101
|
Teng J, Zhang C, Xu Z, Li X, Xiao J. Preparation and characterization of the soybean protein isolate – chitosan oligosaccharide Maillard reaction products via wet‐heating. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Teng
- College of Food Science and Engineering Qingdao Agricultural University Qingdao People's Republic of China
| | - Chunzhi Zhang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao People's Republic of China
| | - Zhenzhen Xu
- College of Food Science and Engineering Qingdao Agricultural University Qingdao People's Republic of China
- School of Food Science and Engineering South China University of Technology Guangzhou People's Republic of China
| | - Xiaodan Li
- College of Food Science and Engineering Qingdao Agricultural University Qingdao People's Republic of China
| | - Junxia Xiao
- College of Food Science and Engineering Qingdao Agricultural University Qingdao People's Republic of China
| |
Collapse
|
102
|
Effects of inducer type and concentration on the formation mechanism of W/O/W double emulsion gels. Food Chem 2022; 379:132166. [DOI: 10.1016/j.foodchem.2022.132166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/13/2023]
|
103
|
Wu J, Zhang M, Zhang L, Liu Y. Effect of ultrasound combined with sodium bicarbonate pretreatment on the taste and flavor of chicken broth. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jianghong Wu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring Jiangnan University Wuxi Jiangsu China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi Jiangsu China
| | - Lihui Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu China
| | - Yaping Liu
- R & D Center, Guangdong Galore Food Co., Ltd. Zhongshan Guangdong China
| |
Collapse
|
104
|
Effect of carbon numbers and structures of monosaccharides on the glycosylation and emulsion stabilization ability of gelatin. Food Chem 2022; 389:133128. [PMID: 35512506 DOI: 10.1016/j.foodchem.2022.133128] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022]
Abstract
Herein, the effect of saccharide glycosylation by nine monosaccharides on bovine bone gelatin for the stabilization of fish oil-loaded emulsions was explored. The gelatin modification was analyzed and then the emulsifying properties of monosaccharide-modified gelatins were analyzed at pH 9.0 and 3.0. The results demonstrated that glycosylated gelatin structure, droplet stability, creaming stability, and liquid-gel transition time were dependent on monosaccharide carbon numbers, monosaccharide structures, and solution pH. Glycosylation modification of gelatins did not obviously change the emulsion droplet stability at pH 9.0, whereas it increased the emulsion droplet stability at pH 3.0. Glycosylation modification of gelatins did not obviously change the emulsion creaming index values (5.1%-8.4% at pH 9.0 and 25.8%-33.1% at pH 3.0). Three-carbon and four-carbon monosaccharides glycosylation significantly increased emulsion liquid-gel transition times. This work provided useful information to understand the effects of carbon numbers and structures of monosaccharides on the protein modification.
Collapse
|
105
|
Chen W, Ma H, Wang YY. Recent advances in modified food proteins by high intensity ultrasound for enhancing functionality: Potential mechanisms, combination with other methods, equipment innovations and future directions. ULTRASONICS SONOCHEMISTRY 2022; 85:105993. [PMID: 35367738 PMCID: PMC8983432 DOI: 10.1016/j.ultsonch.2022.105993] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 05/21/2023]
Abstract
High intensity ultrasound (HIU) is an efficient and green technology that has recently received enormous research attention for modification of food proteins. However, there are still several knowledge gaps in the possible mechanisms, synergistic effects of HIU with other strategies and improvement of HIU equipment that contribute to its application in the food industry. This review focuses on the recent research progress on the effects and potential mechanisms of HIU on the structure (including secondary and tertiary structure) and functionality (including solubility, emulsibility, foamability, and gelability) of proteins. Furthermore, the combination methods and innovations of HIU equipment for proteins modification in recent years are also detailed. Meanwhile, the possible future trends of food proteins modification by HIU are also considered and proposed.
Collapse
Affiliation(s)
- Wenqing Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Yao-Yao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
106
|
Impact of pea protein-inulin conjugates prepared via the Maillard reaction using a combination of ultrasonic and pH-shift treatments on physical and oxidative stability of algae oil emulsions. Food Res Int 2022; 156:111161. [DOI: 10.1016/j.foodres.2022.111161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
|
107
|
Biological activities and in vitro digestion characteristics of glycosylated α-lactalbumin prepared by microwave heating: Impacts of ultrasonication. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113141] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
108
|
Jiang W, Wang Y, Ma C, Julian McClements D, Liu F, Liu X. Pea protein isolate-inulin conjugates prepared by pH-shift treatment and ultrasonic-enhanced glycosylation: Structural and functional properties. Food Chem 2022; 384:132511. [PMID: 35247772 DOI: 10.1016/j.foodchem.2022.132511] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 12/30/2022]
Abstract
The application of pea proteins in the food industry is often limited by their poor functional properties, such as solubility, emulsification, and gelation. To address this problem, a novel method of constructing pea protein-inulin conjugates with improved functional attributes was developed, which consisted of combining a high-intensity ultrasonic treatment with a pH-shift wet heating method. This combined method promoted the Maillard reaction, leading to a grafting degree that was 2.3-times higher than that of the traditional wet heating method. SDS-PAGE confirmed the formation of pea protein-inulin conjugates. The pea protein-inulin conjugates had higher solubility than pea proteins alone, especially around the isoelectric point of the protein. Furthermore, the thermal stability, antioxidant activity, foaming and emulsifying properties of the conjugates were better than those of the protein. This study shows that the combined ultrasound/pH-shift wet heating method is highly effective at improving the functional properties of pea proteins.
Collapse
Affiliation(s)
- Wen Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yiyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
109
|
Maillard-Type Protein-Polysaccharide Conjugates and Electrostatic Protein-Polysaccharide Complexes as Delivery Vehicles for Food Bioactive Ingredients: Formation, Types, and Applications. Gels 2022; 8:gels8020135. [PMID: 35200516 PMCID: PMC8871776 DOI: 10.3390/gels8020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Due to their combination of featured properties, protein and polysaccharide-based carriers show promising potential in food bioactive ingredient encapsulation, protection, and delivery. The formation of protein–polysaccharide complexes and conjugates involves non-covalent interactions and covalent interaction, respectively. The common types of protein–polysaccharide complex/conjugate-based bioactive ingredient delivery systems include emulsion (conventional emulsion, nanoemulsion, multiple emulsion, multilayered emulsion, and Pickering emulsion), microcapsule, hydrogel, and nanoparticle-based delivery systems. This review highlights the applications of protein–polysaccharide-based delivery vehicles in common bioactive ingredients including polyphenols, food proteins, bioactive peptides, carotenoids, vitamins, and minerals. The loaded food bioactive ingredients exhibited enhanced physicochemical stability, bioaccessibility, and sustained release in simulated gastrointestinal digestion. However, limited research has been conducted in determining the in vivo oral bioavailability of encapsulated bioactive compounds. An in vitro simulated gastrointestinal digestion model incorporating gut microbiota and a mucus layer is suggested for future studies.
Collapse
|
110
|
Zhang J, Wen C, Duan Y, Zhang H, Ma H. Structure and functional properties of watermelon seed protein-glucose conjugates prepared by different methods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
111
|
Işçimen EM, Hayta M. Effect of ultrasound pretreatment on the functional and antioxidant properties of fermented and germinated Lupin protein isolates grafted with glucose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:550-556. [PMID: 34146348 DOI: 10.1002/jsfa.11383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND This study examined the functional and antioxidant properties of Maillard reaction (MR) products of lupin protein isolate (LPI), fermented (FLPI), and germinated (GLPI) with glucose (G), treated with ultrasound (US) at different power levels (20-40-60-80%) for 15 min. The MR was conducted in a water bath for 180 min at 90 °C. RESULTS The Trolox-equivalent antioxidant capacity (TEAC) values were found to be 46.79%, 56.43%, and 35.56% for the control (C), 58.99%, 80.17%, and 69.73% for conjugates of LPI-G, FLPI-G, and GLPI-G treated at 80% US, respectively. The maximum 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of LPI-G, FLPI-G, and GLPI-G was found to be 39.68%, 59.54%, and 48.41%, respectively after 80% US. The FLPI-G sample showed the highest antioxidant activity compared with the samples treated at the same power level for DPPH and TEAC. The Fe-chelating activity of GLPI-G showed significant differences when compared with FLPI-G. The solubility of LPI-G, FLPI-G, and GLPI-G increased with increasing US power. The highest solubility was 74.29% for 80% US-treated GLPI-G. The emulsifying activity index (EAI) increased at 20% US and decreased with further increase in the US power. The EAI and emulsifying stability index (ESI) were negatively affected by the MR and US processes. CONCLUSION The findings of current study proved that conjugation of LPI with G with the MR and with US pretreatment is an effective method for improving the bio- and techno-functional properties of LPI. It is therefore likely that the properties of plant proteins modified by biochemical and physical treatments may widen their applications in the food industry. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elif Meltem Işçimen
- Department of Food Engineering, Faculty Engineering, Erciyes University, Kayseri, Turkey
| | - Mehmet Hayta
- Department of Food Engineering, Faculty Engineering, Erciyes University, Kayseri, Turkey
| |
Collapse
|
112
|
Dai C, Hou Y, Xu H, Huang L, Dabbour M, Mintah BK, He R, Ma H. Effect of solid-state fermentation by three different Bacillus species on composition and protein structure of soybean meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:557-566. [PMID: 34145902 DOI: 10.1002/jsfa.11384] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/23/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fermentation efficiency of thermophiles of Bacillus licheniformis YYC4 and Geobacillus stearothermophilus A75, and mesophilic Bacillus subtilis 10 160 on soybean meal (SBM), was evaluated by examining the nutritional and protein structural changes. RESULTS SBM fermentation by B. licheniformis YYC4, B. subtilis 10 160 and G. stearothemophilus A75 increased significantly the crude and soluble protein from 442.4 to 524.8, 516.1 and 499.9 g kg-1 , and from 53.9 to 203.3, 291.3 and 74.6 g kg-1 , and decreased trypsin inhibitor from 8.19 to 3.19, 2.14 and 5.10 mg g-1 , respectively. Bacillus licheniformis YYC4 and B. subtilis 10 160 significantly increased phenol and pyrazine content. Furthermore, B. licheniformis YYC4 fermentation could produce abundant alcohols, ketones, esters and acids. Surface hydrophobicity, sulfhydryl groups and disulfide bond contents of SBM protein were increased significantly from 98.27 to 166.13, 173.27 and 150.71, from 3.26 to 4.88, 5.03 and 4.21 μmol g-1 , and from 20.77 to 27.95, 29.53 and 25.5 μmol g-1 after their fermentation. Fermentation induced red shifts of the maximum absorption wavelength (λmax ) of fluorescence spectra from 353 to 362, 376 and 361 nm, while significantly reducing the fluorescence intensity of protein, especially when B. subtilis 10 160 was used. Moreover, fermentation markedly changed the secondary structure composition of SBM protein. Analyses by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and atomic force microscopy showed that macromolecule protein was degraded into small-sized protein or peptide during fermentation of SBM. CONCLUSION Bacillus licheniformis YYC4 fermentation (without sterilization) improved nutrition and protein structure of SBM as B. subtilis 10 160, suggesting its potential application in the SBM fermentation industry. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Yizhi Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Banha, Egypt
| | - Benjamin K Mintah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
113
|
Li C, Wang Q, Zhang C, Lei L, Lei X, Zhang Y, Li L, Wang Q, Ming J. Effect of simultaneous treatment combining ultrasonication and rutin on gliadin in the formation of nanoparticles. J Food Sci 2021; 87:80-93. [PMID: 34935129 DOI: 10.1111/1750-3841.15993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
Proteins, one of the vital nutritional compounds sensitive to the environment, can be modified by interaction with polyphenols. Ultrasonication has been applied for enhancing the functional properties of proteins. In this study, the interactions of gliadin (G) and rutin (R) in the absence and presence of ultrasonication (0, 150, 300, 450, and 600 W) for 20 min were investigated, with a focus on the properties of emulsions prepared by G-R complexes. Ultrasonication improved the interaction, which increased the content of β-type secondary structure. Ultrasonication at 450 W increased the particle size of the conjugates. For Pickering emulsions, treating the covering of R on G with ultrasonication improves the stability of the G-based emulsion significantly, owing to the strong films formed on the oil-water interfaces. The G-R complexes treated at 450 W ultrasonication formed emulsions that showed higher potential and storage modulus (G') and denser microstructures than those of the untreated emulsions. Nevertheless, ultrasound treatment at 600 W weakened the emulsion properties that were stabilized by the conjugates. Ultrasound combined R was shown to be a potential processing technology for changing the protein structure and producing stable emulsions. PRACTICAL APPLICATION: The interactions between proteins and polyphenols are able to preserve the stability of the functional compounds, allow targeted and controlled release, and improve the texture of these complexes employed in the food industry. Improvements in the functional characteristics of the protein-polyphenol complexes so that they possess high emulsifying stability during food processing is a crucial factor for employing them in the food industry. Therefore, the aim of this research is using a soluble complex of gliadin-rutin for the development of its functional characteristics.
Collapse
Affiliation(s)
- Chunyi Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Qiming Wang
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Chi Zhang
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, People's Republic of China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
114
|
Kan X, Chen G, Zhou W, Zeng X. Application of protein-polysaccharide Maillard conjugates as emulsifiers: Source, preparation and functional properties. Food Res Int 2021; 150:110740. [PMID: 34865759 DOI: 10.1016/j.foodres.2021.110740] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023]
Abstract
The protein-polysaccharide conjugates formed by Maillard reaction can be used as novel emulsifiers in the food industry. Proteins and polysaccharides have extensive sources, and their emulsifying properties are highly dependent on their structural features. The Maillard conjugates can be prepared from conventional and novel methods, and these methods have different advantages and limitations in industrial applications. After an appropriate glycation, the conjugates show some modified or enhanced functional properties, including solubility, emulsifying property, thermal stability, foaming capacity, and gelation property. However, the research on the structure-function relationship of both proteins and polysaccharides is limited. It is necessary to well understand the characteristics of these biopolymers, and select appropriate conditions to control the process of Maillard reaction. Overall, the Maillard conjugates show great potential as the emulsifiers and stabilizers in the emulsion system. This review introduces the sources and structural characteristics of commonly used proteins and polysaccharides for Maillard reaction, outlines the methods (dry-heating, wet-heating, electrospinning, ultrasound, pulsed electric field, and microwave) for preparing Maillard conjugates and focuses on the improved functional properties (solubility, emulsifying, foaming and thermal properties) and the potential mechanisms.
Collapse
Affiliation(s)
- Xuhui Kan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
115
|
Zhong SR, Li MF, Zhang ZH, Zong MH, Wu XL, Lou WY. Novel Antioxidative Wall Materials for Lactobacillus casei Microencapsulation via the Maillard Reaction between the Soy Protein Isolate and Prebiotic Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13744-13753. [PMID: 34780175 DOI: 10.1021/acs.jafc.1c02907] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, three kinds of Maillard reaction products (MRPs) have been, for the first time, successfully prepared by conjugating soy protein isolate (SPI) with isomaltooligosaccharide, xylooligosaccharide, or galactooligosaccharide at 80 °C for 30 or 60 min and applied for the construction of Lactobacillus casei (L. casei) microcapsules. The results showed that MRPs exhibited enhanced antioxidative activities compared with their physically mixed counterparts. The digested MRPs displayed excellent resistance to pathogenic bacteria and promoted the growth of L. casei. Moreover, MRP-encapsulated L. casei showed a higher survival rate than free L. casei under tested adverse conditions including heat treatment, storage, and mechanical forces. Under simulated digestion conditions, the viability of L. casei decreased from 8.8 log cfu/mL to 1.6 log cfu/mL, while that of MRP-encapsulated L. casei was maintained at 7.4 log cfu/mL. Thus, MRP-based SPI-oligosaccharide conjugates exhibited great potential for microencapsulation of probiotics.
Collapse
Affiliation(s)
- Shu-Rui Zhong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Meng-Fan Li
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhi-Hua Zhang
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiao-Ling Wu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
116
|
Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106789] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
117
|
Sim SYJ, SRV A, Chiang JH, Henry CJ. Plant Proteins for Future Foods: A Roadmap. Foods 2021; 10:1967. [PMID: 34441744 PMCID: PMC8391319 DOI: 10.3390/foods10081967] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Protein calories consumed by people all over the world approximate 15-20% of their energy intake. This makes protein a major nutritional imperative. Today, we are facing an unprecedented challenge to produce and distribute adequate protein to feed over nine billion people by 2050, in an environmentally sustainable and affordable way. Plant-based proteins present a promising solution to our nutritional needs due to their long history of crop use and cultivation, lower cost of production, and easy access in many parts of the world. However, plant proteins have comparatively poor functionality, defined as poor solubility, foaming, emulsifying, and gelling properties, limiting their use in food products. Relative to animal proteins, including dairy products, plant protein technology is still in its infancy. To bridge this gap, advances in plant protein ingredient development and the knowledge to construct plant-based foods are sorely needed. This review focuses on some salient features in the science and technology of plant proteins, providing the current state of the art and highlighting new research directions. It focuses on how manipulating plant protein structures during protein extraction, fractionation, and modification can considerably enhance protein functionality. To create novel plant-based foods, important considerations such as protein-polysaccharide interactions, the inclusion of plant protein-generated flavors, and some novel techniques to structure plant proteins are discussed. Finally, the attention to nutrition as a compass to navigate the plant protein roadmap is also considered.
Collapse
Affiliation(s)
- Shaun Yong Jie Sim
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Akila SRV
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Jie Hong Chiang
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
118
|
Fu GM, Xu ZW, Luo C, Xu LY, Chen YR, Guo SL, Wu XD, Wan Y. Modification of soy protein isolate by Maillard reaction and its application in microencapsulation of Limosilactobacillusreuteri. J Biosci Bioeng 2021; 132:343-350. [PMID: 34344604 DOI: 10.1016/j.jbiosc.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022]
Abstract
Limosilactobacillusreuteri was encapsulated using Maillard-reaction-products (MRPs) of soy protein isolate (SPI) and α-lactose monohydrate by freeze-drying. The mixed solution of SPI and α-lactose monohydrate was placed in a water bath at 89°C for 160 min for Maillard reaction, and then freeze-dried to obtain MRPs. The effects of Maillard reaction on functional characteristics of MRPs and the properties of MRPs-microcapsules were studied. SDS-PAGE indicated that SPI subunit reacted with lactose to form a polymer, and the band of MRPs disappeared around the molecular weights of 33, 40, 63, and 100 kDa. Compared with SPI, the emulsion stability, emulsion activity, foaming capacity, foam stability, and gel strength of MRPs were increased by 259%, 55.71%, 82.32%, 58.53%, and 3266%, respectively. The results of Fourier transform infrared spectroscopy, circular dichroism spectroscopy, and scanning electron micrographs confirmed that the protein structure also changed significantly. Then, MRPs were used as wall material to prepare L. reuteri microcapsules. Physical properties and viable counts of L. reuteri during the simulated gastrointestinal digestion and storage period were determined. The particle size of MRPs-microcapsules (68 μm) was smaller than that of SPI-microcapsules (91 μm). The viable counts of L. reuteri in simulated gastrointestinal digestion and after storage for 30 days were improved. The modifications with Maillard reaction can improve emulsification, foaming, and gel strength of SPI, and MRPs could be used as a new type of wall material in the production of L. reuteri microcapsules.
Collapse
Affiliation(s)
- Gui-Ming Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zi-Wen Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Cheng Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Li-Yun Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yan-Ru Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Shuai-Ling Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xiao-Dan Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
119
|
Tas O, Ertugrul U, Oztop MH, Mazi BG. Glycation of soy protein isolate with two ketoses:
d
‐Allulose and fructose. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ozan Tas
- Department of Food Engineering Middle East Technical University Dumlupinar Bulvari, #1, Cankaya Ankara 06800 Turkey
| | - Ulku Ertugrul
- Department of Food Engineering Middle East Technical University Dumlupinar Bulvari, #1, Cankaya Ankara 06800 Turkey
| | - Mecit Halil Oztop
- Department of Food Engineering Middle East Technical University Dumlupinar Bulvari, #1, Cankaya Ankara 06800 Turkey
| | - Bekir Gokcen Mazi
- Department of Food Engineering Ordu University Cumhuriyet Yerleşkesi, Altınordu Ordu 52200 Turkey
| |
Collapse
|
120
|
Use of glycosylated wheat protein in emulsions and its application as a fat replacer in microwave cakes. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
121
|
Current Progress in the Utilization of Soy-Based Emulsifiers in Food Applications-A Review. Foods 2021; 10:foods10061354. [PMID: 34199220 PMCID: PMC8231891 DOI: 10.3390/foods10061354] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Soy-based emulsifiers are currently extensively studied and applied in the food industry. They are employed for food emulsion stabilization due to their ability to absorb at the oil–water interface. In this review, the emulsifying properties and the destabilization mechanisms of food emulsions were briefly introduced. Herein, the effect of the modification process on the emulsifying characteristics of soy protein and the formation of soy protein–polysaccharides for improved stability of emulsions were discussed. Furthermore, the relationship between the structural and emulsifying properties of soy polysaccharides and soy lecithin and their combined effect on the protein stabilized emulsion were reviewed. Due to the unique emulsifying properties, soy-based emulsifiers have found several applications in bioactive and nutrient delivery, fat replacer, and plant-based creamer in the food industry. Finally, the future trends of the research on soy-based emulsifiers were proposed.
Collapse
|
122
|
Yu H, Zhang R, Yang F, Xie Y, Guo Y, Yao W, Zhou W. Control strategies of pyrazines generation from Maillard reaction. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
123
|
Cheng Y, Wei X, Liu F, Xu Z, Chen M. Synergistic effects of pH, temperature and glycosylation on the functional properties of rice protein. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yun‐Hui Cheng
- College of Chemistry and Food Engineering Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Xiang‐Ning Wei
- College of Chemistry and Food Engineering Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Fang Liu
- College of Chemistry and Food Engineering Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Zhou Xu
- College of Chemistry and Food Engineering Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Mao‐Long Chen
- College of Chemistry and Food Engineering Changsha University of Science and Technology Changsha Hunan 410114 China
| |
Collapse
|
124
|
Cui T, Jia A, Shi Y, Zhang M, Bai X, Liu X, Sun J, Liu C. Improved stability and transshipment of enzymatic hydrolysate with ACE inhibitory activity‐loaded nanogels based on glycosylated soybean protein isolate via the Maillard reaction. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tingting Cui
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Airong Jia
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Yaping Shi
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Miansong Zhang
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Xinfeng Bai
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Xue Liu
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Jimin Sun
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| | - Changheng Liu
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
- China‐Australia Joint Laboratory for Native Bioresource Industry Innovation Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong 250103 China
| |
Collapse
|
125
|
Naik RR, Wang Y, Selomulya C. Improvements of plant protein functionalities by Maillard conjugation and Maillard reaction products. Crit Rev Food Sci Nutr 2021; 62:7036-7061. [PMID: 33849344 DOI: 10.1080/10408398.2021.1910139] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plant-derived protein research has gained attention in recent years due to the rise of health concerns, allergenicity, trends toward vegan diet, food safety, and sustainability; but the lower techno-functional attributes of plant proteins compared to those of animals still remain a challenge for their utilization. Maillard conjugation is a protein side-chain modification reaction which is spontaneous, and do not require additional chemical additive to initiate the reaction. The glycoconjugates formed during the reaction significantly improves the thermal stability and pH sensitivity of proteins. The modification of plant-derived protein using Maillard conjugation requires a comprehensive understanding of the influence of process conditions on the conjugation process. These factors can be used to establish a correlation with different functional and bioactive characteristics, to potentially adapt this approach for selective functionality enhancement and nutraceutical development. This review covers recent advances in plant-derived protein modification using Maillard conjugation, including different pretreatments to modify the functionality and bioactivity of plant proteins and their potential uses in practice. An overview of different properties of conjugates and MRPs, including food safety aspects, is given.
Collapse
Affiliation(s)
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW, Australia
| | | |
Collapse
|
126
|
Atalar İ, Kurt A, Saricaoğlu FT, Gül O, Gençcelep H. Agglomerated mushroom (
Agaricus bisporus
) powder: Optimization of top spray fluidized bed agglomeration conditions. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- İlyas Atalar
- Department of Food Engineering, Faculty of Engineering Bolu Abant Izzet Baysal University Bolu Turkey
| | - Abdullah Kurt
- Department of Food Engineering, Aksehir Faculty of Engineering and Architecture Selcuk University Konya Turkey
| | - Furkan Türker Saricaoğlu
- Department of Food Engineering, Faculty of Engineering and Natural Science Bursa Technical University Bursa Turkey
| | - Osman Gül
- Department of Food Engineering, Faculty of Engineering and Architecture Kastamonu University Kastamonu Turkey
| | - Hüseyin Gençcelep
- Department of Food Engineering, Faculty of Engineering Ondokuz Mayis University Samsun Turkey
| |
Collapse
|
127
|
Glycation of Plant Proteins Via Maillard Reaction: Reaction Chemistry, Technofunctional Properties, and Potential Food Application. Foods 2021; 10:foods10020376. [PMID: 33572281 PMCID: PMC7915956 DOI: 10.3390/foods10020376] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Plant proteins are being considered to become the most important protein source of the future, and to do so, they must be able to replace the animal-derived proteins currently in use as techno-functional food ingredients. This poses challenges because plant proteins are oftentimes storage proteins with a high molecular weight and low water solubility. One promising approach to overcome these limitations is the glycation of plant proteins. The covalent bonding between the proteins and different carbohydrates created via the initial stage of the Maillard reaction can improve the techno-functional characteristics of these proteins without the involvement of potentially toxic chemicals. However, compared to studies with animal-derived proteins, glycation studies on plant proteins are currently still underrepresented in literature. This review provides an overview of the existing studies on the glycation of the major groups of plant proteins with different carbohydrates using different preparation methods. Emphasis is put on the reaction conditions used for glycation as well as the modifications to physicochemical properties and techno-functionality. Different applications of these glycated plant proteins in emulsions, foams, films, and encapsulation systems are introduced. Another focus lies on the reaction chemistry of the Maillard reaction and ways to harness it for controlled glycation and to limit the formation of undesired advanced glycation products. Finally, challenges related to the controlled glycation of plant proteins to improve their properties are discussed.
Collapse
|