101
|
Influences of Molecular Weights on Physicochemical and Biological Properties of Collagen-Alginate Scaffolds. Mar Drugs 2021; 19:md19020085. [PMID: 33540717 PMCID: PMC7912951 DOI: 10.3390/md19020085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
For tissue engineering applications, biodegradable scaffolds containing high molecular weights (MW) of collagen and sodium alginate have been developed and characterized. However, the properties of low MW collagen-based scaffolds have not been studied in previous research. This work examined the distinctive properties of low MW collagen-based scaffolds with alginate unmodified and modified by subcritical water. Besides, we developed a facile method to cross-link water-soluble scaffolds using glutaraldehyde in an aqueous ethanol solution. The prepared cross-linked scaffolds showed good structural properties with high porosity (~93%) and high cross-linking degree (50–60%). Compared with collagen (6000 Da)-based scaffolds, collagen (25,000 Da)-based scaffolds exhibited higher stability against collagenase degradation and lower weight loss in phosphate buffer pH 7.4. Collagen (25,000 Da)-based scaffolds with modified alginate tended to improve antioxidant capacity compared with scaffolds containing unmodified alginate. Interestingly, in vitro coagulant activity assay demonstrated that collagen (25,000 Da)-based scaffolds with modified alginate (C25-A63 and C25-A21) significantly reduced the clotting time of human plasma compared with scaffolds consisting of unmodified alginate. Although some further investigations need to be done, collagen (25,000 Da)-based scaffolds with modified alginate should be considered as a potential candidate for tissue engineering applications.
Collapse
|
102
|
Zhang Y, Chen Y, Zhao B, Gao J, Xia L, Xing F, Kong Y, Li Y, Zhang G. Detection of Type I and III collagen in porcine acellular matrix using HPLC-MS. Regen Biomater 2020; 7:577-582. [PMID: 33365143 PMCID: PMC7748446 DOI: 10.1093/rb/rbaa032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Acellular matrix (ACM) has been widely used as a biomaterial. As the main component of ACM, collagen type and content show influence on the material properties. In this research, the collagen in ACM from different tissues of pig were determined by detection of marker peptides. The marker peptides of Type I and III collagen were identified from the digested collagen standards using ions trap mass spectrometry (LCQ). The relationship between the abundance of marker peptide and collagen concentration was established using triple quadrupole mass spectrometer (TSQ). The contents of Type I and III collagen in ACM from different tissues were determined. The method was further verified by hydroxyproline determination. The results showed that, the sum of Type I and III collagen contents in the ACM from small intestinal submucosa, dermis and Achilles tendon of pig were about 87.59, 81.41 and 61.13%, respectively, which were close to the total collagen contents in these tissues. The results proved that this method could quantitatively detect the collagen with different types in the ACM of various tissues.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yi Chen
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 100026, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 100026, China
| | - Jianping Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Leilei Xia
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 100026, China
| | - Fangyu Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Yingjun Kong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
| | - Yongchao Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
- Correspondence address. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China. Tel: +86-1082613421; Fax: +86-1082613421; E-mail: (G.Z.); School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China. Tel: +86-15936529310; Fax: +86-15936529310; E-mail: (Y.L.)
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China
- Correspondence address. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS, Beijing 100190, China. Tel: +86-1082613421; Fax: +86-1082613421; E-mail: (G.Z.); School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China. Tel: +86-15936529310; Fax: +86-15936529310; E-mail: (Y.L.)
| |
Collapse
|
103
|
Aondona MM, Ikya JK, Ukeyima MT, Gborigo TWJA, Aluko RE, Girgih AT. In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions. J Food Biochem 2020; 45:e13587. [PMID: 33346921 DOI: 10.1111/jfbc.13587] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 11/29/2022]
Abstract
The objective of this study was to determine the in vitro antioxidant and antihypertensive potentials of sesame seed protein hydrolysate and its membrane ultrafiltration peptide fractions in comparison to the unhydrolyzed protein. Sesame seed protein isolate (SESPI) was prepared from the defatted sesame seed meal and then hydrolyzed using consecutive additions of pepsin and pancreatin to yield sesame protein hydrolysate (SESPH). The SESPH was subjected to membrane ultrafiltration consecutively to obtain fractions with peptide sizes of <1, 1-3, 3-5, and 5-10 kDa, respectively, which were then assayed for in vitro antioxidant and antihypertensive properties. The results showed that protein hydrolysis and fractionation led to significant (p < .05) increases in the content of hydrophobic amino acids. Radical scavenging and metal ion chelation were also significantly (p < .05) enhanced by these treatments. Inhibition of linoleic acid oxidation was stronger with the 1.0 mg/ml of sesame peptide samples in comparison to the mild inhibitory effect exhibited by the 0.5 mg/ml of samples. The <1 kDa peptide fraction was the most active inhibitor (81%) against angiotensin converting enzyme, whereas the bigger peptides (>3-5 and 5-10 kDa) were the most effective (75%-85% ) inhibitors against renin. These sesame products could be used as therapeutic agents in the development of health enhancing foods for the prevention and management of chronic diseases. PRACTICAL APPLICATIONS: Bioactive peptides have been produced from plant protein sources through in vitro enzymatic activities. Sesame seed peptides have demonstrated multifunctional potential to act as antioxidative and antihypertensive agents that could be utilized as ingredients for the development of novel functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Magdalene M Aondona
- Department of Food Science and Technology, University of Mkar, Gboko, Nigeria.,Department of Food Science and Technology, University of Agriculture, Makurdi, Benue State, Nigeria
| | - Julius K Ikya
- Department of Food Science and Technology, University of Agriculture, Makurdi, Benue State, Nigeria
| | - Moses T Ukeyima
- Department of Food Science and Technology, University of Agriculture, Makurdi, Benue State, Nigeria
| | - Tsav-Wua J A Gborigo
- Department of Home Economics, College of Education, Katsina-ala, Benue State, Nigeria
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abraham T Girgih
- Department of Food Science and Technology, University of Agriculture, Makurdi, Benue State, Nigeria
| |
Collapse
|
104
|
Zhou C, Wang Y. Recent progress in the conversion of biomass wastes into functional materials for value-added applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:787-804. [PMID: 33354165 PMCID: PMC7738282 DOI: 10.1080/14686996.2020.1848213] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The amount of biomass wastes is rapidly increasing, which leads to numerous disposal problems and governance issues. Thus, the recycling and reuse of biomass wastes into value-added applications have attracted more and more attention. This paper reviews the research on biomass waste utilization and biomass wastes derived functional materials in last five years. The recent research interests mainly focus on the following three aspects: (1) extraction of natural polymers from biomass wastes, (2) reuse of biomass wastes, and (3) preparation of carbon-based materials as novel adsorbents, catalyst carriers, electrode materials, and functional composites. Various biomass wastes have been collected from agricultural and forestry wastes, animal wastes, industrial wastes and municipal solid wastes as raw materials with low cost; however, future studies are required to evaluate the quality and safety of biomass wastes derived products and develop highly feasible and cost-effective methods for the conversion of biomass wastes to enable the industrial scale production.
Collapse
Affiliation(s)
- Chufan Zhou
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Quebec, Quebec, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Quebec, Quebec, Canada
- CONTACT Yixiang Wang Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, QuebecH9X 3V9, Canada
| |
Collapse
|
105
|
Mei F, Duan Z, Chen M, Lu J, Zhao M, Li L, Shen X, Xia G, Chen S. Effect of a high-collagen peptide diet on the gut microbiota and short-chain fatty acid metabolism. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
106
|
Cheng Y, Lu S, Hu Z, Zhang B, Li S, Hong P. Marine collagen peptide grafted carboxymethyl chitosan: Optimization preparation and coagulation evaluation. Int J Biol Macromol 2020; 164:3953-3964. [DOI: 10.1016/j.ijbiomac.2020.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
|
107
|
Chen K, Yang Q, Hong H, Feng L, Liu J, Luo Y. Physicochemical and functional properties of Maillard reaction products derived from cod (Gadus morhua L.) skin collagen peptides and xylose. Food Chem 2020; 333:127489. [DOI: 10.1016/j.foodchem.2020.127489] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
|
108
|
Li C, Song W, Wu J, Lu M, Zhao Q, Fang C, Wang W, Park YD, Qian GY. Thermal stable characteristics of acid- and pepsin-soluble collagens from the carapace tissue of Chinese soft-shelled turtle (Pelodiscus sinensis). Tissue Cell 2020; 67:101424. [DOI: 10.1016/j.tice.2020.101424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
|
109
|
Nuñez SM, Guzmán F, Valencia P, Almonacid S, Cárdenas C. Collagen as a source of bioactive peptides: A bioinformatics approach. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
110
|
Márquez-Lázaro JP, Mora L, Méndez-Cuadro D, Rodríguez-Cavallo E, Toldrá F. In vitro oxidation promoted by chlorpyrifos residues on myosin and chicken breast proteins. Food Chem 2020; 326:126922. [DOI: 10.1016/j.foodchem.2020.126922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
|
111
|
Senadheera TR, Dave D, Shahidi F. Sea Cucumber Derived Type I Collagen: A Comprehensive Review. Mar Drugs 2020; 18:E471. [PMID: 32961970 PMCID: PMC7551324 DOI: 10.3390/md18090471] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/31/2023] Open
Abstract
Collagen is the major fibrillar protein in most living organisms. Among the different types of collagen, type I collagen is the most abundant one in tissues of marine invertebrates. Due to the health-related risk factors and religious constraints, use of mammalian derived collagen has been limited. This triggers the search for alternative sources of collagen for both food and non-food applications. In this regard, numerous studies have been conducted on maximizing the utilization of seafood processing by-products and address the need for collagen. However, less attention has been given to marine invertebrates and their by-products. The present review has focused on identifying sea cucumber as a potential source of collagen and discusses the general scope of collagen extraction, isolation, characterization, and physicochemical properties along with opportunities and challenges for utilizing marine-derived collagen.
Collapse
Affiliation(s)
- Tharindu R.L. Senadheera
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John’s, NL A1C 5R3, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| |
Collapse
|
112
|
Han H, Zeng W, Zhang G, Zhou J. Active tyrosine phenol-lyase aggregates induced by terminally attached functional peptides in Escherichia coli. J Ind Microbiol Biotechnol 2020; 47:563-571. [PMID: 32737623 PMCID: PMC7508748 DOI: 10.1007/s10295-020-02294-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
The formation of inclusion bodies (IBs) without enzyme activity in bacterial research is generally undesirable. Researchers have attempted to recovery the enzyme activities of IBs, which are commonly known as active IBs. Tyrosine phenol-lyase (TPL) is an important enzyme that can convert pyruvate and phenol into 3,4-dihydroxyphenyl-L-alanine (L-DOPA) and IBs of TPL can commonly occur. To induce the correct folding and recover the enzyme activity of the IBs, peptides, such as ELK16, DKL6, L6KD, ELP10, ELP20, L6K2, EAK16, 18A, and GFIL16, were fused to the carboxyl terminus of TPL. The results showed that aggregate particles of TPL-DKL6, TPL-ELP10, TPL-EAK16, TPL-18A, and TPL-GFIL16 improved the enzyme activity by 40.9%, 50.7%, 48.9%, 86.6%, and 97.9%, respectively. The peptides TPL-DKL6, TPL-EAK16, TPL-18A, and TPL-GFIL16 displayed significantly improved thermostability compared with TPL. L-DOPA titer of TPL-ELP10, TPL-EAK16, TPL-18A, and TPL-GFIL16, with cells reaching 37.8 g/L, 53.8 g/L, 37.5 g/L, and 29.1 g/L, had an improvement of 111%, 201%, 109%, and 63%, respectively. A higher activity and L-DOPA titer of the TPL-EAK16 could be valuable for its industrial application to biosynthesize L-DOPA.
Collapse
Affiliation(s)
- Hongmei Han
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Guoqiang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
113
|
Singh A, Mittal A, Benjakul S. Full Utilization of Squid Meat and Its Processing By-products: Revisit. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1734611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Avtar Singh
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Ajay Mittal
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
114
|
Antioxidant Peptides from Collagen Hydrolysate of Redlip Croaker ( Pseudosciaena polyactis) Scales: Preparation, Characterization, and Cytoprotective Effects on H 2O 2-Damaged HepG2 Cells. Mar Drugs 2020; 18:md18030156. [PMID: 32168851 PMCID: PMC7142964 DOI: 10.3390/md18030156] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Bioactive peptides from fish collagens with antioxidant properties have become a topic of great interest for health, food, and processing/preservation industries. To explore the high-value utilized way of scales produced during the fish processing, collagen hydrolysates of redlip croaker (Pseudosciaena polyactis) scales were prepared using six different proteases, and the hydrolysate (RSCH) prepared using neutrase showed the highest degree of hydrolysis (21.36 ± 1.18%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging activity (30.97 ± 1.56%) among the six hydrolysates. Subsequently, six antioxidant peptides were purified from RSCH using membrane ultrafiltration and serial chromatography, and their amino acid sequences were identified as DGPEGR, GPEGPMGLE, EGPFGPEG, YGPDGPTG, GFIGPTE, and IGPLGA with molecular masses of 629.61, 885.95, 788.96, 762.75, 733.80, and 526.61 Da, respectively. Among six collagen peptides, GPEGPMGLE, EGPFGPEG, and GFIGPTE exhibited the strongest scavenging activities on DPPH· radical (EC50 0.59, 0.37, and 0.45 mg/mL), hydroxyl radical (EC50 0.45, 0.33, and 0.32 mg/mL), and superoxide anion radical (EC50 0.62, 0.47, and 0.74 mg/mL). GPEGPMGLE, EGPFGPEG, and GFIGPTE showed high inhibiting ability on lipid peroxidation in a linoleic acid model system and protective activities on oxidation-damaged DNA. More importantly, GPEGPMGLE, EGPFGPEG, and GFIGPTE could protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These results suggested that six collagen peptides (RCP1–RCP6), especially GPEGPMGLE, EGPFGPEG, and GFIGPTE, might serve as potential antioxidants applied in nutraceutical and pharmaceutical products.
Collapse
|
115
|
|
116
|
Li W, Zhang Y, Li H, Zhang C, Zhang J, Uddin J, Liu X. Effect of soybean oligopeptide on the growth and metabolism of Lactobacillus acidophilus JCM 1132. RSC Adv 2020; 10:16737-16748. [PMID: 35498845 PMCID: PMC9053066 DOI: 10.1039/d0ra01632b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/20/2020] [Indexed: 01/05/2023] Open
Abstract
Soybean protein (Pro) and soybean oligopeptide (Pep) were subjected to simulated digestion in vitro to study the effect of Pep on the growth and metabolism of Lactobacillus acidophilus JCM 1132. First, the molecular weight distribution differences of samples before and after digestion were compared, and the samples were used to replace the nitrogen source components in the culture media. Then, the viable cell numbers, lactic acid and acetic acid content, differential metabolites, and metabolic pathways during the culturing process were measured. Results showed that the digested soybean oligopeptide (dPep) was less efficient than MRS medium in promoting the growth, but by increasing the content of the intermediates during the tricarboxylic acid (TCA) cycle, its metabolic capacity was significantly improved. Besides, due to the low molecular weight of dPep, it can be better transported and utilized. And dPep significantly strengthened the amino acid metabolism and weakened the glycerol phospholipid metabolism, so the ability of dPep in promoting the growth and metabolism of Lactobacillus acidophilus JCM 1132 is higher than the digested soybean protein (dPro). Exploring the effect of soybean oligopeptide on the growth and metabolism of Lactobacillus acidophilus JCM 1132 by metabolomics.![]()
Collapse
Affiliation(s)
- Wenhui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Yinxiao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Chi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Jalal Uddin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| |
Collapse
|
117
|
León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. Hydrolyzed Collagen-Sources and Applications. Molecules 2019; 24:E4031. [PMID: 31703345 PMCID: PMC6891674 DOI: 10.3390/molecules24224031] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Hydrolyzed collagen (HC) is a group of peptides with low molecular weight (3-6 KDa) that can be obtained by enzymatic action in acid or alkaline media at a specific incubation temperature. HC can be extracted from different sources such as bovine or porcine. These sources have presented health limitations in the last years. Recently research has shown good properties of the HC found in skin, scale, and bones from marine sources. Type and source of extraction are the main factors that affect HC properties, such as molecular weight of the peptide chain, solubility, and functional activity. HC is widely used in several industries including food, pharmaceutical, cosmetic, biomedical, and leather industries. The present review presents the different types of HC, sources of extraction, and their applications as a biomaterial.
Collapse
Affiliation(s)
- Arely León-López
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Alejandro Morales-Peñaloza
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior de Apan, Carretera Apan-Calpulalpan s/n, Colonia, Chimalpa Tlalayote, Apan, Hidalgo 43920 Mexico;
| | - Víctor Manuel Martínez-Juárez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Apolonio Vargas-Torres
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), H91 TK33 Galway, Ireland;
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM) National University of Ireland Galway (NUI Galway), H91 TK33 Galway, Ireland
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| |
Collapse
|
118
|
Bolke L, Schlippe G, Gerß J, Voss W. A Collagen Supplement Improves Skin Hydration, Elasticity, Roughness, and Density: Results of a Randomized, Placebo-Controlled, Blind Study. Nutrients 2019; 11:nu11102494. [PMID: 31627309 PMCID: PMC6835901 DOI: 10.3390/nu11102494] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022] Open
Abstract
The purpose of this randomized, placebo-controlled, blind study was to investigate the effects of the drinkable nutraceutical ELASTEN® (QUIRIS Healthcare, Gütersloh, Germany) on skin aging and skin health. Drinking ampoules provides a blend of 2.5 g of collagen peptides, acerola fruit extract, vitamin C, zinc, biotin, and a native vitamin E complex. This controlled interventional trial was performed on 72 healthy women aged 35 years or older. They received either the food supplement (n = 36) or a placebo (n = 36) for twelve weeks. A skin assessment was carried out and based on objective validated methods, including corneometry (skin hydration), cutometry (elasticity), the use of silicon skin replicas with optical 3D phase-shift rapid in-vivo measurements (PRIMOS) (roughness), and skin sonography (density). The verum group was followed for an additional four weeks (without intake of the test product) to evaluate the sustainability of the changes induced by the intake of the test product. The test product significantly improved skin hydration, elasticity, roughness, and density. The differences between the verum group and the placebo group were statistically significant for all test parameters. These positive effects were substantially retained during the follow-up. The measured effects were fully consistent with the subjective assessments of the study participants. The nutraceutical was well tolerated.
Collapse
Affiliation(s)
- Liane Bolke
- Dermatest GmbH, Engelstraße 37, D-48143 Münster, Germany.
| | | | - Joachim Gerß
- Institut für Biometrie und klinische Forschung (IBKF) der Westfälischen Wilhelms-Universität Münster, Schmedding Straße 56, D-48149 Münster, Germany.
| | - Werner Voss
- Dermatest GmbH, Engelstraße 37, D-48143 Münster, Germany.
| |
Collapse
|