101
|
Greyling A, Bruno RM, Draijer R, Mulder T, Thijssen DH, Taddei S, Virdis A, Ghiadoni L. Effects of wine and grape polyphenols on blood pressure, endothelial function and sympathetic nervous system activity in treated hypertensive subjects. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
102
|
Shahidi F, de Camargo AC. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int J Mol Sci 2016; 17:E1745. [PMID: 27775605 PMCID: PMC5085773 DOI: 10.3390/ijms17101745] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
Edible oils are the major natural dietary sources of tocopherols and tocotrienols, collectively known as tocols. Plant foods with low lipid content usually have negligible quantities of tocols. However, seeds and other plant food processing by-products may serve as alternative sources of edible oils with considerable contents of tocopherols and tocotrienols. Tocopherols are among the most important lipid-soluble antioxidants in food as well as in human and animal tissues. Tocopherols are found in lipid-rich regions of cells (e.g., mitochondrial membranes), fat depots, and lipoproteins such as low-density lipoprotein cholesterol. Their health benefits may also be explained by regulation of gene expression, signal transduction, and modulation of cell functions. Potential health benefits of tocols include prevention of certain types of cancer, heart disease, and other chronic ailments. Although deficiencies of tocopherol are uncommon, a continuous intake from common and novel dietary sources of tocopherols and tocotrienols is advantageous. Thus, this contribution will focus on the relevant literature on common and emerging edible oils as a source of tocols. Potential application and health effects as well as the impact of new cultivars as sources of edible oils and their processing discards are presented. Future trends and drawbacks are also briefly covered.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Adriano Costa de Camargo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, Brazil.
| |
Collapse
|
103
|
Ambigaipalan P, de Camargo AC, Shahidi F. Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MS n. Food Chem 2016; 221:1883-1894. [PMID: 27979177 DOI: 10.1016/j.foodchem.2016.10.058] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2016] [Accepted: 10/12/2016] [Indexed: 01/01/2023]
Abstract
Phenolics from free and hydrolyzed fractions of pomegranate juice (PJ) and seeds (PS) were evaluated. In general, total phenolic contents and scavenging of ABTS+, DPPH and hydroxyl radicals, as well as metal chelation of the soluble fraction from PS, were higher than those for PJ. Insoluble-bound phenolics from PS accounted for up to 27% of total scavenging capacity (free+esterified+insoluble-bound). Phenolic acids (13), monomeric flavonoids (8), hydrolysable tannins (12), proanthocyanidin (1) and anthocyanins (12) were tentatively characterized using HPLC-DAD-ESI-MSn. Several compounds were identified for the first time in PJ or PS. The inhibition of DNA damage (induced by hydroxyl and peroxyl radicals), copper-induced LDL-cholesterol peroxidation, as well as alpha-glucosidase and lipase activities were demonstrated, therefore supporting the potential exploitation of PJ and PS as sources of bioactive compounds.
Collapse
Affiliation(s)
| | - Adriano Costa de Camargo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias 11, P.O. Box 9, CEP 13418-900 Piracicaba, SP, Brazil
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
104
|
Mihailovic-Stanojevic N, Savikin K, Zivkovic J, Zdunic G, Miloradovic Z, Ivanov M, Karanovic D, Vajic UJ, Jovovic D, Grujic-Milanovic J. Moderate consumption of alcohol-free red wine provide more beneficial effects on systemic haemodynamics, lipid profile and oxidative stress in spontaneously hypertensive rats than red wine. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
105
|
Polyphenol extracts interfere with bacterial lipopolysaccharide in vitro and decrease postprandial endotoxemia in human volunteers. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
106
|
Identification and anti-tumour activities of phenolic compounds isolated from defatted adlay ( Coix lachryma-jobi L . var. ma-yuen Stapf) seed meal. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
107
|
Kadouh HC, Sun S, Zhu W, Zhou K. α-Glucosidase inhibiting activity and bioactive compounds of six red wine grape pomace extracts. J Funct Foods 2016; 26:577-584. [PMID: 30381791 PMCID: PMC6205192 DOI: 10.1016/j.jff.2016.08.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Grape pomace contains considerable amounts of polyphenols and it has been reported to exhibit specific inhibitory activity against mammalian intestinal α-glucosidases. This study aims to investigate the anti-diabetes potential of Chambourcin, Merlot, Norton, Petit Verdot, Syrah and Tinta Cão red wine grape pomaces by assessing their rat intestinal α-glucosidase inhibitory activity in relation to their total phenolic content and individual identified phenolic compounds by HPLC. Among the selected pomaces, Tinta Cão, Syrah and Merlot extracts showed higher potency in inhibiting α-glucosidase, and appeared to have higher respective total phenolic contents. Fifteen phenolic compounds were identified in the pomace samples, however, none of them showed significant inhibition of intestinal α-glucosidases. Red grape pomace, namely Tinta Cão, appears to be a promising functional food for the potential future development of a food-derived α-glucosidase inhibitor for preventing and treating diabetes.
Collapse
Affiliation(s)
- Hoda C. Kadouh
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Shi Sun
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Wenjun Zhu
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Kequan Zhou
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
108
|
Ambigaipalan P, de Camargo AC, Shahidi F. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6584-604. [PMID: 27509218 DOI: 10.1021/acs.jafc.6b02950] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time.
Collapse
Affiliation(s)
- Priyatharini Ambigaipalan
- Department of Biochemistry, Memorial University of Newfoundland , St. John's, Newfoundland, Canada A1B 3X9
| | - Adriano Costa de Camargo
- Department of Biochemistry, Memorial University of Newfoundland , St. John's, Newfoundland, Canada A1B 3X9
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo , Av. Pádua Dias 11, P.O. Box 9, CEP 13418-900 Piracicaba, São Paulo, Brazil
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland , St. John's, Newfoundland, Canada A1B 3X9
| |
Collapse
|
109
|
Zhang Y, Wong AIC, Wu J, Abdul Karim NB, Huang D. Lepisanthes alata (Malay cherry) leaves are potent inhibitors of starch hydrolases due to proanthocyanidins with high degree of polymerization. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|