds, abecarnil, has been clinically evaluated as a novel anxiolytic drug, but, despite its potent preclinical anti-seizure activity, it has not yet been evaluated in patients with epilepsy. In the present proof-of-concept study, we performed a within-subject placebo-controlled, single oral dose study of abecarnil in patients with photosensitive epilepsy. Flumazenil, which is generally considered a BZD receptor antagonist, but has slight partial agonistic properties, was used for comparison. In total, 12 patients were enrolled in this study. Abecarnil, 5 or 10mg, completely abolished the photo-paroxysmal EEG response, while flumazenil, 30, 60 or 100mg, was less effective. The anti-epileptic effect of abecarnil was significantly different from both placebo and flumazenil. Sedative adverse effects were observed after abecarnil but not flumazenil. The study substantiates previous pre-clinical experiments that abecarnil exerts pronounced anti-seizure activity. Epilepsy is often associated with anxiety, so that the anxiolytic activity of abecarnil would be an added advantage when using this compound in epilepsy patients.
Collapse
|
112
|
Do traditional anti-seizure drugs have a future? A review of potential anti-seizure drugs in clinical development. Pharmacol Res 2016; 104:38-48. [DOI: 10.1016/j.phrs.2015.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 12/11/2022]
|
113
|
Klein P, Tyrlikova I, Brazdil M, Rektor I. Brivaracetam for the treatment of epilepsy. Expert Opin Pharmacother 2016; 17:283-95. [PMID: 26760311 DOI: 10.1517/14656566.2016.1135129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Approximately one third of patients with epilepsy fail to respond to existing medications. Levetiracetam is an effective antiepileptic drug (AED) postulated to act by binding to synaptic vesicle protein 2A. Brivaracetam is a novel high affinity SV2A ligand with approximately 20-fold higher affinity for SV2A protein than levetiracetam. It is at an advanced stage of clinical development for treatment of epilepsy. AREAS COVERED This article reviews animal data, pharmacokinetics, and phase 1-3 data of Brivaracetam treatment of epilepsy. Brivaracetam has broad-spectrum anticonvulsant activity in animal models. EXPERT OPINION Phase 1 studies indicated that single oral doses of 5-800 mg and repeated oral doses of up to 600 mg were well tolerated and showed favorable pharmacokinetic profile. Phase 2 studies indicated good safety and tolerability of brivaracetam in the dose range of 5-150 mg/day and provided proof of concept for efficacy in treating refractory partial onset seizures. Efficacy and safety have been evaluated in 4 phase 3 studies with dose range of 5-200 mg which have demonstrated efficacy in the range of 100-200 mg/day dose and, in most studies, also with 50 mg/day dose, and good safety and tolerability profile across 5-200 mg doses in adjunctive treatment of refractory partial onset seizures.
Collapse
Affiliation(s)
- Pavel Klein
- a Department of Neurology , Mid-Atlantic Epilepsy and Sleep Center , Bethesda , MD , USA
| | - Ivana Tyrlikova
- a Department of Neurology , Mid-Atlantic Epilepsy and Sleep Center , Bethesda , MD , USA.,b Brno Epilepsy Center, First Department of Neurology , St. Anne's Hospital , Brno , Czech Republic
| | - Milan Brazdil
- c First Department of Neurology, Central European Institute of Technology, Brno Epilepsy Center , St. Anne's Hospital, Masaryk University , Brno , Czech Republic
| | - Ivan Rektor
- c First Department of Neurology, Central European Institute of Technology, Brno Epilepsy Center , St. Anne's Hospital, Masaryk University , Brno , Czech Republic
| |
Collapse
|
114
|
Abstract
For more than 30 years, antiepileptic drug development has been based on specific assumptions regarding the neurobiology of epilepsy but all marketed drugs have not changed the proportion of drug refractory patients. It is, therefore, evident that new molecular targets need to be identified. Advances in neurobiology and molecular pharmacology are bringing into the epilepsy field new neurochemical functions such as those modulated by cannabinoid, serotonin, melatonin and galanin receptors. Among all the different compounds, the melatonin type 3 receptor agonist beprodone and cannabidiol are those at the more advanced stage of development. Interestingly, despite the structural analogies with tetrahydrocannabinol, the anticonvulsant activity of cannabidiol is not mediated by an interaction with cannabinoid receptors. Neurosteroids represent another remarkable class of drugs, and among them, ganaxolone is at the most advanced stage of development. Furthermore, for the first time, potential disease-modifying agents and techniques are entering the epilepsy market. Rapalogues such as everolimus and the antibiotic minocycline are currently under development for specific epileptic syndromes like tuberous sclerosis or Angelman syndrome. Finally, optogenetics, though still at an early stage of development, represents a futuristic therapeutic strategy for drug-refractory epilepsy.
Collapse
Affiliation(s)
- Marco Mula
- a Epilepsy Group , Atkinson Morley Regional Neuroscience Centre, St George's University Hospitals NHS Foundation Trust , London , UK.,b Institute of Medical and Biomedical Sciences , St George's University of London , London , UK
| |
Collapse
|
115
|
Gersner R, Ekstein D, Dhamne S, Schachter S, Rotenberg A. Huperzine A prophylaxis against pentylenetetrazole-induced seizures in rats is associated with increased cortical inhibition. Epilepsy Res 2015; 117:97-103. [DOI: 10.1016/j.eplepsyres.2015.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/12/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
|
116
|
Sucher NJ, Carles MC. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav 2015; 52:308-18. [PMID: 26074183 DOI: 10.1016/j.yebeh.2015.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/25/2023]
Abstract
Epilepsy is the most common chronic neurological disease, affecting about 1% of the world's population during their lifetime. Most people with epilepsy can attain a seizure-free life upon treatment with antiepileptic drugs (AEDs). Unfortunately, seizures in up to 30% do not respond to treatment. It is estimated that 90% of people with epilepsy live in developing countries, and most of them receive no drug treatment for the disease. This treatment gap has motivated investigations into the effects of plants that have been used by traditional healers all over the world to treat seizures. Extracts of hundreds of plants have been shown to exhibit anticonvulsant activity in phenotypic screens performed in experimental animals. Some of those extracts appear to exhibit anticonvulsant efficacy similar to that of synthetic AEDs. Dozens of plant-derived chemical compounds have similarly been shown to act as anticonvulsants in various in vivo and in vitro assays. To a significant degree, anticonvulsant effects of plant extracts can be attributed to widely distributed flavonoids, (furano)coumarins, phenylpropanoids, and terpenoids. Flavonoids and coumarins have been shown to interact with the benzodiazepine site of the GABAA receptor and various voltage-gated ion channels, which are targets of synthetic AEDs. Modulation of the activity of ligand-gated and voltage-gated ion channels provides an explanatory basis of the anticonvulsant effects of plant secondary metabolites. Many complex extracts and single plant-derived compounds exhibit antiinflammatory, neuroprotective, and cognition-enhancing activities that may be beneficial in the treatment of epilepsy. Thus, botanicals provide a base for target-oriented antiepileptic drug discovery and development. In the future, preclinical work should focus on the characterization of the effects of plant extracts and plant-derived compounds on well-defined targets rather than on phenotypic screening using in vivo animal models of acute seizures. At the same time, available data provide ample justification for clinical studies with selected standardized botanical extracts and plant-derived compounds. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Nikolaus J Sucher
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA.
| | - Maria C Carles
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA
| |
Collapse
|
117
|
Ekstein D. Issues and promise in clinical studies of botanicals with anticonvulsant potential. Epilepsy Behav 2015; 52:329-32. [PMID: 26341963 DOI: 10.1016/j.yebeh.2015.07.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 07/26/2015] [Indexed: 12/01/2022]
Abstract
Botanicals are increasingly used by people with epilepsy worldwide. However, despite abundant preclinical data on the anticonvulsant properties of many herbal remedies, there are very few human studies assessing safety and efficacy of these products in epilepsy. Additionally, the methodology of most of these studies only marginally meets the requirements of evidence-based medicine. Although the currently available evidence for the use of cannabinoids in epilepsy is similarly lacking, several carefully designed and well controlled industry-sponsored clinical trials of cannabis derivatives are planned to be completed in the next couple of years, providing the needed reliable data for the use of these products. The choice of the best botanical candidates with anticonvulsant properties and their assessment in well-designed clinical trials may significantly improve our ability to effectively and safely treat patients with epilepsy. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Dana Ekstein
- Department of Neurology, Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
118
|
Mumoli L, Palleria C, Gasparini S, Citraro R, Labate A, Ferlazzo E, Gambardella A, De Sarro G, Russo E. Brivaracetam: review of its pharmacology and potential use as adjunctive therapy in patients with partial onset seizures. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5719-25. [PMID: 26543353 PMCID: PMC4622453 DOI: 10.2147/dddt.s81474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Brivaracetam (BRV), a high-affinity synaptic vesicle protein 2A ligand, reported to be 10–30-fold more potent than levetiracetam (LEV), is highly effective in a wide range of experimental models of focal and generalized seizures. BRV and LEV similarly bind to synaptic vesicle protein 2A, while differentiating for other pharmacological effects; in fact, BRV does not inhibit high voltage Ca2+ channels and AMPA receptors as LEV. Furthermore, BRV apparently exhibits inhibitory activity on neuronal voltage-gated sodium channels playing a role as a partial antagonist. BRV is currently waiting for approval both in the United States and the European Union as adjunctive therapy for patients with partial seizures. In patients with photosensitive epilepsy, BRV showed a dose-dependent effect in suppressing or attenuating the photoparoxysmal response. In well-controlled trials conducted to date, adjunctive BRV demonstrated efficacy and good tolerability in patients with focal epilepsy. BRV has a linear pharmacokinetic profile. BRV is extensively metabolized and excreted by urine (only 8%–11% unchanged). The metabolites of BRV are inactive, and hydrolysis of the acetamide group is the mainly involved metabolic pathway; hepatic impairment probably requires dose adjustment. BRV does not seem to influence other antiepileptic drug plasma levels. Six clinical trials have so far been completed indicating that BRV is effective in controlling seizures when used at doses between 50 and 200 mg/d. The drug is generally well-tolerated with only mild-to-moderate side effects; this is confirmed by the low discontinuation rate observed in these clinical studies. The most common side effects are related to central nervous system and include fatigue, dizziness, and somnolence; these apparently disappear during treatment. In this review, we analyzed BRV, focusing on the current evidences from experimental animal models to clinical studies with particular interest on potential use in clinical practice. Finally, pharmacological properties of BRV are summarized with a description of its pharmacokinetics, safety, and potential/known drug–drug interactions.
Collapse
Affiliation(s)
- Laura Mumoli
- Institute of Neurology, University Magna Græcia, Catanzaro, Italy
| | - Caterina Palleria
- Institute of Pharmacology, University Magna Græcia, Catanzaro, Italy
| | - Sara Gasparini
- Institute of Neurology, University Magna Græcia, Catanzaro, Italy
| | - Rita Citraro
- Institute of Pharmacology, University Magna Græcia, Catanzaro, Italy
| | - Angelo Labate
- Institute of Neurology, University Magna Græcia, Catanzaro, Italy
| | - Edoardo Ferlazzo
- Institute of Neurology, University Magna Græcia, Catanzaro, Italy
| | | | | | - Emilio Russo
- Institute of Pharmacology, University Magna Græcia, Catanzaro, Italy
| |
Collapse
|
119
|
Wlodarczyk BJ, Ogle K, Lin LY, Bialer M, Finnell RH. Comparative teratogenicity analysis of valnoctamide, risperidone, and olanzapine in mice. Bipolar Disord 2015; 17:615-25. [PMID: 26292082 PMCID: PMC4631615 DOI: 10.1111/bdi.12325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/23/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Based on the recent findings from animal studies, it has been proposed that the therapeutic use of valnoctamide, an anxiolytic drug developed in the early 1960s, be extended to treat other neurological disorders such as epilepsy and bipolar disease. Given the scarcity of adequate data on its prenatal toxicity, a comparative teratogenicity study of valnoctamide and two of the most commonly used drugs to treat bipolar disorder, risperidone and olanzapine, was carried out in a mouse model system. METHODS Pregnant dams were treated with the aforementioned three drugs at the dose levels calculated as an equal proportion of the respective LD50 values of these drugs. The main reproductive indices examined included the numbers of implantations and resorptions, viable and dead fetuses, and fetal gross, visceral and skeletal abnormalities. RESULTS The outcomes of the present study indicated that olanzapine was the most teratogenic of the three drugs, inducing maternal-, embryo-, and fetotoxicity. Risperidone also exerted a significant prenatal toxicity, but its adverse effect was less pronounced than that induced by olanzapine. Valnoctamide did not show any teratogenic effect, even when used in relatively higher dosages than olanzapine and risperidone. The observed increased skeletal abnormalities in one of the valnoctamide treatment groups were nonspecific and, as such, signaled a modest developmental delay rather than an indication that the compound could induce structural malformations. CONCLUSIONS Under our experimental conditions, valnoctamide demonstrated the lowest prenatal toxicity of the three tested drugs.
Collapse
Affiliation(s)
- Bogdan J Wlodarczyk
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Krystal Ogle
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Linda Ying Lin
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Meir Bialer
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard H Finnell
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA,Dell Pediatric Research Institute, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
120
|
Blair RE, Deshpande LS, DeLorenzo RJ. Cannabinoids: is there a potential treatment role in epilepsy? Expert Opin Pharmacother 2015; 16:1911-4. [PMID: 26234319 DOI: 10.1517/14656566.2015.1074181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cannabinoids have been used medicinally for centuries, and in the last decade, attention has focused on their broad therapeutic potential particularly in seizure management. While some cannabinoids have demonstrated anticonvulsant activity in experimental studies, their efficacy for managing clinical seizures has not been fully established. This commentary will touch on our understanding of the brain endocannabinoid system's regulation of synaptic transmission in both physiological and pathophysiological conditions, and review the findings from both experimental and clinical studies on the effectiveness of cannabinoids to suppress epileptic seizures. At present, there is preliminary evidence that non-psychoactive cannabinoids may be useful as anticonvulsants, but additional clinical trials are needed to fully evaluate the efficacy and safety of these compounds for the treatment of epilepsy.
Collapse
Affiliation(s)
- Robert E Blair
- Virginia Commonwealth University School of Medicine, Department of Neurology , Box 980599, Richmond, VA 23298 , USA +1 804 828 3391 ; +1 804 828 6432 ;
| | | | | |
Collapse
|
121
|
Shekh-Ahmad T, Mawasi H, McDonough JH, Yagen B, Bialer M. The potential of sec-butylpropylacetamide (SPD) and valnoctamide and their individual stereoisomers in status epilepticus. Epilepsy Behav 2015; 49:298-302. [PMID: 25979572 DOI: 10.1016/j.yebeh.2015.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022]
Abstract
sec-Butylpropylacetamide (SPD) is a one-carbon homologue of valnoctamide (VCD), a chiral constitutional isomer of valproic acid's (VPA) corresponding amide--valpromide. Racemic-SPD and racemic-VCD possess a unique and broad-spectrum antiseizure profile superior to that of VPA. In addition, SPD blocks behavioral and electrographic status epilepticus (SE) induced by pilocarpine and the organophosphates soman and paraoxon. Valnoctamide has similar activity as SPD in the soman-induced SE model. The activity of SPD and VCD against SE is superior to that of diazepam and midazolam in terms of rapid onset, potency, and ability to block SE when given 20 to 60 min after seizure onset. sec-Butylpropylacetamide and VCD possess two stereogenic carbons in their chemical structure and, thus, exist as a racemic mixture of four individual stereoisomers. The anticonvulsant activity of the individual stereoisomers of SPD and VCD was comparatively evaluated in several anticonvulsant rodent models including the benzodiazepine-resistant SE model. sec-Butylpropylacetamide has stereoselective pharmacokinetics (PK) and pharmacodynamics (PD). The higher clearance of (2R,3S)-SPD and (2S,3R)-SPD led to a 50% lower plasma exposure and, consequently, to a lower anticonvulsant activity compared to racemic-SPD and its two other stereoisomers. Racemic-SPD, (2S,3S)-SPD, and (2R,3R)-SPD have similar anticonvulsant activities and PK profiles that are better than those of (2R,3S)-SPD and (2S,3R)-SPD. Valnoctamide has a stereoselective PK with (2S,3S)-VCD exhibiting the lowest clearance and, consequently, a twice-higher plasma exposure than all other stereoisomers. Nevertheless, there was less stereoselectivity in VCD anticonvulsant activity, and each stereoisomer had similar ED50 values in most models. sec-Butylpropylacetamide and VCD stereoisomers did not cause teratogenicity (i.e., neural tube defect) in mice at doses 3-12 times higher than their anticonvulsant-ED50 values. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- Tawfeeq Shekh-Ahmad
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Hafiz Mawasi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - John H McDonough
- Pharmacology Branch, Research Division, US Army Medical Research Institute of Chemical Defense (MRICD), Aberdeen Proving Ground, MD, USA
| | - Boris Yagen
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Meir Bialer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
122
|
Dinday MT, Baraban SC. Large-Scale Phenotype-Based Antiepileptic Drug Screening in a Zebrafish Model of Dravet Syndrome. eNeuro 2015; 2:ENEURO.0068-15.2015. [PMID: 26465006 PMCID: PMC4596025 DOI: 10.1523/eneuro.0068-15.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/23/2022] Open
Abstract
Mutations in a voltage-gated sodium channel (SCN1A) result in Dravet Syndrome (DS), a catastrophic childhood epilepsy. Zebrafish with a mutation in scn1Lab recapitulate salient phenotypes associated with DS, including seizures, early fatality, and resistance to antiepileptic drugs. To discover new drug candidates for the treatment of DS, we screened a chemical library of ∼1000 compounds and identified 4 compounds that rescued the behavioral seizure component, including 1 compound (dimethadione) that suppressed associated electrographic seizure activity. Fenfluramine, but not huperzine A, also showed antiepileptic activity in our zebrafish assays. The effectiveness of compounds that block neuronal calcium current (dimethadione) or enhance serotonin signaling (fenfluramine) in our zebrafish model suggests that these may be important therapeutic targets in patients with DS. Over 150 compounds resulting in fatality were also identified. We conclude that the combination of behavioral and electrophysiological assays provide a convenient, sensitive, and rapid basis for phenotype-based drug screening in zebrafish mimicking a genetic form of epilepsy.
Collapse
Affiliation(s)
- Matthew T. Dinday
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California San Francisco, San Francisco, California 94143
| | - Scott C. Baraban
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California San Francisco, San Francisco, California 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
123
|
Mawasi H, Shekh-Ahmad T, Finnell RH, Wlodarczyk BJ, Bialer M. Pharmacodynamic and pharmacokinetic analysis of CNS-active constitutional isomers of valnoctamide and sec-butylpropylacetamide--Amide derivatives of valproic acid. Epilepsy Behav 2015; 46:72-8. [PMID: 25863940 DOI: 10.1016/j.yebeh.2015.02.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023]
Abstract
Valnoctamide (VCD) and sec-butylpropylacetamide (SPD) are CNS-active closely related amide derivatives of valproic acid with unique anticonvulsant activity. This study evaluated how small chemical changes affect the pharmacodynamics (PD; anticonvulsant activity and teratogenicity) and pharmacokinetics (PK) of three constitutional isomers of SPD [sec-butylisopropylacetamide (SID) and tert-butylisopropylacetamide (TID)] and of VCD [tert-butylethylacetamide (TED)]. The anticonvulsant activity of SID, TID, and TED was comparatively evaluated in several rodent anticonvulsant models. The PK-PD relationship of SID, TID, and TED was evaluated in rats, and their teratogenicity was evaluated in a mouse strain highly susceptible to teratogen-induced neural tube defects (NTDs). sec-Butylisopropylacetamide and TID have a similar PK profile to SPD which may contribute to their similar anticonvulsant activity. tert-Butylethylacetamide had a better PK profile than VCD (and SPD); however, this did not lead to a superior anticonvulsant activity. sec-Butylisopropylacetamide and TED did not cause NTDs at doses 4-7 times higher than their anticonvulsant ED50 values. In rats, SID, TID (ip), and TED exhibited a broad spectrum of anticonvulsant activity. However, combined anticonvulsant analysis in mice and rats shows SID as the most potent compound with similar activity to that of SPD, demonstrating that substitution of the isobutyl moiety in the SPD or VCD molecule by tert-butyl as well as a propyl-to-isopropyl replacement in the SPD molecule did not majorly affect the anticonvulsant activity.
Collapse
Affiliation(s)
- Hafiz Mawasi
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Tawfeeq Shekh-Ahmad
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Richard H Finnell
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
| | - Bogdan J Wlodarczyk
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
| | - Meir Bialer
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
124
|
Ferlazzo E, Russo E, Mumoli L, Sueri C, Gasparini S, Palleria C, Labate A, Gambardella A, De Sarro G, Aguglia U. Profile of brivaracetam and its potential in the treatment of epilepsy. Neuropsychiatr Dis Treat 2015; 11:2967-73. [PMID: 26664121 PMCID: PMC4670022 DOI: 10.2147/ndt.s60849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brivaracetam (BRV) (UCB 34714) is currently under review by the US Food and Drug Administration and European Medicines Agency for approval as an add-on treatment for adult patients with partial seizures. Similar to levetiracetam (LEV), BRV acts as a high-affinity ligand of the synaptic vesicle protein 2A, however, it has been shown to be 10- to 30-fold more potent than LEV. Moreover, BRV does not share the LEV inhibitory activity on the high voltage Ca(2+) channels and AMPA receptors, and it has been reported to act as a partial antagonist on neuronal voltage-gated sodium channels. The pharmacokinetic profile of BRV is favorable and linear, and it undergoes an extensive metabolism into inactive compounds, mainly through the hydrolysis of its acetamide group. Furthermore, it does not significantly interact with other antiepileptic drugs and more than 95% is excreted through the urine, with an unchanged fraction of 8%-11%. BRV has a half-life of approximately 8-9 hours and it is usually given twice daily. To date, a wide range of experimental studies have reported the effectiveness of BRV with regards to partial and generalized seizures. In humans, six randomized, placebo-controlled trials and two meta-analyses highlighted the efficacy, or good tolerability, of BRV as an add-on treatment for patients with uncontrolled partial seizures. A wide dose range of BRV has been evaluated in those trials (5-200 mg), but the most suitable for clinical use appears to be 50-100 mg/day. The most common adverse reactions to BRV are mild to moderate, transient, often improve during the course of the treatment, and mainly consist of central nervous system symptoms, such as fatigue, dizziness, and somnolence. The aim of this paper is to critically review the literature data regarding experimental animal models and clinical trials on BRV, and to define its potential usefulness for the clinicians who manage patients with epilepsy.
Collapse
Affiliation(s)
- Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy ; Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Emilio Russo
- Institute of Pharmacology, Magna Græcia University, Catanzaro, Italy
| | - Laura Mumoli
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Chiara Sueri
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy ; Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Caterina Palleria
- Institute of Pharmacology, Magna Græcia University, Catanzaro, Italy
| | - Angelo Labate
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | | | - Umberto Aguglia
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy ; Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| |
Collapse
|
125
|
Abstract
The antiepileptic potential of Cannabis sativa preparations has been historically recognized. Recent changes in legal restrictions and new well-documented cases reporting remarkably strong beneficial effects have triggered an upsurge in exploiting medical marijuana in patients with refractory epilepsy. Parallel research efforts in the last decade have uncovered the fundamental role of the endogenous cannabinoid system in controlling neuronal network excitability raising hopes for cannabinoid-based therapeutic approaches. However, emerging data show that patient responsiveness varies substantially, and that cannabis administration may sometimes even exacerbate seizures. Qualitative and quantitative chemical variability in cannabis products and personal differences in the etiology of seizures, or in the pathological reorganization of epileptic networks, can all contribute to divergent patient responses. Thus, the consensus view in the neurologist community is that drugs modifying the activity of the endocannabinoid system should first be tested in clinical trials to establish efficacy, safety, dosing, and proper indication in specific forms of epilepsies. To support translation from anecdote-based practice to evidence-based therapy, the present review first introduces current preclinical and clinical efforts for cannabinoid- or endocannabinoid-based epilepsy treatments. Next, recent advances in our knowledge of how endocannabinoid signaling limits abnormal network activity as a central component of the synaptic circuit-breaker system will be reviewed to provide a framework for the underlying neurobiological mechanisms of the beneficial and adverse effects. Finally, accumulating evidence demonstrating robust synapse-specific pathophysiological plasticity of endocannabinoid signaling in epileptic networks will be summarized to gain better understanding of how and when pharmacological interventions may have therapeutic relevance.
Collapse
Affiliation(s)
- István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, Budapest, 1083, Hungary.
| |
Collapse
|