101
|
Lavorgna G, Montorsi F, Salonia A. Re: Jinjing Chen, Ilaria Guccini, Diletta Di Mitri, et al. Compartmentalized Activities of the Pyruvate Dehydrogenase Complex Sustain Lipogenesis in Prostate Cancer. Nat Genet 2018;50:219-28: Lipid Metabolism in Prostate Cancer: Expanding Patient Therapeutic Opportunities. Eur Urol 2018; 74:e20-e21. [PMID: 29598985 DOI: 10.1016/j.eururo.2018.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Giovanni Lavorgna
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Francesco Montorsi
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
102
|
Aird J, Baird AM, Lim MC, McDermott R, Finn SP, Gray SG. Carcinogenesis in prostate cancer: The role of long non-coding RNAs. Noncoding RNA Res 2018; 3:29-38. [PMID: 30159437 PMCID: PMC6084828 DOI: 10.1016/j.ncrna.2018.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/16/2018] [Indexed: 12/28/2022] Open
Abstract
LncRNAs appear to play a considerable role in tumourigenesis through regulating key processes in cancer cells such as proliferative signalling, replicative immortality, invasion and metastasis, evasion of growth suppressors, induction of angiogenesis and resistance to apoptosis. LncRNAs have been reported to play a role in prostate cancer, particularly in regulating the androgen receptor signalling pathway. In this review article, we summarise the role of 34 lncRNAs in prostate cancer with a particular focus on their role in the androgen receptor signalling pathway and the epithelial to mesenchymal transition pathway.
Collapse
Affiliation(s)
- John Aird
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | - Anne-Marie Baird
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Marvin C.J. Lim
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin, Ireland
- Department of Medical Oncology, Tallaght Hospital, Dublin, Ireland
| | - Ray McDermott
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin, Ireland
- Department of Medical Oncology, Tallaght Hospital, Dublin, Ireland
| | - Stephen P. Finn
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Steven G. Gray
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
- HOPE Directorate, St. James's Hospital, Dublin, Ireland
- Labmed Directorate, St. James's Hospital, Dublin, Ireland
- School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
103
|
Abstract
INTRODUCTION The androgen receptor variant AR-V7 is gaining attention as a potential predictive marker for as well as one of the resistance mechanisms to the most current anti-androgen receptor (AR) therapies in castration-resistant prostate cancer (CRPC). Accordingly, development of next-generation drugs that directly or indirectly target AR-V7 signaling is urgently needed. Areas covered: We review proposed mechanisms of drug resistance in relation to AR-V7 status, the mechanisms of generation of AR-V7, and its transcriptome, cistrome, and interactome. Pharmacological agents that interfere with these processes are being developed to counteract pan AR and AR-V7-specific signaling. Also, we address the current status of the preclinical and clinical studies targeting AR-V7 signaling. Expert opinion: AR-V7 is considered a true therapeutic target, however, it remains to be determined if AR-V7 is a principal driver or merely a bystander requiring heterodimerization with co-expressed full-length AR or other variants to drive CRPC progression. While untangling AR-V7 biology, multiple strategies are being developed to counteract drug resistance, including selective blockade of AR-V7 signaling as well as inhibition of pan-AR signaling. Ideally anti-AR therapies will be combined with agents preventing activation and enrichment of AR negative tumor cells that are otherwise depressed by AR activity axis.
Collapse
Affiliation(s)
- Takuma Uo
- a Department of Medicine , University of Washington , Seattle , WA , USA
| | - Stephen R Plymate
- a Department of Medicine , University of Washington , Seattle , WA , USA.,b Geriatrics Research Education and Clinical Center VA Puget Sound Health Care System , Seattle , WA , USA
| | - Cynthia C Sprenger
- a Department of Medicine , University of Washington , Seattle , WA , USA
| |
Collapse
|
104
|
Wang H, Wang L, Zhang G, Lu C, Chu H, Yang R, Zhao G. MALAT1/miR-101-3p/MCL1 axis mediates cisplatin resistance in lung cancer. Oncotarget 2017; 9:7501-7512. [PMID: 29484127 PMCID: PMC5800919 DOI: 10.18632/oncotarget.23483] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/14/2017] [Indexed: 02/04/2023] Open
Abstract
In this study, we investigated the mechanism by which lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) mediates cisplatin resistance in lung cancer. Lung cancer patients with high MALAT1 levels were associated with cisplatin resistance and low overall survival. Moreover, cisplatin-resistant A549/DDP cells showed higher MALAT1 expression than cisplatin-sensitive lung cancer cells (A549, H460, H1299 and SPC-A1). Dual luciferase reporter and RNA immunoprecipitation assays showed direct binding of miR-101-3p to MALAT1. MALAT1 knockdown in lung cancer cells resulted in miR-101-3p upregulation and increased cisplatin sensitivity. In addition, miR-101-3p decreased myeloid cell leukemia 1 (MCL1) expression by binding to the 3’-untranslated region (3’-UTR) of its mRNA. These results demonstrate that MALAT1/miR-101-3p/MCL1 signaling underlies cisplatin resistance in lung cancer.
Collapse
Affiliation(s)
- Huaqi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Li Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chunya Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Heying Chu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Rui Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guoqiang Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China
| |
Collapse
|
105
|
Goicochea NL, Garnovskaya M, Blanton MG, Chan G, Weisbart R, Lilly MB. Development of cell-penetrating bispecific antibodies targeting the N-terminal domain of androgen receptor for prostate cancer therapy†. Protein Eng Des Sel 2017; 30:785-793. [DOI: 10.1093/protein/gzx058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nancy L Goicochea
- Department of Medicine, Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Maria Garnovskaya
- Department of Medicine, Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Mary G Blanton
- Department of Medicine, Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Grace Chan
- Veterans Affairs Greater Los Angeles Health Care System, 16111 Plummer St., Sepulveda, CA 91343, USA
| | - Richard Weisbart
- Veterans Affairs Greater Los Angeles Health Care System, 16111 Plummer St., Sepulveda, CA 91343, USA
| | - Michael B Lilly
- Department of Medicine, Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| |
Collapse
|
106
|
|