101
|
Review and future prospects for DNA barcoding methods in forensic palynology. Forensic Sci Int Genet 2016; 21:110-6. [DOI: 10.1016/j.fsigen.2015.12.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/19/2015] [Accepted: 12/15/2015] [Indexed: 11/18/2022]
|
102
|
Stepanov V, Vagaitseva K, Kharkov V, Cherednichenko A, Bocharova A, Berezina G, Svyatova G. Forensic and population genetic characteristics of 62 X chromosome SNPs revealed by multiplex PCR and MALDI-TOF mass spectrometry genotyping in 4 North Eurasian populations. Leg Med (Tokyo) 2016; 18:66-71. [PMID: 26832380 DOI: 10.1016/j.legalmed.2015.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/06/2015] [Accepted: 12/19/2015] [Indexed: 11/28/2022]
Abstract
X chromosome genetic markers are widely used in basic population genetic research as well as in forensic genetics. In this paper we analyze the genetic diversity of 62 X chromosome SNPs in 4 populations using multiplex genotyping based on multi-locus PCR and MALDI-TOF mass spectrometry, and report forensic and population genetic features of the panel of X-linked SNPs (XSNPid). Studied populations represent Siberian (Buryat and Khakas), North Asian (Khanty) and Central Asian (Kazakh) native people. Khanty, Khakas and Kazakh population demonstrate average gene diversity over 0.45. Only East Siberian Buryat population is characterized by lower average heterozygosity (0.436). AMOVA analysis of genetic structure reveals a relatively low but significant level of genetic differentiation in a group of 4 population studied (FST=0.023, p=0.0000). The XSNPid panel provides a very high discriminating power in each population. The combined probability of discrimination in females (PDf) for XSNPid panel ranged between populations from 0.99999999999999999999999982 in Khakas to 0.9999999999999999999999963 in Buryats. The combined discriminating power in males (PDm) varies from 0.999999999999999792 to 0.9999999999999999819. The developed multiplex set of X chromosome SNPs can be a useful tool for population genetic studies and for forensic identity and kinship testing.
Collapse
Affiliation(s)
- Vadim Stepanov
- Research Institute for Medical Genetics, Nab. Ushayky 10, 634050 Tomsk, Russia; Tomsk State University, Tomsk, Russia.
| | - Ksenyia Vagaitseva
- Research Institute for Medical Genetics, Nab. Ushayky 10, 634050 Tomsk, Russia; Tomsk State University, Tomsk, Russia
| | - Vladimir Kharkov
- Research Institute for Medical Genetics, Nab. Ushayky 10, 634050 Tomsk, Russia; Tomsk State University, Tomsk, Russia
| | | | - Anna Bocharova
- Research Institute for Medical Genetics, Nab. Ushayky 10, 634050 Tomsk, Russia
| | - Galina Berezina
- Republican Scientific Centre for Obstetrics, Gynecology and Perinatology, Almaty, Kazakhstan
| | - Gulnara Svyatova
- Republican Scientific Centre for Obstetrics, Gynecology and Perinatology, Almaty, Kazakhstan
| |
Collapse
|
103
|
Yang R, Motin VL. Yersinia pestis in the Age of Big Data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 918:257-272. [PMID: 27722866 DOI: 10.1007/978-94-024-0890-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
As omics-driven technologies developed rapidly, genomics, transcriptomics, proteomics, metabolomics and other omics-based data have been accumulated in unprecedented speed. Omics-driven big data in biology have changed our way of research. "Big science" has promoted our understanding of biology in a holistic overview that is impossibly achieved by traditional hypothesis-driven research. In this chapter, we gave an overview of omics-driven research on Y. pestis, provided a way of thinking on Yersinia pestis research in the age of big data, and made some suggestions to integrate omics-based data for systems understanding of Y. pestis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, No. Dongdajie, Fengtai, Beijing, 100071, China.
| | - Vladimir L Motin
- Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
104
|
A novel strategy for forensic age prediction by DNA methylation and support vector regression model. Sci Rep 2015; 5:17788. [PMID: 26635134 PMCID: PMC4669521 DOI: 10.1038/srep17788] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/05/2015] [Indexed: 11/09/2022] Open
Abstract
High deviations resulting from prediction model, gender and population difference have limited age estimation application of DNA methylation markers. Here we identified 2,957 novel age-associated DNA methylation sites (P < 0.01 and R(2) > 0.5) in blood of eight pairs of Chinese Han female monozygotic twins. Among them, nine novel sites (false discovery rate < 0.01), along with three other reported sites, were further validated in 49 unrelated female volunteers with ages of 20-80 years by Sequenom Massarray. A total of 95 CpGs were covered in the PCR products and 11 of them were built the age prediction models. After comparing four different models including, multivariate linear regression, multivariate nonlinear regression, back propagation neural network and support vector regression, SVR was identified as the most robust model with the least mean absolute deviation from real chronological age (2.8 years) and an average accuracy of 4.7 years predicted by only six loci from the 11 loci, as well as an less cross-validated error compared with linear regression model. Our novel strategy provides an accurate measurement that is highly useful in estimating the individual age in forensic practice as well as in tracking the aging process in other related applications.
Collapse
|
105
|
Ma Y, Shi N, Li M, Chen F, Niu H. Applications of Next-generation Sequencing in Systemic Autoimmune Diseases. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:242-9. [PMID: 26432094 PMCID: PMC4610970 DOI: 10.1016/j.gpb.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune diseases are a group of heterogeneous disorders caused by both genetic and environmental factors. Although numerous causal genes have been identified by genome-wide association studies (GWAS), these susceptibility genes are correlated to a relatively low disease risk, indicating that environmental factors also play an important role in the pathogenesis of disease. The intestinal microbiome, as the main symbiotic ecosystem between the host and host-associated microorganisms, has been demonstrated to regulate the development of the body’s immune system and is likely related to genetic mutations in systemic autoimmune diseases. Next-generation sequencing (NGS) technology, with high-throughput capacity and accuracy, provides a powerful tool to discover genomic mutations, abnormal transcription and intestinal microbiome identification for autoimmune diseases. In this review, we briefly outlined the applications of NGS in systemic autoimmune diseases. This review may provide a reference for future studies in the pathogenesis of systemic autoimmune diseases.
Collapse
Affiliation(s)
- Yiyangzi Ma
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical Collage, Beijing 100021, China
| | - Na Shi
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical Collage, Beijing 100021, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical Collage, Beijing 100730, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haitao Niu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical Collage, Beijing 100021, China.
| |
Collapse
|
106
|
Zhao X, Ma K, Li H, Cao Y, Liu W, Zhou H, Ping Y. Multiplex Y-STRs analysis using the ion torrent personal genome machine (PGM). Forensic Sci Int Genet 2015; 19:192-196. [PMID: 26247785 DOI: 10.1016/j.fsigen.2015.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 01/06/2023]
Abstract
Massively parallel sequencing (MPS) technologies allow parallel sequencing analyses of many targeted regions of multiple samples at desirable depth of coverage. Routine use of MPS for forensic genetics is on the horizon. In this study, we explore the application of MPS technology in forensic Y-STR analysis. We designed a multiplex assay with 13 Y-STR loci (DYS19, DYS389 I, DYS389 II, DYS390, DYS391, DYS392, DYS437, DYS438, DYS439, DYS448, DYS456, DYS635, GATA-H4) for the purpose of MPS. The multiplex Y-STR assay was amplified in 42 unrelated male individuals and amplicons were sequenced simultaneously using the ion torrent personal genome machine (PGM) system. All loci were detected successfully, except for DYS389 II that exhibited a failure rate of 1.8% due to the relatively long amplicon sizes. We observed 7, 3, 2, 6 and 5 new alleles, respectively in DYS389 II, DYS390, DYS437, DYS448 and DYS635 due to the presence of sub-repeat composition differences, and a new allele in DYS438 because of nucleotide substitution. One allele of DYS390 was inconsistent with allele call from conventional capillary electrophoresis (CE) because of 4 bp deletions upstream of the core repeat unit. This study demonstrates that Y-STR typing by MPS can provide more genetic information, holding the promise for high discriminatory power.
Collapse
Affiliation(s)
- Xueying Zhao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200083, China
| | - Ke Ma
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200083, China
| | - Hui Li
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200083, China
| | - Yu Cao
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, North Zhongshan No. 1 Road 803, Shanghai 200083, China; State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200083, China
| | - Huaigu Zhou
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, North Zhongshan No. 1 Road 803, Shanghai 200083, China
| | - Yuan Ping
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, North Zhongshan No. 1 Road 803, Shanghai 200083, China.
| |
Collapse
|