101
|
Sahu A, Pancha I, Jain D, Paliwal C, Ghosh T, Patidar S, Bhattacharya S, Mishra S. Fatty acids as biomarkers of microalgae. PHYTOCHEMISTRY 2013; 89:53-58. [PMID: 23453131 DOI: 10.1016/j.phytochem.2013.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/17/2013] [Accepted: 02/02/2013] [Indexed: 06/01/2023]
Abstract
Microalgae are primary producers of the food chain and hold prominence towards pharmaceutical and nutraceutical applications. Fatty acids (FAs) are one of the primary metabolites of microalgae, which enrich their utility both in the form of food and fuels. Additionally, the vast structural diversity coupled with taxonomic specificity makes these FAs as potential biomarkers. The determination of lipid and fatty acid profiling of 12 different strains of microalgae has been accomplished in this study and further discussed in respect to their chemotaxonomic perspective in microalgae. Palmitic acid (C16:0) and oleic acid (C18:1n9c) were found to be dominant among the members of Cyanophyceae whereas members of Chlorophyceae were rich in palmitic acid (C16:0), oleic acid (C18:1n9c) and linoleic acid (C18:2n6). The application of principal component analysis (PCA) and algorithmic hierarchical clustering (AHC) resulted in the segregation of the studied microalgal strains into 8 different orders belonging to 2 distinct phyla according to their phylogenetic classification. Nutritionally important FAs like eicosapentaenoic acid (EPA, C20:5n3) and docosahexaenoic acid (DHA, C22:6n3) were detected only in Chlorella sp. belonging to Chlorophyceaen family. Differential segregation of microalgae with respect to their fatty acid profile indicated the potential utility of FAs as biomarkers.
Collapse
Affiliation(s)
- Abhishek Sahu
- Salt and Marine Inorganic Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Kendel M, Barnathan G, Fleurence J, Rabesaotra V, Wielgosz-Collin G. Non-methylene interrupted and hydroxy fatty acids in polar lipids of the alga Grateloupia turuturu over the four seasons. Lipids 2013; 48:535-45. [PMID: 23515999 DOI: 10.1007/s11745-013-3783-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/03/2013] [Indexed: 10/27/2022]
Abstract
Phospholipids (PL) and glycolipids (GL) FA in the edible Rhodophyta Grateloupia turuturu, from Brittany, France, were investigated over four seasons. The major lipid class was GL in all seasons (around 45 %). More than 80 FA occurred in polar lipids, with chains from C12 to C26, identified as methyl esters and N-acyl pyrrolidides by gas chromatography-mass spectrometry (GC-MS). PUFA occurred at up to 47.1 % (summer) in PL, and up to 43.6 % (summer) in GL. The major PUFA were 20:5n-3 (12.2 % in PL and 29.0 % in GL) and 20:4n-6 (25.6 % in PL and 10.4 % in GL). The unusual 18:3n-7 acid was identified in PL up to 2.2 %. Several minor unsaturated FA were identified in PL and are previously unreported in seaweeds, namely 14-tricosenoic, 15-tetracosenoic, 5,11-octadecadienoic and 5,9-nonadecadienoic. Also unprecedented in seaweeds, ten 2-hydroxy and three 3-hydroxy FA occurred mainly in PL, 13.9 % in spring with the 3-hydroxyhexadecanoic acid as the major one (8.1 % winter). Three n-9 monounsaturated 2-hydroxy FA occurred in PL. The 2-hydroxy-15-tetracosenoic acid was characterized as the dimethyl disulfide adduct of its methyl ester. The 2-hydroxy-16-pentacosenoic and 2-hydroxy-17-hexacosenoic acids were identified by comparison of mass spectra and GC mobilities with those of the 2-hydroxy-15-tetracosenoic acid, and of other homogeneous FA series. These rare n-9 monounsaturated 2-hydroxy FA are unprecedented in seaweeds.
Collapse
Affiliation(s)
- Melha Kendel
- Faculté des Sciences Pharmaceutiques et Biologiques, LUNAM Université, Université de Nantes, Groupe Mer-Molécules-Santé MMS, EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 Rue Bias, BP 53508, 44035 Nantes Cedex 1, France
| | | | | | | | | |
Collapse
|
103
|
Greene J, Ashburn SM, Razzouk L, Smith DA. Fish oils, coronary heart disease, and the environment. Am J Public Health 2013; 103:1568-76. [PMID: 23409906 DOI: 10.2105/ajph.2012.300959] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Clinical trials continue to produce conflicting results on the effectiveness of fish oils for the primary and secondary prevention of coronary heart disease. Despite many large, well-performed studies, questions still remain, made even more complex by the addition of early revascularization and statins in our coronary heart disease armamentarium. This is complicated by the reality that fish oil production has a measureable impact on reducing fish populations, which in turn has a negative impact on creating a sustainable product. We review the current data for fish oil usage in the primary and secondary prevention of coronary heart disease with an eye toward future studies, and the effects fish oil production has on the environment and efforts that are currently under way to mitigate these effects.
Collapse
|
104
|
Kumari P, Bijo AJ, Mantri VA, Reddy CRK, Jha B. Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. PHYTOCHEMISTRY 2013; 86:44-56. [PMID: 23168246 DOI: 10.1016/j.phytochem.2012.10.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 05/24/2023]
Abstract
The lipid and fatty acid (FA) compositions for 100 marine macroalgae were determined and discussed from the context of chemotaxonomic and nutritional perspectives. In general, the lipid contents in macroalgae were low (2.3-20 mg/g fr. wt.) but with substantially high amounts of nutritionally important polyunsaturated fatty acids (PUFAs) such as LA, ALA, STA, AA, EPA and DHA, that ranged from 10% to 70% of TFAs. More than 90% of the species showed nutritionally beneficial n6/n3 ratio (0.1:1-3.6:1) (p≤0.001). A closer look at the FA data revealed characteristic chemotaxonomic features with C18 PUFAs (LA, ALA and STA) being higher in Chlorophyta, C20 PUFAs (AA and EPA) in Rhodophyta while Phaeophyta depicted evenly distribution of C18 and C20 PUFAs. The ability of macroalgae to produce long-chain PUFAs could be attributed to the coupling of chloroplastic FA desaturase enzyme system from a photosynthetic endosymbiont to the FA desaturase/elongase enzyme system of a non-photosynthetic eukaryotic protist host. Further, the principal component analysis segregated the three macroalgal groups with a marked distinction of different genera, families and orders, Hierarchical cluster analyses substantiated the phylogenetic relationships of all orders investigated except for those red algal taxa belonging to Gigartinales, Ceramiales, Halymeniales and Rhodymeniales for which increased sampling effort is required to infer a conclusion. Also, the groups deduced from FA compositions were congruent with the clades inferred from nuclear and plastid genome sequences. This study further indicates that FA signatures could be employed as a valid chemotaxonomic tool to differentiate macroalgae at higher taxonomic levels such as family and orders.
Collapse
Affiliation(s)
- Puja Kumari
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | | | | | | | | |
Collapse
|
105
|
Kumari P, Singh RP, Bijo AJ, Reddy CRK, Jha B. Estimation of Lipid Hydroperoxide Levels in Tropical Marine Macroalgae. JOURNAL OF PHYCOLOGY 2012; 48:1362-1373. [PMID: 27009988 DOI: 10.1111/j.1529-8817.2012.01208.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/05/2012] [Indexed: 06/05/2023]
Abstract
The incipient levels of lipid hydroperoxides (LHPOs) were determined in selected green, brown, and red macroalgae by the FOX assay using hydroperoxy HPLC mix. The LHPOs contents varied between the investigated species and showed relatively low values in this study. Among the greens, it varied from 12 ± 6.2 μg · g(-1) (Codium sursum) to 31.5 ± 2.8 μg · g(-1) (Ulva lactuca), whereas in reds, from 5.7 ± 1.6 μg · g(-1) (Gracilaria corticata) to 46.2 ± 6 μg · g(-1) (Sarconema filiforme), and in browns, from 4.6 ± 4.4 μg · g(-1) (Dictyota bartayresiana) to 79 ± 5.0 μg · g(-1) (Sargassum tenerrimum), on fresh weight basis. These hydroperoxides represented a minor fraction of total lipids and ranged from 0.04% (S. swartzii) to 1.1% (S. tenerrimum) despite being a rich source of highly unsaturated fatty acids. The susceptibility of peroxidation was assessed by specific lipid peroxidazibility (SLP) values for macroalgal tissues. The LHPO values were found to be independent of both the PUFAs contents and their degree of unsaturation (DBI), as evident from the PCA analysis. SLP values were positively correlated with the LHPOs and negatively with DBI. The FOX assay gave ≥20-fold higher values for LHPOs as compared to the TBARS method for all the samples investigated in this study. Furthermore, U. lactuca cultured in artificial seawater (ASW) enriched with nutrients (N, P, and NP) showed a sharp decline in LHPOs contents relative to those cultured in ASW alone P ≤ 0.05. It is inferred from this study that the FOX assay is an efficient, rapid, sensitive, and inexpensive technique for detecting the incipient lipid peroxidation in macroalgal tissues.
Collapse
Affiliation(s)
- Puja Kumari
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| | - Ravindra Pal Singh
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| | - A J Bijo
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| | - C R K Reddy
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| | - Bhavanath Jha
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| |
Collapse
|
106
|
Pereira H, Barreira L, Figueiredo F, Custódio L, Vizetto-Duarte C, Polo C, Rešek E, Engelen A, Varela J. Polyunsaturated Fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 2012; 10:1920-1935. [PMID: 23118712 PMCID: PMC3475264 DOI: 10.3390/md10091920] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/06/2012] [Accepted: 08/14/2012] [Indexed: 01/02/2023] Open
Abstract
As mammals are unable to synthesize essential polyunsaturated fatty acids (PUFA), these compounds need to be taken in through diet. Nowadays, obtaining essential PUFA in diet is becoming increasingly difficult; therefore this work investigated the suitability of using macroalgae as novel dietary sources of PUFA. Hence, 17 macroalgal species from three different phyla (Chlorophyta, Phaeophyta and Rhodophyta) were analyzed and their fatty acid methyl esters (FAME) profile was assessed. Each phylum presented a characteristic fatty acid signature as evidenced by clustering of PUFA profiles of algae belonging to the same phylum in a Principal Components Analysis. The major PUFA detected in all phyla were C18 and C20, namely linoleic, arachidonic and eicosapentaenoic acids. The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds. Moreover, rhodophytes and phaeophytes presented “healthier” ∑n-6/∑n-3 and PUFA/saturated fatty acid ratios than chlorophytes. Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular. In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - João Varela
- Author to whom correspondence should be addressed; ; Tel.: +351-289-800-051; Fax: +351-289-800-051
| |
Collapse
|
107
|
Galloway AWE, Britton-Simmons KH, Duggins DO, Gabrielson PW, Brett MT. FATTY ACID SIGNATURES DIFFERENTIATE MARINE MACROPHYTES AT ORDINAL AND FAMILY RANKS(1). JOURNAL OF PHYCOLOGY 2012; 48:956-65. [PMID: 27009005 DOI: 10.1111/j.1529-8817.2012.01173.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Primary productivity by plants and algae is the fundamental source of energy in virtually all food webs. Furthermore, photosynthetic organisms are the sole source for ω-3 and ω-6 essential fatty acids (EFA) to upper trophic levels. Because animals cannot synthesize EFA, these molecules may be useful as trophic markers for tracking sources of primary production through food webs if different primary producer groups have different EFA signatures. We tested the hypothesis that different marine macrophyte groups have distinct fatty acid (FA) signatures by conducting a phylogenetic survey of 40 marine macrophytes (seaweeds and seagrasses) representing 36 families, 21 orders, and four phyla in the San Juan Archipelago, WA, USA. We used multivariate statistics to show that FA composition differed significantly (P < 0.001) among phyla, orders, and families using 44 FA and a subset of seven EFA (P < 0.001). A second analysis of published EFA data of 123 additional macrophytes confirmed that this pattern was robust on a global scale (P < 0.001). This phylogenetic differentiation of macrophyte taxa shows a clear relationship between macrophyte phylogeny and FA content and strongly suggests that FA signature analyses can offer a viable approach to clarifying fundamental questions about the contribution of different basal resources to food webs. Moreover, these results imply that taxa with commercially valuable EFA signatures will likely share such characteristics with other closely related taxa that have not yet been evaluated for FA content.
Collapse
Affiliation(s)
- Aaron W E Galloway
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, University of Washington, 620 University Rd., Friday Harbor, WA, 98250, USAFriday Harbor Laboratories, University of Washington, 620 University Rd., Friday Harbor, WA, 98250, USAUniversity of North Carolina Herbarium, CB# 3280, Coker Hall, Chapel Hill, NC, 27599-3280, USACivil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, USA
| | - Kevin H Britton-Simmons
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, University of Washington, 620 University Rd., Friday Harbor, WA, 98250, USAFriday Harbor Laboratories, University of Washington, 620 University Rd., Friday Harbor, WA, 98250, USAUniversity of North Carolina Herbarium, CB# 3280, Coker Hall, Chapel Hill, NC, 27599-3280, USACivil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, USA
| | - David O Duggins
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, University of Washington, 620 University Rd., Friday Harbor, WA, 98250, USAFriday Harbor Laboratories, University of Washington, 620 University Rd., Friday Harbor, WA, 98250, USAUniversity of North Carolina Herbarium, CB# 3280, Coker Hall, Chapel Hill, NC, 27599-3280, USACivil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, USA
| | - Paul W Gabrielson
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, University of Washington, 620 University Rd., Friday Harbor, WA, 98250, USAFriday Harbor Laboratories, University of Washington, 620 University Rd., Friday Harbor, WA, 98250, USAUniversity of North Carolina Herbarium, CB# 3280, Coker Hall, Chapel Hill, NC, 27599-3280, USACivil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, USA
| | - Michael T Brett
- Friday Harbor Laboratories, School of Aquatic and Fishery Sciences, University of Washington, 620 University Rd., Friday Harbor, WA, 98250, USAFriday Harbor Laboratories, University of Washington, 620 University Rd., Friday Harbor, WA, 98250, USAUniversity of North Carolina Herbarium, CB# 3280, Coker Hall, Chapel Hill, NC, 27599-3280, USACivil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, USA
| |
Collapse
|
108
|
Stabili L, Acquaviva M, Biandolino F, Cavallo R, De Pascali S, Fanizzi F, Narracci M, Petrocelli A, Cecere E. The lipidic extract of the seaweed Gracilariopsis longissima (Rhodophyta, Gracilariales): a potential resource for biotechnological purposes? N Biotechnol 2012; 29:443-50. [DOI: 10.1016/j.nbt.2011.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 01/08/2023]
|
109
|
Daneshvar S, Salak F, Ishii T, Otsuka K. Application of Subcritical Water for Conversion of Macroalgae to Value-Added Materials. Ind Eng Chem Res 2011. [DOI: 10.1021/ie201743x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Somayeh Daneshvar
- Department of Marine System Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai-shi, Osaka 599-8531, Japan
| | - Feridoun Salak
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, The University of Calgary, Calgary, AB, T2N 1N4 Canada
| | - Takasada Ishii
- Research Organization for the 21st Century, Ecology Laboratory, Osaka Prefecture University, 1 Takumi-cho, Sakai-shi, Osaka 599-8531, Japan
| | - Koji Otsuka
- Department of Marine System Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai-shi, Osaka 599-8531, Japan
| |
Collapse
|
110
|
Stengel DB, Connan S, Popper ZA. Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 2011; 29:483-501. [PMID: 21672617 DOI: 10.1016/j.biotechadv.2011.05.016] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 02/06/2023]
Abstract
There has been significant recent interest in the commercial utilisation of algae based on their valuable chemical constituents many of which exhibit multiple bioactivities with applications in the food, cosmetic, agri- and horticultural sectors and in human health. Compounds of particular commercial interest include pigments, lipids and fatty acids, proteins, polysaccharides and phenolics which all display considerable diversity between and within taxa. The chemical composition of natural algal populations is further influenced by spatial and temporal changes in environmental parameters including light, temperature, nutrients and salinity, as well as biotic interactions. As reported bioactivities are closely linked to specific compounds it is important to understand, and be able to quantify, existing chemical diversity and variability. This review outlines the taxonomic, ecological and chemical diversity between, and within, different algal groups and the implications for commercial utilisation of algae from natural populations. The biochemical diversity and complexity of commercially important types of compounds and their environmental and developmental control are addressed. Such knowledge is likely to help achieve higher and more consistent levels of bioactivity in natural samples and may allow selective harvesting according to algal species and local environmental conditions for different groups of compounds.
Collapse
Affiliation(s)
- Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland Galway, Ireland.
| | | | | |
Collapse
|
111
|
Kumari P, Reddy CRK, Jha B. Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Anal Biochem 2011; 415:134-44. [PMID: 21539805 DOI: 10.1016/j.ab.2011.04.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/16/2011] [Accepted: 04/06/2011] [Indexed: 11/17/2022]
Abstract
A comparative evaluation of Bligh and Dyer, Folch, and Cequier-Sánchez methods for quantitative determination of total lipids (TLs) and fatty acids (FAs) was accomplished in selective green (Ulva fasciata), red (Gracilaria corticata), and brown algae (Sargassum tenerrimum) using a full factorial categorical design. Applications of sonication and buffer individually on lipid extraction solvent systems were also evaluated. The FA recoveries obtained from the aforementioned methods were compared with those of direct transesterification (DT) methods to identify the best extraction methods. The experimental design showed that macroalgal matrix, extraction method, and buffer were key determinants for TL and FA recoveries (P≤0.05), exhibiting significant interactions. But sonication gave erratic results with no interaction with any of the factors investigated. The buffered solvent system of Folch rendered the highest TL yield in U. fasciata and G. corticata while the buffered system of Bligh and Dyer gave the highest yield in S. tenerrimum. DT methods were more convenient and accurate for FA quantification and rendered 1.5-2 times higher yields when compared with the best conventional method, minimizing the use of chlorinated solvents, their cost of analysis, and disposal. The buffered solvent system was found to be the most appropriate for lipid research in macroalgae.
Collapse
Affiliation(s)
- Puja Kumari
- Discipline of Marine Biotechnology and Ecology, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar 364021, Gujarat, India
| | | | | |
Collapse
|
112
|
Peña-Rodríguez A, Mawhinney TP, Ricque-Marie D, Cruz-Suárez LE. Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chem 2011; 129:491-498. [PMID: 30634256 DOI: 10.1016/j.foodchem.2011.04.104] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/17/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
Abstract
Samples of cultivated Ulva clathrata were collected from a medium scale system (MSS, 1.5×1.5m tank), or from a large scale system (LSS, 0.8ha earthen pond). MSS samples were dried directly while the LSS sample was washed in freshwater and pressed before drying. Crude protein content ranged 20-26%, essential amino acids accounting for 32-36% of crude protein. The main analysed monosaccharides were rhamnose (36-40%), uronic acids (27-29%), xylose (10-13%) and glucose (10-16%). Some notable variations between MSS and LSS samples were observed for total dietary fibre (26% vs 41%), saturated fatty acids (31% vs 51%), PUFAS (33% vs 13%), carotenoids (358 vs 169mgkg-1dw) and for Ca (9 vs 19gkg-1), Fe (0.6 vs 4.2gkg-1), Cu (44 vs 14mgkg-1), Zn (93 vs 17mgkg-1) and As (2 vs 9mgkg-1). The chemical composition of U. clathrata indicates that it has a good potential for its use in human and animal food.
Collapse
Affiliation(s)
- Alberto Peña-Rodríguez
- Programa Maricultura, Universidad Autónoma de Nuevo León, Cd. Universitaria F-67, San Nicolás de los Garza, Nuevo León 66450, Mexico
| | - Thomas P Mawhinney
- AESCL Analytical Services, University of Missouri, Columbia, MO 65211, USA
| | - Denis Ricque-Marie
- Programa Maricultura, Universidad Autónoma de Nuevo León, Cd. Universitaria F-67, San Nicolás de los Garza, Nuevo León 66450, Mexico
| | - L Elizabeth Cruz-Suárez
- Programa Maricultura, Universidad Autónoma de Nuevo León, Cd. Universitaria F-67, San Nicolás de los Garza, Nuevo León 66450, Mexico.
| |
Collapse
|
113
|
García-Sartal C, Romarís-Hortas V, Barciela-Alonso MDC, Moreda-Piñeiro A, Dominguez-Gonzalez R, Bermejo-Barrera P. Use of an in vitro digestion method to evaluate the bioaccessibility of arsenic in edible seaweed by inductively coupled plasma-mass spectrometry. Microchem J 2011. [DOI: 10.1016/j.microc.2010.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
114
|
Diniz GS, Barbarino E, Oiano-Neto J, Pacheco S, Lourenço SO. Gross Chemical Profile and Calculation of Nitrogen-to-Protein Conversion Factors for Five Tropical Seaweeds. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ajps.2011.23032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
115
|
Mišurcová L, Ambrožová J, Samek D. Seaweed lipids as nutraceuticals. ADVANCES IN FOOD AND NUTRITION RESEARCH 2011; 64:339-55. [PMID: 22054960 DOI: 10.1016/b978-0-12-387669-0.00027-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Seaweeds are known as low-energy food. Despite low lipid content, ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) introduce a significant part of seaweed lipids. PUFAs are the important components of all cell membranes and precursors of eicosanoids that are essential bioregulators of many cellular processes. PUFAs effectively reduce the risk of cardiovascular diseases, cancer, ostheoporosis, and diabetes. Because of the frequent usage of seaweeds in Asia and their increasing utilization as food also in other parts of the world, seaweeds could contribute to the improvement of a low level of ω-3 PUFAs, especially in the Western diet. The major commercial sources of ω-3 PUFAs are fish, but their wide usage as food additives is limited for the typical fishy smell, unpleasant taste, and oxidative nonstability. Nevertheless, growing requirements of healthy functional foods have led to produce PUFAs as nutraceuticals in controlled batch culture of marine microalgae, especially Thraustochytrium and Schizochytrium strains.
Collapse
Affiliation(s)
- Ladislava Mišurcová
- Department of Food Technology and Microbiology, Faculty of Technology, Tomas Bata University in Zlín, Zlín, Czech Republic.
| | | | | |
Collapse
|