101
|
A Big World in Small Grain: A Review of Natural Milk Kefir Starters. Microorganisms 2020; 8:microorganisms8020192. [PMID: 32019167 PMCID: PMC7074874 DOI: 10.3390/microorganisms8020192] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Milk kefir is a traditional fermented milk product whose consumption is becoming increasingly popular. The natural starter for kefir production is kefir grain, which consists of various bacterial and yeast species. At the industrial scale, however, kefir grains are rarely used due to their slow growth, complex application, bad reproducibility and high costs. Instead, mixtures of defined lactic acid bacteria and sometimes yeasts are applied, which alter sensory and functional properties compared to natural grain-based milk kefir. In order to be able to mimic natural starter cultures for authentic kefir production, it is a prerequisite to gain deep knowledge about the nature of kefir grains, its microbial composition, morphologic structure, composition of strains on grains and the impact of environmental parameters on kefir grain characteristics. In addition, it is very important to deeply investigate the numerous multi-dimensional interactions among different species, which play important roles on the formation and the functionality of grains.
Collapse
|
102
|
Liang Z, Lin X, He Z, Li W, Ren X, Lin X. Dynamic changes of total acid and bacterial communities during the traditional fermentation of Hong Qu glutinous rice wine. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2019.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
103
|
Xu X, Zhou S, Julian McClements D, Huang L, Meng L, Xia X, Dong M. Multistarter fermentation of glutinous rice with Fu brick tea: Effects on microbial, chemical, and volatile compositions. Food Chem 2019; 309:125790. [PMID: 31784075 DOI: 10.1016/j.foodchem.2019.125790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
Abstract
A higher fermentation efficiency was achieved, using multistarter fermentation of glutinous rice supplemented with Fu brick tea (FGR-FBT), than when using traditional fermentation. The effects of multistarter fermentation on the microbial, chemical, and volatile compositions were determined. When FBT was incorporated during glutinous rice fermentation, increased population of yeasts and fungi, as well as enhanced α-amylase, proteinase and β-glucosidase activities, were observed. Specific fungi were isolated and identified as Aspergillus spp., which are known to secrete extracellular enzymes that modify the chemical properties, including ethanol levels, pH, total acids, and total soluble solids. The aroma profile of fermented glutinous rice was studied in the absence and presence of FBT, using HS-SPME-GC-MS and the electronic-nose. This analysis indicated that 35 characteristic volatile compounds were only found in FGR-FBT. The results show that FBT can be added during the fermentation of food products to enhance microbial biotransformation and modify flavour metabolism.
Collapse
Affiliation(s)
- Xiao Xu
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Siduo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | | | - Lu Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Ling Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiudong Xia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
104
|
Kayacan Y, Griffiths A, Wendland J. A script for initiating molecular biology studies with non-conventional yeasts based on Saccharomycopsis schoenii. Microbiol Res 2019; 229:126342. [PMID: 31536874 DOI: 10.1016/j.micres.2019.126342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Non-conventional yeasts (NCYs), i.e. all yeasts other than Saccharomyces cerevisiae, are emerging as novel production strains and gain more and more attention to exploit their unique properties. Yet, these yeasts can hardly compete against the advanced methodology and genetic tool kit available for exploiting and engineering S. cerevisiae. Currently, for many NCYs one has to start from scratch to initiate molecular genetic manipulations, which is often time consuming and not straight-forward. More so because utilization of S. cerevisiae tools based on short-flank mediated homologous recombination or plasmid biology are not readily applicable in NCYs. Here we present a script with discrete steps that will lead to the development of a basic and expandable molecular toolkit for ascomycetous NCYs and will allow genetic engineering of novel platform strains. For toolkit development the highly efficient in vivo recombination efficiency of S. cerevisiae is utilized in the generation and initial testing of tools. The basic toolkit includes promoters, reporter genes, selectable markers based on dominant antibiotic resistance genes and the generation of long-flanking homology disruption cassettes. The advantage of having pretested molecular tools that function in a heterologous host facilitate NCY strain manipulations. We demonstrate the usefulness of this script on Saccharomycopsis schoenii, a predator yeast with useful properties in fermentation and fungal biocontrol.
Collapse
Affiliation(s)
- Yeseren Kayacan
- Vrije Universiteit Brussel, Functional Yeast Genomics, BE-1050 Brussels, Belgium
| | - Adam Griffiths
- Vrije Universiteit Brussel, Functional Yeast Genomics, BE-1050 Brussels, Belgium
| | - Jürgen Wendland
- Hochschule Geisenheim University, Department of Microbiology and Biochemistry, von-Lade-Strasse 1, D-65366 Geisenheim, Germany; Vrije Universiteit Brussel, Functional Yeast Genomics, BE-1050 Brussels, Belgium.
| |
Collapse
|
105
|
Das S, Deb D, Adak A, Khan MR. Exploring the microbiota and metabolites of traditional rice beer varieties of Assam and their functionalities. 3 Biotech 2019; 9:174. [PMID: 30997311 DOI: 10.1007/s13205-019-1702-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Rice beer is traditionally prepared and consumed by various ethnic populations in the Southeast Asian countries. To understand the probable effects of rice beer on human health, present research was aimed to study biochemical parameters, microbial diversity and metabolites of major rice beer varieties of Assam, namely Apong (Poro and Nogin), Xaaj and Joubishi. Alcoholic content of rice beer varieties varied from 9.41 to 19.33% (v/v). Free radical scavenging activity against DPPH· and ABTS+ were 1.94-4.14 and 1.69-3.91 mg of ascorbic acid/ml of rice beer, respectively. In relation to antioxidant activities, phenolic content varied from 2.07 to 5.40 mg gallic acid/ml of rice beer. Next-generation sequencing of 16S rDNA showed that 18 genera of bacteria were present irrespective of rice beer varieties in which lactic acid bacteria were the dominant group (90% abundance). Functional predictions based on the bacterial profiles indicated pathways, such as metabolisms of carbohydrate, amino acid, vitamins and cofactors, and xenobiotic biodegradation, to be active in the rice beer varieties. Out of 18 core bacterial genera, 7 had correlations with the predicted functions. Gas chromatography and mass spectroscopy-based metabolite analysis revealed that the metabolite profiles of the rice beer varieties consisted of 18 saccharides, 18 organic acids, 11 sugar alcohols, 8 amino acids, 1 vitamin and nutraceutical compounds thiocoumarine, carotene, oxazolidine-2-one and acetyl tyrosine. Due to the presence of potent prebiotics, probiotics and nutraceuticals, rice beer may have health benefits which need to be studied further.
Collapse
Affiliation(s)
- Santanu Das
- 1Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam 781035 India
- Life Sciences Division, Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam 781001 India
| | - Dibyayan Deb
- 1Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam 781035 India
- Life Sciences Division, Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam 781001 India
| | - Atanu Adak
- 1Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam 781035 India
| | - Mojibur R Khan
- 1Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam 781035 India
| |
Collapse
|