101
|
Han K, Feng X, Yang Y, Tang X, Gao C. Changes in the physicochemical, structural and emulsifying properties of chicken myofibrillar protein via microfluidization. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
102
|
Lee MH, In Yong H, Kim YJ, Choi YS. High-pressure induced structural modification of porcine myofibrillar protein and its relation to rheological and emulsifying properties. Meat Sci 2022; 196:109032. [DOI: 10.1016/j.meatsci.2022.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
103
|
On the emerging of thawing drip: Role of myofibrillar protein renaturation. Food Chem 2022; 393:133398. [PMID: 35689925 DOI: 10.1016/j.foodchem.2022.133398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022]
Abstract
This study aimed to facilitate the understanding on the origin of thawing drip under different freezing rate. Eventually we observed significantly greater thaw loss produced by slow freezing (8.58%) as compared to fast freezing (6.41%) after 24 h of thawing. Back to the freezing, ice crystallization induced decline in pH and the cold denaturation of myofibrillar protein. However, independent of freezing rate, we noticed protein renaturation with pH restoring during thawing, evidenced by the decreasing surface hydrophobicity, increasing solubility and thermal stability, and gradually stabilized secondary structure. Meanwhile, the water-holding of myofibrils increased with thawing process along with the rising water mobility. Under fast freezing, the results indicated less extensive protein cold denaturation and lower water mobility during thawing. Besides, we proposed that the microenvironment of lower ionic strength in fast freezing should benefit the protein renaturation and water re-absorption, ultimately contributed to lower thaw loss.
Collapse
|
104
|
Zhang L, Wang X, Qu W, Zhang A, Wahia H, Gao X, Ma H, Zhou C. Evaluation of dual-frequency multi-angle ultrasound on physicochemical properties of tofu gel and its finished product by TOPSIS-entropy weight method. ULTRASONICS SONOCHEMISTRY 2022; 90:106196. [PMID: 36252385 PMCID: PMC9579706 DOI: 10.1016/j.ultsonch.2022.106196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 05/25/2023]
Abstract
The effects of dual-frequency (40 + 20 kHz) and multi-angle ultrasound (0°, 30°, 45°) on the coagulation state, network structure, flavor and protein conformation of tofu gel were studied. The results showed that the gel flavor of 40 + 20 kHz 0° group was the best and fluorescence intensity was low. The gel flavor in the 40 + 20 kHz 30° group was better than the group without ultrasound, and hydrophobic interaction and disulfide bond content was the largest. Meanwhile, the degree of protein cross-link was increased. The gel in 40 + 20 kHz 45° group had tightly gel state, high thermal stability, but poor flavor. Combined with The Order Preference by Similarity to Ideal Solution (TOPSIS)-entropy weight method, the 40 + 20 kHz 30° group, was the best ultrasonic treatment of gel. It can change the interaction between proteins, promote protein cross-link, and form a uniform and dense gel network. Finally, the hardness and moisture content of finished tofu were increased significantly, and the quality was improved.
Collapse
Affiliation(s)
- Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenjuan Qu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Ao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
105
|
Wang W, Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. Effect of high hydrostatic pressure processing on the structure, functionality, and nutritional properties of food proteins: A review. Compr Rev Food Sci Food Saf 2022; 21:4640-4682. [PMID: 36124402 DOI: 10.1111/1541-4337.13033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Proteins are important food ingredients that possess both functional and nutritional properties. High hydrostatic pressure (HHP) is an emerging nonthermal food processing technology that has been subject to great advancements in the last two decades. It is well established that pressure can induce changes in protein folding and oligomerization, and consequently, HHP has the potential to modify the desired protein properties. In this review article, the research progress over the last 15 years regarding the effect of HHP on protein structures, as well as the applications of HHP in modifying protein functionalities (i.e., solubility, water/oil holding capacity, emulsification, foaming and gelation) and nutritional properties (i.e., digestibility and bioactivity) are systematically discussed. Protein unfolding generally occurs during HHP treatment, which can result in increased conformational flexibility and the exposure of interior residues. Through the optimization of HHP and environmental conditions, a balance in protein hydrophobicity and hydrophilicity may be obtained, and therefore, the desired protein functionality can be improved. Moreover, after HHP treatment, there might be greater accessibility of the interior residues to digestive enzymes or the altered conformation of specific active sites, which may lead to modified nutritional properties. However, the practical applications of HHP in developing functional protein ingredients are underutilized and require more research concerning the impact of other food components or additives during HHP treatment. Furthermore, possible negative impacts on nutritional properties of proteins and other compounds must be also considered.
Collapse
Affiliation(s)
- Wenxin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
106
|
Konjac glucomannan improves the gel properties of low salt myofibrillar protein through modifying protein conformation. Food Chem 2022; 393:133400. [PMID: 35688089 DOI: 10.1016/j.foodchem.2022.133400] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022]
Abstract
Improving the characteristics of low salt proteins is the key to the gel properties of low-salt meat products which are demanded by people nowadays. The present study focused on the effects of KGM concentrations on the changes in structure and gelling properties of low-salt myofibrillar protein (MP). KGM addition (≤0.75 %) irrespective of salt concentration modified secondary and tertiary structures of MPs, enhanced the binding capacity of Troponin-T and Tropomyosin, augmented the gelling behavior of proteins, and remarkably improved the storage modulus (G') and gel strength of heat-induced MP gels. Interestingly, KGM addition in low salt condition showed the transformation of the all-gauche SS conformation into gauche-gauche-trans and trans-gauche-trans, and the partial transformation of α-helices into β-sheets. overall, KGM modified the structure of low salt MPs and thus improved the gel properties of low salt MPs. Therefore, KGM is recommended for low-salt meat processing to enhance the MP gelling potential.
Collapse
|
107
|
Gong H, Liu J, Wang L, You L, Yang K, Ma J, Sun W. Strategies to optimize the structural and functional properties of myofibrillar proteins: Physical and biochemical perspectives. Crit Rev Food Sci Nutr 2022; 64:4202-4218. [PMID: 36305316 DOI: 10.1080/10408398.2022.2139660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Myofibrillar protein (MP), as the main meat protein, have high nutritional value. However, the relatively poor solubility of MP at low ionic strength sometimes limits the utilization of MP to produce products rich in meat protein. Accordingly, appropriate modification of MP is needed to improve their functional properties. In general, MP modification strategies are categorized into biochemical and physical approaches. Different from other available reviews, the review focuses on summarizing the principles and applications of several techniques of physical modification, briefly depicting biochemical modification as a comparison. Modification of MP with a certain intensity of direct current magnetic field, ultrasound, high pressure, microwave, or radio frequency can improve solubility, emulsification, stability, and gel formation. Of these, magnetic field and microwave-modified MP have shown some potential in reducing salt in meat. These physical techniques can also have synergistic effects with other conditions (temperature, pH, physical or chemical techniques) to compensate for the deficiencies of individual treatment techniques. However, these strategies still need further research for practical applications.HIGHLIGHTSThe current status and findings of research on direct current magnetic field in meat processing are presented.Several physical strategies to modify the microstructure and functional properties of MPs.The synergistic effects of these techniques in combination with other methods to modify MPs are discussed.
Collapse
Affiliation(s)
- Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jiao Liu
- College of Life Science, South-Central MinZu University, Wuhan, P. R. China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
108
|
Improvement in Emulsifying Capacity of Goose Liver Protein Treated by pH Shifting with Addition of Sodium Tripolyphosphate and Its Proteomics Analysis. Foods 2022; 11:foods11213329. [PMID: 36359943 PMCID: PMC9656055 DOI: 10.3390/foods11213329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2022] Open
Abstract
Goose liver isolate treated by pH shifting and pH shifting/non-enzyme phosphorylation with goose liver isolate was used as a control. The functional property differences in the protein and proteins involved in the interfacial layer treated with pH shifting and non-enzyme phosphorylation were studied. Compared with the goose protein isolates (GPIs) at pH 7.0, the GPIs treated by pH shifting was not a good choice to be an emulsifier in a neutral environment, and non-enzyme phosphorylation inhibited the negative effects of pH shifting treatment and improved protein properties. The results of proteomics showed that the identified proteins in the interfacial layer belong to hydrophilic proteins. Non-enzyme phosphorylation increased the abundances of most proteins due to ion strength, including some phosphorylated proteins. Correlation analysis indicated that protein solubility was highly positively related with S0, intrinsic fluorescence, total sulfhydryl, free sulfhydryl, A0A0K1R5T3, R0KA48, R0KFP7, U3J1L1, P01989, R0JSM9, and R0LAD1, and was also highly negatively related with particle size and R0M210, R0M714, and R0LFA3. The emulsifying activity index (EAI) demonstrated highly positive correlation with protein solubility, and was correlated with R0JKI4, R0KK84, R0L1Y3, R0LCM7, A0A068C605, and U3IW62.
Collapse
|
109
|
Wang YR, Wang SL, Luo RM. Evaluation of key aroma compounds and protein secondary structure in the roasted Tan mutton during the traditional charcoal process. Front Nutr 2022; 9:1003126. [PMID: 36330139 PMCID: PMC9622931 DOI: 10.3389/fnut.2022.1003126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 09/11/2023] Open
Abstract
The traditional charcoal technique was used to determine the changes in the key aroma compounds of Tan mutton during the roasting process. The results showed that the samples at the different roasting time were distinguished using GC-MS in combination with PLS-DA. A total of 26 volatile compounds were identified, among which 14 compounds, including (E)-2-octenal, 1-heptanol, hexanal, 1-hexanol, heptanal, 1-octen-3-ol, 1-pentanol, (E)-2-nonenal, octanal, 2-undecenal, nonanal, pentanal, 2-pentylfuran and 2-methypyrazine, were confirmed as key aroma compounds through the odor activity values (OAV) and aroma recombination experiments. The OAV and contribution rate of the 14 key aroma compounds were maintained at high levels, and nonanal had the highest OAV (322.34) and contribution rate (27.74%) in the samples after roasting for 10 min. The content of α-helix significantly decreased (P < 0.05), while the β-sheet content significantly increased (P < 0.05) during the roasting process. The content of random coils significantly increased in the samples roasted for 0-8 min (P < 0.05), and then no obvious change was observed. At the same time, β-turn content had no obvious change. Correlation analysis showed that the 14 key aroma compounds were all positively correlated with the content of α-helix and negatively correlated with the contents of β-sheet and random coil, and also positively correlated with the content of β-turn, except hexanal and 2-methypyrazine. The results are helpful to promoting the industrialization of roasted Tan mutton.
Collapse
Affiliation(s)
- Yong-Rui Wang
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Song-Lei Wang
- College of Food and Wine, Ningxia University, Yinchuan, China
| | - Rui-Ming Luo
- College of Food and Wine, Ningxia University, Yinchuan, China
| |
Collapse
|
110
|
Asaithambi N, Singha P, Singh SK. Comparison of the effect of hydrodynamic and acoustic cavitations on functional, rheological and structural properties of egg white proteins. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
111
|
Zhang S, Guo X, Deng X, Zhao Y, Zhu X, Zhang J. Modifications of Thermal-Induced Northern Pike (Esox lucius) Liver Ferritin on Structural and Self-Assembly Properties. Foods 2022; 11:foods11192987. [PMID: 36230063 PMCID: PMC9563589 DOI: 10.3390/foods11192987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Ferritin, as an iron storage protein, regulates iron metabolism and delivers bioactive substances. It has been regarded as a safe, new type of natural iron supplement, with high bioavailability. In this paper, we extracted and purified ferritin from northern pike liver (NPLF). The aggregation stabilities, assemble properties, and structural changes in NPLF were investigated using electrophoresis, dynamic light scattering (DLS), circular dichroism (CD), UV–Visible absorption spectroscopy, fluorescence spectroscopy, and transmission electron microscopy (TEM) under various thermal treatments. The solubility, iron concentration, and monodispersity of NPLF all decreased as the temperature increased, and macromolecular aggregates developed. At 60 °C and 70 °C, the α-helix content of ferritin was greater. The content of α-helix were reduced to 8.10% and 1.90% at 90 °C and 100 °C, respectively, indicating the protein structure became loose and lost its self-assembly ability. Furthermore, when treated below 80 °C, NPLF maintained a complete cage-like shape, according to the microstructure. Partially unfolded structures reassembled into tiny aggregates at 80 °C. These findings suggest that mild thermal treatment (80 °C) might inhibit ferritin aggregation while leaving its self-assembly capacity unaffected. Thus, this study provides a theoretical basis for the processing and use of NPLF.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Zhang
- Correspondence: ; Tel.: +86-189-9773-1657
| |
Collapse
|
112
|
Curcumin-Loaded Self-Assembly Constructed by Octenylsuccinate Fish ( Cyprinus carpio L.) Scale Gelatin: Preparation and Characterization. Foods 2022; 11:foods11182911. [PMID: 36141040 PMCID: PMC9498313 DOI: 10.3390/foods11182911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin loaded octenylsuccinate fish scale gelatin (OFSG) was prepared in this study, to explore the potential of FSG for delivering hydrophobic nutrients. The effects of molecule weight (Mw, 22,677-369 g/mol) and degree of substitution (DS, 0-0.116) on the curcumin loading efficiency (CLE, μg/mL) of OFSG (6.98-26.85 mg/mL) were evaluated. The expose of interior hydrophobic groups in FSG and increased intermolecular hydrophobic area contributed to the loading of curcumin in two phases, respectively. The interaction between OFSG and curcumin showed a decreased absorption in FTIR and an increased crystallinity in XRD. The loading of curcumin into OFSG caused a significant decrease of the particle size (from 350-12,070 to 139-214 nm), PDI (from 0.584-0.659 to 0.248-0.347) and ζ-potential (-12.2 or -11.4 to -21.0 or -20.3). OFSG showed a significantly higher stability and lower release of curcumin than FSG at the end of the simulated gastrointestinal digestion. Thus, OFSG showed great potential in the construction of a carrier for hydrophobic nutrients.
Collapse
|
113
|
Li X, He Z, Xu J, Su C, Xiao X, Zhang L, Zhang H, Li H. Conformational Changes in Proteins Caused by High-Pressure Homogenization Promote Nanoparticle Formation in Natural Bone Aqueous Suspension. Foods 2022; 11:2869. [PMID: 36140999 PMCID: PMC9498631 DOI: 10.3390/foods11182869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a natural calcium resource, animal bone needs to be miniaturized to the nanoscale to improve palatability and absorption capacity. To explore the mechanism of high-pressure homogenization (HPH) in preparing natural bone aqueous nanosuspensions, the relationships between the changes in protein conformation, solubility and quality characteristics of rabbit bone aqueous suspensions (RBAS) prepared by different HPH cycles were studied. The results showed that the improvements in particle size, stability and calcium solubility of RBASs could be mainly attributed to the improvement of protein solubility induced by the changes in protein conformation. HPH treatment led to the denaturation and degradation of protein in rabbit bone, generating soluble peptides and improving the stability of the suspensions by enhancing the surface charge of the particles. When collagen as the main protein was partially degraded, the hydroxyapatite in the bone was crushed into tiny particles. The increase in the particle-specific surface area led to the release of calcium ions, which chelated with the peptides to produce peptide calcium. However, excessive HPH treatment caused the production of protein macromolecular aggregates and affected the quality of RBASs. This study is helpful to promote the application of HPH technology in animal bone nanoprocessing.
Collapse
Affiliation(s)
- Xue Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Zhifei He
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jingbing Xu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Chang Su
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xu Xiao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Huanhuan Zhang
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
114
|
Xu Q, Li X, Lv Y, Liu Y, Yin C. Effects of ultrasonic treatment on ovomucin: Structure, functional properties and bioactivity. ULTRASONICS SONOCHEMISTRY 2022; 89:106153. [PMID: 36088894 PMCID: PMC9474920 DOI: 10.1016/j.ultsonch.2022.106153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The effects of ultrasonic treatment on the structure, functional properties and bioactivity of Ovomucin (OVM) were investigated in this study. Ultrasonic treatment could significantly enhance OVM solubility without destroying protein molecules. The secondary structure changes, including β-sheet reduction and random coil increase, indicate more disorder in OVM structure. After ultrasonic treatment, the OVM molecule was unfolded partially, resulting in the exposure of hydrophobic regions. The changes in OVM molecules led to an increase in intrinsic fluorescence and surface hydrophobicity. By detecting the particle size of protein solution, it was confirmed that ultrasonic treatment disassembled the OVM aggregations causing a smaller particle size. Field emission scanning electron microscopy (FE-SEM) images showed that ultrasonic cavitation significantly reduced the tendency of OVM to form stacked lamellar structure. Those changes in structure resulted in the improvement of foaming, emulsification and antioxidant capacity of OVM. Meanwhile, the detection results of ELISA showed that ultrasonic treatment did not change the biological activity of OVM. These results suggested that the relatively gentle ultrasound treatment could be utilized as a potential approach to modify OVM for property improvement.
Collapse
Affiliation(s)
- Qi Xu
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China.
| | - Xuanchen Li
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China
| | - Yunzheng Lv
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China
| | - Yaping Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Chunfang Yin
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China
| |
Collapse
|
115
|
Real meat and plant-based meat analogues have different in vitro protein digestibility properties. Food Chem 2022; 387:132917. [DOI: 10.1016/j.foodchem.2022.132917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
|
116
|
Characterization and emulsifying properties of mantle proteins from scallops (Patinopecten yessoensis) treated by high hydrostatic pressure treatment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
117
|
Huang P, Wang Z, Feng X, Kan J. Promotion of fishy odor release by phenolic compounds through interactions with myofibrillar protein. Food Chem 2022; 387:132852. [DOI: 10.1016/j.foodchem.2022.132852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/13/2022] [Accepted: 03/27/2022] [Indexed: 12/16/2022]
|
118
|
Effect of ultrasound-assisted freezing combined with potassium alginate on the quality attributes and myofibril structure of large yellow croaker (Pseudosciaena crocea). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
119
|
Zhao GM, Zhang GY, Bai XY, Yin F, Ru A, Yu XL, Zhao LJ, Zhu CZ. Effects of NaCl-assisted regulation on the emulsifying properties of heat-induced type I collagen. Food Res Int 2022; 159:111599. [DOI: 10.1016/j.foodres.2022.111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
|
120
|
Modification of grass pea protein isolate (Lathyrus sativus L.) using high intensity ultrasound treatment: Structure and functional properties. Food Res Int 2022; 158:111520. [DOI: 10.1016/j.foodres.2022.111520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
|
121
|
Ultrasound modified protein colloidal particles: Interfacial activity, gel property and encapsulation efficiency. Adv Colloid Interface Sci 2022; 309:102768. [DOI: 10.1016/j.cis.2022.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
|
122
|
Liu C, Kong L, Yu P, Wen R, Yu X, Xu X, Peng X. Whey Protein Hydrolysates Improved the Oxidative Stability and Water-Holding Capacity of Pork Patties by Reducing Protein Aggregation during Repeated Freeze-Thaw Cycles. Foods 2022; 11:2133. [PMID: 35885376 PMCID: PMC9320738 DOI: 10.3390/foods11142133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
The effects of whey protein hydrolysates (WPH) on myofibrillar protein (MP) oxidative stability and the aggregation behavior and the water-holding capacity of pork patties during freeze-thaw (F-T) cycles were investigated. During F-T cycles, the total sulfhydryl content and zeta potential of MP decreased, while peroxide value, surface hydrophobicity, particle size, pressure loss and transverse relaxation times increase. The oxidative stability and the water-holding capacity of pork patties were enhanced by the addition of WPH in a dose-dependent manner, whereas the MP aggregation decreased. The addition of 15% WPH had the most obvious effects on the pork patties, which was similar to that of the 0.02% BHA. After nine F-T cycles, the POV, surface hydrophobicity, particle size and pressure loss of the pork patties with 15% WPH were reduced by 17.20%, 30.56%, 34.67% and 13.96%, respectively, while total sulfhydryl content and absolute value of zeta potential increased by 69.62% and 146.14%, respectively. The results showed that adding 15% WPH to pork patties can be an effective method to inhibit lipid and protein oxidation, reducing protein aggregation and improving the water-holding capacity of pork patties during F-T cycles.
Collapse
Affiliation(s)
- Chunyun Liu
- College of Life Sciences, Yantai University, Yantai 264005, China; (C.L.); (L.K.); (P.Y.); (R.W.)
| | - Lingru Kong
- College of Life Sciences, Yantai University, Yantai 264005, China; (C.L.); (L.K.); (P.Y.); (R.W.)
| | - Pengjuan Yu
- College of Life Sciences, Yantai University, Yantai 264005, China; (C.L.); (L.K.); (P.Y.); (R.W.)
| | - Rongxin Wen
- College of Life Sciences, Yantai University, Yantai 264005, China; (C.L.); (L.K.); (P.Y.); (R.W.)
| | - Xiaobo Yu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (X.X.)
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (X.X.)
| | - Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264005, China; (C.L.); (L.K.); (P.Y.); (R.W.)
| |
Collapse
|
123
|
Effects of High-Pressure Treatments (Ultra-High Hydrostatic Pressure and High-Pressure Homogenization) on Bighead Carp (Aristichthys nobilis) Myofibrillar Protein Native State and Its Hydrolysate. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
124
|
Nawaz A, Irshad S, Ali Khan I, Khalifa I, Walayat N, Muhammad Aadil R, Kumar M, Wang M, Chen F, Cheng KW, Lorenzo JM. Protein oxidation in muscle-based products: Effects on physicochemical properties, quality concerns, and challenges to food industry. Food Res Int 2022; 157:111322. [DOI: 10.1016/j.foodres.2022.111322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 12/29/2022]
|
125
|
Wang K, Li Y, Zhang Y, Luo X, Sun J. Improving myofibrillar proteins solubility and thermostability in low-ionic strength solution: A review. Meat Sci 2022; 189:108822. [PMID: 35413661 DOI: 10.1016/j.meatsci.2022.108822] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022]
Abstract
The development of myofibrillar proteins drinks (MPDs) can provide meat protein nutrition to specific groups of people. However, one major challenge is that myofibrillar proteins (MPs) are insoluble in solutions with a low ionic strength. Another functional constraint is the susceptibility of MPs to heat-induced aggregation. Currently, the primary approach used to improve the water solubility of MPs is to inhibit the assembly of myofilaments. Increasing the thermostability of MPs primarily inhibits the aggregation of myosin or oxidizes myosin to soluble substances. This review focuses on the description of several chemical and physical strategies, with an emphasis on the advantages, disadvantages, and recent progress. Under the myosin filament assembly process and the cross-linking aggregation mechanism, this summary helps improve our understanding of the solution and thermostability of MPs in low-ionic-strength solutions, thus providing new ideas to the development of MPDs.
Collapse
Affiliation(s)
- Ke Wang
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China; College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Li
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yimin Zhang
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Xin Luo
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
126
|
Insight Into the Effect of Carnosine on the Dispersibility of Myosin Under a Low-salt Condition and its Mechanism. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
127
|
Zhao S, Yuan X, Li Z, Zhao Y, Zhou H, Kang Z, Ma H. Inhibitory effects of pepper (
Zanthoxylum bungeanum
Maxim) leaf extract on lipid and protein oxidation during the processing of Chinese traditional dry‐cured meat (larou). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengming Zhao
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| | - Xiaorui Yuan
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| | - Zhao Li
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| | - Yanyan Zhao
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
| | - Haixu Zhou
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
| | - Zhuangli Kang
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| | - Hanjun Ma
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| |
Collapse
|
128
|
Wang H, Wang Y, Wu D, Gao S, Jiang S, Tang H, Lv G, Xiaobo Z, Meng X. Changes in physicochemical quality and protein properties of porcine
longissimus lumborum
during dry ageing. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hengpeng Wang
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Yinlan Wang
- School of Food Science, Jiangsu College of Tourism Yangzhou 225000 China
| | - Danxuan Wu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Sumin Gao
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Songsong Jiang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Hailian Tang
- Suzhou Tourism and Finance Institute, Jiangsu Union Technical Institue Suzhou 215000 China
| | - Guanhua Lv
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Zou Xiaobo
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Xiangren Meng
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| |
Collapse
|
129
|
Luo J, Xu W, Liu Q, Zou Y, Wang D, Zhang J. Dielectric barrier discharge cold plasma treatment of pork loin: Effects on muscle physicochemical properties and emulsifying properties of pork myofibrillar protein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
130
|
Wu G, Liu X, Hu Z, Wang K, Zhao L. Impact of xanthan gum on gluten microstructure and bread quality during the freeze-thaw storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
131
|
Zhao S, Li Z, Liu Y, Zhao Y, Yuan X, Kang Z, Zhu M, Ma H. High-pressure processing influences the conformation, water distribution, and gel properties of pork myofibrillar proteins containing Artemisia sphaerocephala Krasch gum. Food Chem X 2022; 14:100320. [PMID: 35571334 PMCID: PMC9092500 DOI: 10.1016/j.fochx.2022.100320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Artemisia sphaerocephala Krasch gum could improve WHC and gel strength. HPP (≤200 MPa) induced high immobilized water proportion and a dense, uniform microstructure of MP-AG gels. HPP (>200 MPa) decreased surface hydrophobicity and storage modulus of MP-AG solutions. HPP (>200 MPa) increased particle size and amount of reactive sulfhydryl group of MP-AG solutions. The results have great potential for developing reduced-sodium meat products.
The effect of high-pressure processing (100–4 00 MPa) on conformation, water distribution, and gel characteristics of reduced-sodium (0.3 M NaCl) myofibrillar protein containing 0.15% Artemisia sphaerocephala Krasch gum (AG) was investigated. The addition of AG resulted in the increase of WHC, proportion of immobilized water, and gel strength. Then, the WHC, proportion of immobilized water, and gel strength peaked after 200 MPa treatment, attributed to increased solubilization and zeta potential of MP, decreased particle size of MP, exposure of intrinsic tryptophan residues and the partial transformation of α-helix into β-sheet in MP. Moreover, 300 and 400 MPa induced decreases in surface hydrophobicity, solubility and storage modulus, resulting in the formation of loose and disordered gel structures with attenuated WHC. These results suggest that application of moderate HPP (200 MPa) combined with AG could provide a novel approach to improve the WHC and gelation properties of reduced-sodium meat products.
Collapse
Affiliation(s)
- Shengming Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, No. 90 Hua lan Street, Xinxiang 453003, PR China
- National Pork Processing Technology Research and Development Professional Center, No. 90 Hua lan Street, Xinxiang 453003, PR China
- Corresponding author at: School of Food Science and Technology, Henan Institute of Science and Technology, No. 90 Hua lan Street, Xinxiang 453003, PR China.
| | - Zhao Li
- School of Food Science and Technology, Henan Institute of Science and Technology, No. 90 Hua lan Street, Xinxiang 453003, PR China
- National Pork Processing Technology Research and Development Professional Center, No. 90 Hua lan Street, Xinxiang 453003, PR China
| | - Yu Liu
- School of Food Science and Technology, Henan Institute of Science and Technology, No. 90 Hua lan Street, Xinxiang 453003, PR China
- National Pork Processing Technology Research and Development Professional Center, No. 90 Hua lan Street, Xinxiang 453003, PR China
| | - Yanan Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, No. 90 Hua lan Street, Xinxiang 453003, PR China
- National Pork Processing Technology Research and Development Professional Center, No. 90 Hua lan Street, Xinxiang 453003, PR China
| | - Xiaorui Yuan
- School of Food Science and Technology, Henan Institute of Science and Technology, No. 90 Hua lan Street, Xinxiang 453003, PR China
- National Pork Processing Technology Research and Development Professional Center, No. 90 Hua lan Street, Xinxiang 453003, PR China
| | - Zhuangli Kang
- School of Food Science and Technology, Henan Institute of Science and Technology, No. 90 Hua lan Street, Xinxiang 453003, PR China
- National Pork Processing Technology Research and Development Professional Center, No. 90 Hua lan Street, Xinxiang 453003, PR China
| | - Mingming Zhu
- School of Food Science and Technology, Henan Institute of Science and Technology, No. 90 Hua lan Street, Xinxiang 453003, PR China
- National Pork Processing Technology Research and Development Professional Center, No. 90 Hua lan Street, Xinxiang 453003, PR China
| | - Hanjun Ma
- School of Food Science and Technology, Henan Institute of Science and Technology, No. 90 Hua lan Street, Xinxiang 453003, PR China
- National Pork Processing Technology Research and Development Professional Center, No. 90 Hua lan Street, Xinxiang 453003, PR China
| |
Collapse
|
132
|
Jiang S, Zhang M, Liu H, Li Q, Xue D, Nian Y, Zhao D, Shan K, Dai C, Li C. Ultrasound treatment can increase digestibility of myofibrillar protein of pork with modified atmosphere packaging. Food Chem 2022; 377:131811. [PMID: 35030336 DOI: 10.1016/j.foodchem.2021.131811] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/04/2022]
Abstract
We explored whether ultrasound treatment affected digestibility of myofibrillar protein (MP) isolated from modified atmosphere packed (MAP, 70% N2 and 30% CO2) pork. MP digestibility under pepsin and pancreatin treatments decreased significantly with storage time. Ultrasound treatment increased the digestibility and produced a greater number of smaller peptides. However, the total peptide count and unique peptide counts were significantly reduced. Moreover, active sulfhydryl, total sulfhydryl, particle size, turbidity and surface hydrophobicity of MP increased with time, while protein solubility and ATPase activity decreased. Compared with the untreated samples, ultrasound treatment increased protein solubility, surface hydrophobicity, and active sulfhydryl content, but decreased total sulfhydryl content (except 10 d), particle sizes, turbidity and ATPase activity. Ultrasound treatment resulted in a decline in β-turn and α-helix contents. Therefore, ultrasound is conducive to the digestion. Additionally, structural and functional properties of protein in MAP were less stable than those in vacuum-packed pork reported before.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hui Liu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dejiang Xue
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingqun Nian
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kai Shan
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chen Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
133
|
Wei S, Xu Y, Kong B, Wang M, Zhang J, Liu Q, Yang Y. Effect of microwave heating time on the gel properties of chicken myofibrillar proteins and their formation mechanism. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sumeng Wei
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Yining Xu
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Baohua Kong
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Meijuan Wang
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Jingming Zhang
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Qian Liu
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
- Heilongjiang Green Food Science & Research Institute Harbin Heilongjiang 150028 China
| | - Yuling Yang
- College of Food Science and Engineering/Collaborative Innovation Centre for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| |
Collapse
|
134
|
Liu X, Mao K, Sang Y, Tian G, Ding Q, Deng W. Physicochemical Properties and in vitro Digestibility of Myofibrillar Proteins From the Scallop Mantle ( Patinopecten yessoensis) Based on Ultrahigh Pressure Treatment. Front Nutr 2022; 9:873578. [PMID: 35479738 PMCID: PMC9037751 DOI: 10.3389/fnut.2022.873578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
The utilization of myofibrillar proteins (MPs) from the scallop mantle was limited due to its poor digestibility in vitro. In this study, structural properties and in vitro digestibility of MP were evaluated after modified by ultra-high pressure (UHP) at different pressures (0.1, 100, 200, 300, 400, and 500 MPa). The results showed that high pressure could significantly increase the ordered structure content like α-helix, inhibit the formation of disulfide bonds, and decrease surface hydrophobicity. Moreover, MP possessed the optimal solubility and in vitro digestibility properties at 200 MPa due to the minimum particle size and turbidity, relatively dense and uniform microstructure. The results indicated that the UHP treatment was an effective method to improve the digestibility of MP from scallop mantle and lay a theoretical basis for the functional foods development of poor digestion people and comprehensive utilization of scallop mantles.
Collapse
Affiliation(s)
- Xiaohan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Kemin Mao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guifang Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qiuyue Ding
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenyi Deng
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
135
|
Gao Y, Wang L, Qiu Y, Fan X, Zhang L, Yu Q. Valorization of Cattle Slaughtering Industry By-Products: Modification of the Functional Properties and Structural Characteristics of Cowhide Gelatin Induced by High Hydrostatic Pressure. Gels 2022; 8:gels8040243. [PMID: 35448144 PMCID: PMC9029605 DOI: 10.3390/gels8040243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
This study investigates the effects of different pressures (200, 250, 300, 350, and 400 MPa) and durations (5, 10, 15, 20, and 25 min) on the functional properties, secondary structure, and intermolecular forces of cowhide gelatin. Our results show that high hydrostatic pressure significantly affected the two, three, and four-level structures of gelatin and caused the contents of the α-helix and β-turn to decrease by 68.86% and 78.58%, respectively (p < 0.05). In particular, the gelatin at 300 MPa for 15 min had the highest gel strength, emulsification, solubility, and foaming of all the treatment conditions under study. The analysis of the surface hydrophobicity, sulfhydryl content, zeta potential, and Raman spectroscopy shows that at a pressure of 300 MPa (15 min), the hydrogen bonds and hydrophobic interactions between collagen molecules are strongly destroyed, leading to changes in the tertiary and quaternary conformation of the protein and unfolding, with the electrostatic repulsion between protein particles making the decentralized state stable. In conclusion, moderate pressure and time can significantly improve the functional and structural properties of collagen, which provides theoretical support and guidance for realizing the high-value utilization of cowhide.
Collapse
Affiliation(s)
| | | | | | | | - Li Zhang
- Correspondence: ; Tel.: +86-937-7631-201
| | | |
Collapse
|
136
|
Cong H, Lyu H, Liang W, Zhang Z, Chen X. Changes in Myosin from Silver Carp (Hypophthalmichthys molitrix) under Microwave-Assisted Water Bath Heating on a Multiscale. Foods 2022; 11:foods11081071. [PMID: 35454658 PMCID: PMC9030768 DOI: 10.3390/foods11081071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 01/23/2023] Open
Abstract
To further prove the advantages of microwave-assisted water bath heating (MWH) in low-value fish processing, the effects of different heating methods (two heating stage method, high temperature section respectively using MWH1, MWH2, MWH3, WH—water heating, MH—microwave heating) on secondary and tertiary myosin structures, SDS-PAGE, surface morphology, scanning electron microscopy (SEM), and particle size distribution were compared and analyzed. The findings revealed that MH and MWH aided in the production of gel formations by promoting myosin aggregation. Myosin from silver carps demonstrated enhanced sulfhydryl group and surface hydrophobicity after MWH treatment, as well as a dense network structure. The distribution of micropores becomes more uniform when the microwave time is increased. Actually, the total effect of microwave time on myosin is not substantially different. The correlation between particle size distribution and protein aggregation was also studied, in terms of time savings, the MWH of short microwave action is preferable since it not only promotes myosin aggregation but also avoids the drawbacks of a rapid warming rate. These discoveries give a theoretical foundation for understanding silver carp myosin under microwave modification, which is critical in the food industry.
Collapse
Affiliation(s)
- Haihua Cong
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (W.L.); (Z.Z.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (H.C.); (X.C.); Tel.: +86-(0)411-8476-2528 (H.C.); +86-(0)512-6588-2767 (X.C.)
| | - He Lyu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Wenwen Liang
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (W.L.); (Z.Z.)
- Huilly Pharmaceuticals Ltd., Suzhou 215000, China
| | - Ziwei Zhang
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (W.L.); (Z.Z.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Chen
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, China
- Correspondence: (H.C.); (X.C.); Tel.: +86-(0)411-8476-2528 (H.C.); +86-(0)512-6588-2767 (X.C.)
| |
Collapse
|
137
|
Hu X, Wang J, Sun L, Zhang W, Zhang Y, Liu X, Lan W. Effects of pulsed ultrasound treatment on the physicochemical and textural properties of chicken myofibrillar protein gel. FOOD SCI TECHNOL INT 2022; 28:309-319. [PMID: 33940967 DOI: 10.1177/10820132211011302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study explored the effects of varying the time of pulsed ultrasound (PUS) treatment on the physicochemical and textural properties of chicken myofibrillar protein (CMP) gel. The solubility rapidly increased at ≤ 6 min and then steadily decreased, while the particle size showed the opposite trend. At longer PUS treatment times, the total sulfhydryl(-SH)and reactive SH content of CMP gel all decreased. The absolute value of the zeta potential and surface hydrophobicity at 6 min were higher. The most hydrogen bonds were formed. G' and G″ were also optimal, indicating that a more viscoelastic gel was formed. Meanwhile, the textural properties (including hardness and springiness) were significantly improved by PUS. These findings show that PUS significantly affected the physicochemical and textural properties of CMP gel, and at 6 min, the best gel hardness and springiness were achieved.
Collapse
Affiliation(s)
- Xin Hu
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China.,Fuyang Fruit wine Engineering Technology Center, Fuyang, Anhui 236037, China
| | - Jingyu Wang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China.,Fuyang Fruit wine Engineering Technology Center, Fuyang, Anhui 236037, China
| | - Lilu Sun
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Wanpeng Zhang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Yuan Zhang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China.,Fuyang Fruit wine Engineering Technology Center, Fuyang, Anhui 236037, China
| | - Xiaoli Liu
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China.,Fuyang Fruit wine Engineering Technology Center, Fuyang, Anhui 236037, China
| |
Collapse
|
138
|
Hatab S, Koddy JK, Miao W, Tang L, Xu H, Deng S, Zheng B. Atmospheric cold plasma: a new approach to modify protein and lipid properties of myofibrillar protein isolate from hairtail (Trichiurus lepturus) fish. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2041-2049. [PMID: 34561868 DOI: 10.1002/jsfa.11543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/05/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Quite recently, considerable attention has been paid to atmospheric cold plasma (ACP) as an eco-friendly and highly efficient technology to modify the functional properties of foods. This study focuses on the effect of ACP on the myofibril protein and lipid quality of hairtail (Trichiurus lepturus) fish. In achieving this, the samples were treated with ACP at 50 kV for different times (30, 60, 120, 180, 240, 300 s). RESULTS The findings indicated slight changes in peroxide value and thiobarbituric acid reactive substances in the samples treated with ACP. A significant increase (P < 0.05) in the surface hydrophobicity (from 131.71 ± 0.81 μg to 146. 34 ± 0.81 μg), turbidity (from 0.13 ± 0.001 to 0.27 ± 0.01), and water-holding capacity (from 61.63% ± 5.7% to 64.86% ± 1.5%) were detected with treated samples. CONCLUSIONS We conclude that ACP treatment induces marked changes in the protein and lipid properties of myofibril protein isolated from hairtail fish, which strengthen the gel formation of hairtail fish. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaimaa Hatab
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
- Faculty of Environmental Agricultural Science, Arish University, 45516, North Sinai, Egypt
- Faculty of Organic Agriculture, Heliopolis University, 2834, Cairo, Egypt
| | - John K Koddy
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
- National Fish Quality Control Laboratory, Nyegezi, Box. 1392, Mwanza, Tanzania
| | - Wenhua Miao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Lingling Tang
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Huiqian Xu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Shanggui Deng
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Bin Zheng
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
| |
Collapse
|
139
|
Li X, Li S, Shi G, Xiong G, Shi L, Kang J, Su J, Ding A, Li X, Qiao Y, Liao L, Wang L, Wu W. Quantitative proteomics insights into gel properties changes of myofibrillar protein from Procambarus clarkii under cold stress. Food Chem 2022; 372:130935. [PMID: 34818725 DOI: 10.1016/j.foodchem.2021.130935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023]
Abstract
The impacts of cold stress (4 ℃ for 0 h, 12 h, 24 h, 36 h and 48 h, respectively) on the components, structural and physical properties of myofibrillar protein (MP) gel from Procambarus clarkii were investigated. The physicochemical analysis indicated the secondary and tertiary structure of MP were unfolding to different degrees after cold stress when compared to the control. The MP gel hardness reached a maximum when the cold stress reached 24 h. Furthermore, the quantitative proteomics results indicated that 20 up-regulated differentially abundant proteins (DAPs) were detected in 24 h when compared to control, specifically include myosin light chain 1 (MLC1) and skeletal muscle actin 6. Additionally, the combined analysis confirmed that MLC1 and skeletal muscle actin 6 might play key roles in hardening shrimp meat under cold stress. The results could provide a theoretical reference for the changes in crayfish muscle quality during cold chain transportation.
Collapse
Affiliation(s)
- Xuehong Li
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China; School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Shugang Li
- School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, Hubei, China; Engineering Research Center of Bio-process, Ministry of Education/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Gangpeng Shi
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China; School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Guangquan Xiong
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China
| | - Liu Shi
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China
| | - Jun Kang
- Hubei Qianwang Ecological Crayfish Industrial Park Group Corporation, Qianjiang 433100, China
| | - Jing Su
- Hubei Qianwang Ecological Crayfish Industrial Park Group Corporation, Qianjiang 433100, China
| | - Anzi Ding
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China
| | - Xin Li
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China
| | - Yu Qiao
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China
| | - Li Liao
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China.
| | - Wenjin Wu
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Wuhan 430064, China.
| |
Collapse
|
140
|
Ye T, Chen X, Zhu Y, Chen Z, Wang Y, Lin L, Zheng Z, Lu J. Freeze-Thawing Treatment as a Simple Way to Tune the Gel Property and Digestibility of Minced Meat from Red Swamp Crayfish (Procambarus clarkiix). Foods 2022; 11:foods11060837. [PMID: 35327260 PMCID: PMC8950141 DOI: 10.3390/foods11060837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 01/20/2023] Open
Abstract
The effects of freezing methods, including rapid freezing (RF) or slow freezing (SF), combined with thawing methods, e.g., water immersing thawing (WT) or cold thawing (CT), on the meat yield, drip loss, gel properties, and digestive properties of meat detached from red swamp crayfish were investigated. RF greatly reduced the freezing time compared to SF, and the thawing time of frozen crayfish was obviously shortened by WT in comparison to CT. RF and CT improved the meat yield but increased the drip loss, probably as a result of the greater protein denaturation or degradation. A soft and flexible gel was obtained by SF-CT, while a hard one was achieved by RF-WT. An SEM analysis showed that SF resulted in rough and irregular microstructures with larger pore sizes. Freeze-thawing led to an increase in the β-sheet content at the expense of α-helix and variations in the microenvironment of tyrosine and tryptophan residues in protein molecules of the gels, which was more pronounced in the SF-CT group. Moreover, freeze-thawing could cause enhanced protein digestibility but reduce the antioxidant activity of gels. These findings underline the promise of the freezing-thawing treatment in tuning the gel-based meat products of crayfish.
Collapse
Affiliation(s)
- Tao Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- School of Bioengineering, Huainan Normal University, Huainan 232038, China; (Z.C.); (Y.W.)
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Yajun Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
| | - Zhina Chen
- School of Bioengineering, Huainan Normal University, Huainan 232038, China; (Z.C.); (Y.W.)
| | - Yun Wang
- School of Bioengineering, Huainan Normal University, Huainan 232038, China; (Z.C.); (Y.W.)
| | - Lin Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Jianfeng Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
- Correspondence:
| |
Collapse
|
141
|
Wang P, Li Y, Qu Y, Wang B, Sun J, Miao C, Huang M, Huang H, Zhang C. Improving gelling properties of myofibrillar proteins incorporating with cellulose micro/nanofibres. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Peng Wang
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
| | - Yan Li
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
| | - Yujiao Qu
- College of Chemical & Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 China
| | - Baowei Wang
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
| | - Jingxin Sun
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
- Qingdao Special Food Research Institute Qingdao 266109 China
| | - Chunwei Miao
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
| | - Ming Huang
- National R&D Branch Center for Poultry Meat Processing Technology Huangjiaoshou Food Sci. & Tech. Co., Ltd. Nanjing 211226 China
| | - He Huang
- Newhope Liuhe Group Co., Ltd. Qingdao 266000 China
| | | |
Collapse
|
142
|
Zhu Y, Yan Y, Yu Z, Wu T, Bennett LE. Effects of high pressure processing on microbial, textural and sensory properties of low-salt emulsified beef sausage. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
143
|
Yu X, Wang Y, Xie Y, Wei S, Ding H, Yu C, Dong X. Gelation properties and protein conformation of Grass Carp fish ball as influenced by egg white protein. J Texture Stud 2022; 53:277-286. [PMID: 35229305 DOI: 10.1111/jtxs.12668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Dried egg white powder (EWP) and purified ovalbumin (OVA, 98%) were used as supplements to improve grass carp (GC) fish balls (FB) quality. The effects of EWP and/or OVA contents on the gel strength, water holding capacity (WHC), moisture migration and distribution, and rheological properties of GC-FB, as well as on myofibrillar protein (MfP) structures in the GC-FB were evaluated. The results showed that with the increase of EWP addition from 0 to 4% (w/w), the gel strength and WHC of the GC-FB samples were increased from 34.28 to 66.63 N×mm, and 83.02 to 88.36%, respectively, but the increases were insignificant between 3% and 4% EWP-added GC-FBs (p>0.05). As the EWP increased, the T2 relaxation time shifted towards lower values, indicating a general decline in water mobility. The effects of EWP on rheological properties were insignificant. Addition of OVA and/or EWP led to changes in secondary structural units in the FB, with α-helix (27.53%) reaching the highest value in OVA-added GC-FB, β-sheet (46.07%) reaching the highest value in GC-FB, and β-turn (33.54%) reaching the highest value in EWP-added GC-FB, respectively. Raman spectroscopy revealed that OVA-added GC-FB had the lowest hydrophobic interlinkages. Protein pattern analysis suggested that the OVA (1.58%) might contribute to the decrease in the myosin heavy chain (MHC) band intensity through cross-linked with MfP. These results suggested that EWP could improve the quality of GC-FBs and OVA played an important role with MfP gelation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiliang Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Yue Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Yisha Xie
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Shibiao Wei
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Haochen Ding
- Liaoning Anjoyfood Co., Ltd., Anshan, Liaoning, China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Xiuping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| |
Collapse
|
144
|
Zhou R, Yang C, Xie T, Zhang J, Wang C, Ma Z, Zhang L. Angiotensin-Converting Enzyme (ACE) Inhibitory Activity and Mechanism Analysis of N-(1-Deoxy-d-fructos-1-yl)-histidine (Fru-His), a Food-Derived Amadori Compound. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2179-2186. [PMID: 35148100 DOI: 10.1021/acs.jafc.1c05583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
N-(1-Deoxy-d-fructos-1-yl)-histidine (Fru-His), one of the Amadori compounds, widely presents in processed foods, and its potential functional activities have attracted extensive attention in recent years. In this work, the angiotensin-converting enzyme (ACE) inhibitory activity and mechanism of Fru-His were investigated. The IC50 value of Fru-His was 0.150 ± 0.019 mM, and there was no obvious degradation of Fru-His after digestion simulation, showing that Fru-His has good ACE inhibition and digestive stability. Fru-His was a competitive inhibitor according to the enzyme inhibition kinetic analysis. The interaction between ACE and Fru-His occurred spontaneously mainly through hydrogen bonding, and the process was accompanied by fluorescence quenching and the alteration of the secondary structure of ACE. The molecular docking data supported the above results. Fru-His was attached to ACE's S1 active pocket through hydrogen bonds and interacted with zinc ions in active sites. The present study demonstrates that food-derived Fru-His has the potential to relieve hypertension.
Collapse
Affiliation(s)
- Renjie Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Cheng Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Ting Xie
- Technical Center of Hefei Customs, Hefei 230041, Anhui, P. R. China
| | - Jian Zhang
- College of Food, Shihezi University, Beisi Road, Shihezi 832003, Xinjiang, P. R. China
| | - Chenqiang Wang
- Technology Center, Xinjiang Guannong Fruit & Antler Group Co., Ltd., Korla City 841000, Xinjiang, P. R. China
| | - Ziqiang Ma
- Technology Center, Xinjiang Guannong Fruit & Antler Group Co., Ltd., Korla City 841000, Xinjiang, P. R. China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- College of Food, Shihezi University, Beisi Road, Shihezi 832003, Xinjiang, P. R. China
| |
Collapse
|
145
|
Ren C, Zheng X, Zou B, Wang J, Xu X, Wu C, Du M. Enhanced thermal stability of soy protein particles by a combined treatment of microfluidic homogenisation and preheating. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Ren
- Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing Dalian 116034 China
- National Engineering Research Center of Seafood Dalian 116034 China
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Xiaohan Zheng
- Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing Dalian 116034 China
- National Engineering Research Center of Seafood Dalian 116034 China
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Bowen Zou
- Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing Dalian 116034 China
- National Engineering Research Center of Seafood Dalian 116034 China
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Jiamei Wang
- Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing Dalian 116034 China
- National Engineering Research Center of Seafood Dalian 116034 China
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Xianbing Xu
- Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing Dalian 116034 China
- National Engineering Research Center of Seafood Dalian 116034 China
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Chao Wu
- Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing Dalian 116034 China
- National Engineering Research Center of Seafood Dalian 116034 China
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Ming Du
- Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing Dalian 116034 China
- National Engineering Research Center of Seafood Dalian 116034 China
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
146
|
Xiao-Hui G, Jing W, Ye-Ling Z, Ying Z, Qiu-Jin Z, Ling-Gao L, Dan C, Yan-Pei H, Sha G, Ming-Ming L. Mediated curing strategy: An overview of salt reduction for dry-cured meat products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2029478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Gong Xiao-Hui
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Wan Jing
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
- Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang, Guizhou, China
| | - Zhou Ye-Ling
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Zhou Ying
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Zhu Qiu-Jin
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
- Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang, Guizhou, China
| | - Liu Ling-Gao
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Chen Dan
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Huang Yan-Pei
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Gu Sha
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| | - Li Ming-Ming
- School of Liquor & Food Engineering, Guizhou University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guizhou University, Guiyang, China
| |
Collapse
|
147
|
Cheng J, Lin Y, Tang D, Yang H, Liu X. Structural and gelation properties of five polyphenols-modified pork myofibrillar protein exposed to hydroxyl radicals. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
148
|
Ye T, Zhu Y, Wang Y, Liu R, Lin L, Zheng Z, Lu J. Effect of high pressure shucking on the gel properties and in vitro digestibility of myofibrillar proteins from red swamp crayfish (Procambarus clarkii). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
149
|
Li C, Wang Q, Zhang C, Lei L, Lei X, Zhang Y, Li L, Wang Q, Ming J. Dynamic high‐pressure microfluidization enhanced the emulsifying properties of wheat gliadin by rutin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chunyi Li
- College of Food Science Southwest University Chongqing The People’s Republic of China
| | - Qiming Wang
- College of Food Science Southwest University Chongqing The People’s Republic of China
| | - Chi Zhang
- College of Food Science Southwest University Chongqing The People’s Republic of China
| | - Lin Lei
- College of Food Science Southwest University Chongqing The People’s Republic of China
| | - Xiaojuan Lei
- College of Food Science Southwest University Chongqing The People’s Republic of China
| | - Yuhao Zhang
- College of Food Science Southwest University Chongqing The People’s Republic of China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan The People’s Republic of China
| | - Qiang Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing The People’s Republic of China
| | - Jian Ming
- College of Food Science Southwest University Chongqing The People’s Republic of China
| |
Collapse
|
150
|
Gelation Methods to Assemble Fibrous Proteins. Methods Mol Biol 2022; 2347:149-165. [PMID: 34472063 DOI: 10.1007/978-1-0716-1574-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gelation is an efficient way to fabricate fibrous protein materials. Briefly, it is an aggregation process where protein molecules assembly from a random structure into an organized structure such as nanofibrillar networks. According to their mechanisms, the fibrous proteins gelation can be classified into physical gelation and chemical gelation. The physical gelation is formed by the conformational transformation of fibroin proteins, which can be triggered by temperature, concentration, pH, or shear force. On the other hand, the chemical gelation is to cross-link fibrous proteins through chemical and/or enzymatic reactions. In this chapter, we summarize the protocols for preparing fibrous protein hydrogels, including both physical and chemical methods. The mechanisms of these gelation methods are also highlighted.
Collapse
|