101
|
D'Souza A, Wang Y, Anderson C, Bucchi A, Baruscotti M, Olieslagers S, Mesirca P, Johnsen AB, Mastitskaya S, Ni H, Zhang Y, Black N, Cox C, Wegner S, Bano-Otalora B, Petit C, Gill E, Logantha SJRJ, Dobrzynski H, Ashton N, Hart G, Zhang R, Zhang H, Cartwright EJ, Wisloff U, Mangoni ME, da Costa Martins PA, Piggins HD, DiFrancesco D, Boyett MR. A circadian clock in the sinus node mediates day-night rhythms in Hcn4 and heart rate. Heart Rhythm 2020; 18:801-810. [PMID: 33278629 PMCID: PMC8073545 DOI: 10.1016/j.hrthm.2020.11.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/09/2020] [Accepted: 11/21/2020] [Indexed: 11/26/2022]
Abstract
Background Heart rate follows a diurnal variation, and slow heart rhythms occur primarily at night. Objective The lower heart rate during sleep is assumed to be neural in origin, but here we tested whether a day-night difference in intrinsic pacemaking is involved. Methods In vivo and in vitro electrocardiographic recordings, vagotomy, transgenics, quantitative polymerase chain reaction, Western blotting, immunohistochemistry, patch clamp, reporter bioluminescence recordings, and chromatin immunoprecipitation were used. Results The day-night difference in the average heart rate of mice was independent of fluctuations in average locomotor activity and persisted under pharmacological, surgical, and transgenic interruption of autonomic input to the heart. Spontaneous beating rate of isolated (ie, denervated) sinus node (SN) preparations exhibited a day-night rhythm concomitant with rhythmic messenger RNA expression of ion channels including hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4). In vitro studies demonstrated 24-hour rhythms in the human HCN4 promoter and the corresponding funny current. The day-night heart rate difference in mice was abolished by HCN block, both in vivo and in the isolated SN. Rhythmic expression of canonical circadian clock transcription factors, for example, Brain and muscle ARNT-Like 1 (BMAL1) and Cryptochrome (CRY) was identified in the SN and disruption of the local clock (by cardiomyocyte-specific knockout of Bmal1) abolished the day-night difference in Hcn4 and intrinsic heart rate. Chromatin immunoprecipitation revealed specific BMAL1 binding sites on Hcn4, linking the local clock with intrinsic rate control. Conclusion The circadian variation in heart rate involves SN local clock–dependent Hcn4 rhythmicity. Data reveal a novel regulator of heart rate and mechanistic insight into bradycardia during sleep.
Collapse
Affiliation(s)
- Alicia D'Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom.
| | - Yanwen Wang
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Cali Anderson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Annalisa Bucchi
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Servé Olieslagers
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellie, CNRS, Montpellier, France
| | - Anne Berit Johnsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Svetlana Mastitskaya
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Haibo Ni
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Yu Zhang
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Nicholas Black
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Charlotte Cox
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Sven Wegner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Beatriz Bano-Otalora
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Cheryl Petit
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Eleanor Gill
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Sunil Jit R J Logantha
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; Liverpool Centre for Cardiovascular Sciences, University of Liverpool, Liverpool, UK
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Nick Ashton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - George Hart
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Rai Zhang
- School of Civil, Aerospace and Mechanical Engineering, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Ulrik Wisloff
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matteo E Mangoni
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hugh D Piggins
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Dario DiFrancesco
- Department of Biosciences, University of Milan, Milan, Italy; IBF-CNR, Milan, Italy
| | - Mark R Boyett
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
102
|
A New Method for Refined Recognition for Heart Disease Diagnosis Based on Deep Learning. INFORMATION 2020. [DOI: 10.3390/info11120556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The proper evaluation of heart health requires professional medical experience. Therefore, in clinical diagnosis practice, the development direction is to reduce the high dependence of the diagnosis process on medical experience and to more effectively improve the diagnosis efficiency and accuracy. Deep learning has made remarkable achievements in intelligent image analysis technology involved in the medical process. From the aspect of cardiac diagnosis, image analysis can extract more profound and abundant information than sequential electrocardiogram (ECG) signals. Therefore, a new region recognition and diagnosis method model of a two-dimensional ECG (2D-ECG) signal based on an image format is proposed. This method can identify and diagnose each refined waveform in the cardiac conduction cycle reflected in the image format ECG signal, so as to realize the rapid and accurate positioning and visualization of the target recognition area and finally get the analysis results of specific diseases. The test results show that compared with the results obtained by a one-dimensional sequential ECG signal, the proposed model has higher average diagnostic accuracy (98.94%) and can assist doctors in disease diagnosis with better visualization effect.
Collapse
|
103
|
Utility of Circadian Variability Patterns in Differentiating Origins of Premature Ventricular Complexes. J Interv Cardiol 2020; 2020:7417912. [PMID: 33177963 PMCID: PMC7647775 DOI: 10.1155/2020/7417912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/18/2022] Open
Abstract
Background Premature ventricular complexes (PVCs) exhibit circadian fluctuation. We determine if PVCs of different origin exhibit specific circadian patterns. Methods We analyzed Holter recordings from patients with monomorphic PVCs who underwent catheter ablation. PVC circadian patterns were classified as fast-heart rate- (HR-) dependent (F-PVC), slow-HR-dependent (S-PVC), or HR-independent (I-PVC). PVC origins were determined intraprocedurally. Results In a retrospective cohort of 407 patients, F-PVC and S-PVC typically exhibited diurnal and nocturnal predominance, respectively. Despite decreased circadian fluctuation, I-PVC generally had heavier nocturnal than diurnal burden. PVCs of left anterior fascicle origin were predominantly S-PVC, while those of posterior hemibranch origin were mostly F-PVC. PVCs originating from the aortic sinus of Valsalva (ASV) were predominantly I-PVC, while most PVCs arising from the left ventricular outflow tract (LVOT) were F-PVC. Using a diurnal/nocturnal PVC burden ratio of 0.92 as the cutoff value to distinguish LVOT from ASV origin achieved 97% sensitivity and, as further verification, an accuracy of 89% (16/18) in a prospective cohort of patients with PVCs originating from either ASV or LVOT. In contrast, PVCs originating from right ventricles, such as right ventricular outflow tract, did not show distinct circadian patterns. Conclusions The circadian patterns exhibit origin specificity for PVCs arising from left ventricles. An analysis of Holter monitoring provides useful information on PVC localization in ablation procedure planning.
Collapse
|
104
|
Xu W, Jain MK, Zhang L. Molecular link between circadian clocks and cardiac function: a network of core clock, slave clock, and effectors. Curr Opin Pharmacol 2020; 57:28-40. [PMID: 33189913 DOI: 10.1016/j.coph.2020.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
The circadian rhythm has a strong influence on both cardiac physiology and disease in humans. Preclinical studies primarily using tissue-specific transgenic mouse models have contributed to our understanding of the molecular mechanism of the circadian clock in the cardiovascular system. The core clock driven by CLOCK:BMAL1 complex functions as a universal timing machinery that primarily sets the pace in all mammalian cell types. In one specific cell or tissue type, core clock may control a secondary transcriptional oscillator, conceptualized as slave clock, which confers the oscillatory expression of tissue-specific effectors. Here, we discuss a core clock-slave clock-effectors network, which links the molecular clock to cardiac function.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, USA; School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
105
|
Masuda H, Okada S, Shiozawa N, Makikawa M, Goto D. The Estimation of Circadian Rhythm Using Smart Wear. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4239-4242. [PMID: 33018932 DOI: 10.1109/embc44109.2020.9176316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, we have developed a new practical system for estimating circadian rhythm by using smart wear that can measure electrocardiogram (ECG) during sleep. This system can estimate the time and heart rate (HR) value to reach the lowest point in circadian rhythm. We show the system in detail. And for further application, we conducted the experiment for showing the effects of jet lag on the circadian rhythm by using the developed system. The results showed that the time of the lowest HR shifted earlier and the lowest HR was higher in case of traveling in a westward direction.
Collapse
|
106
|
Zhou Z, Yuan J, Zhu D, Chen Y, Qian Z, Wang Y, Ge P, Wang Q, Hou X, Zou J. CLOCK-BMAL1 regulates circadian oscillation of ventricular arrhythmias in failing hearts through β1 adrenergic receptor. Am J Transl Res 2020; 12:6122-6135. [PMID: 33194018 PMCID: PMC7653582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The incidence of ventricular arrhythmias (VAs) in chronic heart failure (CHF) exhibits a notable circadian rhythm, for which the underlying mechanism has not yet been well defined. Thus, we aimed to investigate the role of cardiac core circadian genes on circadian VAs in CHF. First, a guinea pig CHF model was created by transaortic constriction. Circadian oscillation of core clock genes was evaluated by RT-PCR and was found to be unaltered in CHF (P > 0.05). Using programmed electrical stimulation in Langendorff-perfused failing hearts, we discovered that the CHF group exhibited increased VAs with greater incidence at CT3 compared to CT15 upon isoproterenol (ISO) stimulation. Circadian VAs was blunted by a β1-AR-selective blocker rather than a β2-AR-selective blocker. Circadian oscillation of β1-AR was retained in CHF (P > 0.05) and a 4-h phase delay between β1-AR and CLOCK-BMAL1 was recorded. Therefore, when CLOCK-BMAL1 was overexpressed using adenovirus infection, an induced overexpression of β1-AR also ensued, which resulted in prolonged action potential duration (APD) and enhanced arrhythmic response to ISO stimulation in cardiomyocytes (P < 0.05). Finally, chromatin immunoprecipitation and luciferase assays confirmed that CLOCK-BMAL1 binds to the enhancer of β1-AR gene and upregulates β1-AR expression. Therefore, in this study, we discovered that CLOCK-BMAL1 regulates the expression of β1-AR on a transcriptional level and subsequently modulates circadian VAs in CHF.
Collapse
Affiliation(s)
- Zihao Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Jiamin Yuan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Didi Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
- Department of Cardiology, Zhongda HospitalNanjing, Jiangsu, China
| | - Yanhong Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Zhiyong Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Yao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Peibin Ge
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Quanpeng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Xiaofeng Hou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Jiangang Zou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| |
Collapse
|
107
|
Wang Z, Tapa S, Francis Stuart SD, Wang L, Bossuyt J, Delisle BP, Ripplinger CM. Aging Disrupts Normal Time-of-Day Variation in Cardiac Electrophysiology. Circ Arrhythm Electrophysiol 2020; 13:e008093. [PMID: 32706628 DOI: 10.1161/circep.119.008093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac gene expression and arrhythmia occurrence have time-of-day variation; however, daily changes in cardiac electrophysiology, arrhythmia susceptibility, and Ca2+ handling have not been characterized. Furthermore, how these patterns change with age is unknown. METHODS Hearts were isolated during the light (zeitgeber time [ZT] 4 and ZT9) and dark cycle (ZT14 and ZT21) from adult (12-18 weeks) male mice. Hearts from aged (18-20 months) male mice were isolated at ZT4 and ZT14. All hearts were Langendorff-perfused for optical mapping with voltage- and Ca2+-sensitive dyes (n=4-7/group). Cardiac gene and protein expression were assessed with real-time polymerase chain reaction (n=4-6/group) and Western blot (n=3-4/group). RESULTS Adult hearts had the shortest action potential duration (APD) and Ca2+ transient duration (CaTD) at ZT14 (APD80: ZT4: 45.4±4.1 ms; ZT9: 45.1±8.6 ms; ZT14: 34.7±4.2 ms; ZT21: 49.2±7.6 ms, P<0.05 versus ZT4 and ZT21; and CaTD80: ZT4: 70.1±3.3 ms; ZT9: 72.7±2.7 ms; ZT14: 64.3±3.3 ms; ZT21: 74.4±1.2 ms, P<0.05 versus other time points). The pacing frequency at which CaT alternans emerged was faster, and average CaT alternans magnitude was significantly reduced at ZT14 compared with the other time points. There was a trend for decreased spontaneous premature ventricular complexes and pacing-induced ventricular arrhythmias at ZT14, and the hearts at ZT14 had diminished responses to isoproterenol compared with ZT4 (ZT4: 49.5.0±5.6% versus ZT14: 22.7±9.5% decrease in APD, P<0.01). In contrast, aged hearts exhibited no difference between ZT14 and ZT4 in nearly every parameter assessed (except APD80: ZT4: 39.7±1.9 ms versus ZT14: 33.8±3.1 ms, P<0.01). Gene expression of KCNA5 (potassium voltage-gated channel subfamily A member 5; encoding Kv1.5) was increased, whereas gene expression of ADRB1 (encoding β1-adrenergic receptors) was decreased at ZT14 versus ZT4 in adult hearts. No time-of-day changes in expression or phosphorylation of Ca2+ handling proteins (SERCA2 [sarco/endoplasmic reticulum Ca2+-ATPase], RyR2 [ryanodine receptor 2], and PLB [phospholamban]) was found in ex vivo perfused adult isolated hearts. CONCLUSIONS Isolated adult hearts have strong time-of-day variation in cardiac electrophysiology, Ca2+ handling, and adrenergic responsiveness, which is disrupted with age.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Srinivas Tapa
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Samantha D Francis Stuart
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Lianguo Wang
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Julie Bossuyt
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Brian P Delisle
- Department of Physiology, University of Kentucky College of Medicine, Lexington (B.P.D.)
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| |
Collapse
|
108
|
ECG Changes in Melanoma Patients Undergoing Cancer Therapy-Data From the ECoR Registry. J Clin Med 2020; 9:jcm9072060. [PMID: 32630003 PMCID: PMC7408861 DOI: 10.3390/jcm9072060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
We aimed to evaluate whether therapy with immune checkpoint inhibitors (ICI) leads to changes in electrocardiogram (ECG) parameters in melanoma patients. We retrospectively examined 41 patients (46% women, age 61 ± 12years) with advanced melanoma (stage III/IV) before and during ICI treatment from our “Essen Cardio-oncology Registry” (ECoR). ECGs were analyzed before and 4–12 weeks after therapy started (follow-up, 90 ± 51 days). Heart rate, PR time, QRS duration and duration of the corrected QT (QTc) interval were recorded. QT dispersion (QTd) was calculated. Heart rate, PR time, QRS and QTc did not differ when comparing values before and after therapy started. QTd was prolonged after therapy started (32 ± 16 ms vs. 47 ± 19 ms, n = 41, p < 0.0001). Subgroup analyses revealed prolonged QTd in patients that received a combination immunotherapy with ipilimumab and nivolumab (31 ± 14 ms vs. 50 ± 14 ms, n = 21, p < 0.0001), while QTd in patients with anti–programmed death 1 (PD-1) inhibitor monotherapy did not change after therapy started. QTd is prolonged in patients under ICI combination therapy, potentially signaling an increased susceptibility to ventricular arrhythmias.
Collapse
|
109
|
Scarduelli Luciano K, Zoppi Campane R, Louise Sales R, Kraus A, Ramirez Pestana E, de March Ronsoni R. Sudden Death Documented During 24-hour Holter Monitoring. JOURNAL OF CARDIAC ARRHYTHMIAS 2020. [DOI: 10.24207/jca.v32n4.115_in] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A 50-year-old female patient admitted for etiological syncope investigation. A 24-hour Holter was installed where the record showed the mechanism of sudden cardiac death. Sudden bradycardia caused by paroxysmal atrioventricular block led to torsades de pointes, ventricular fibrillation and death. This case shows the importance of Holter in the chronology of arrhythmic events that lead to sudden death and highlights a poorly reported event – the occurrence of cardiac death during 24-hour Holter monitoring.
Collapse
Affiliation(s)
| | - Rafael Zoppi Campane
- Hospital Regional Hans Dieter Schmidt – Setor de Cardiologia – Joinville (SC), Brazil
| | - Rafaela Louise Sales
- Hospital Regional Hans Dieter Schmidt – Setor de Cardiologia – Joinville (SC), Brazil
| | - Alessandra Kraus
- Hospital Regional Hans Dieter Schmidt – Setor de Cardiologia – Joinville (SC), Brazil
| | - Erden Ramirez Pestana
- Hospital Regional Hans Dieter Schmidt – Setor de Cardiologia – Joinville (SC), Brazil
| | | |
Collapse
|
110
|
Reperfusion Arrhythmias Increase after Superior Cervical Ganglionectomy Due to Conduction Disorders and Changes in Repolarization. Int J Mol Sci 2020; 21:ijms21051804. [PMID: 32155697 PMCID: PMC7084297 DOI: 10.3390/ijms21051804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 01/15/2023] Open
Abstract
Pharmacological concentrations of melatonin reduce reperfusion arrhythmias, but less is known about the antiarrhythmic protection of the physiological circadian rhythm of melatonin. Bilateral surgical removal of the superior cervical ganglia irreversibly suppresses melatonin rhythmicity. This study aimed to analyze the cardiac electrophysiological effects of the loss of melatonin circadian oscillation and the role played by myocardial melatonin membrane receptors, SERCA2A, TNFα, nitrotyrosine, TGFβ, KATP channels, and connexin 43. Three weeks after bilateral removal of the superior cervical ganglia or sham surgery, the hearts were isolated and submitted to ten minutes of regional ischemia followed by ten minutes of reperfusion. Arrhythmias, mainly ventricular tachycardia, increased during reperfusion in the ganglionectomy group. These hearts also suffered an epicardial electrical activation delay that increased during ischemia, action potential alternants, triggered activity, and dispersion of action potential duration. Hearts from ganglionectomized rats showed a reduction of the cardioprotective MT2 receptors, the MT1 receptors, and SERCA2A. Markers of nitroxidative stress (nitrotyrosine), inflammation (TNFα), and fibrosis (TGFβ and vimentin) did not change between groups. Connexin 43 lateralization and the pore-forming subunit (Kir6.1) of KATP channels increased in the experimental group. We conclude that the loss of the circadian rhythm of melatonin predisposes the heart to suffer cardiac arrhythmias, mainly ventricular tachycardia, due to conduction disorders and changes in repolarization.
Collapse
|
111
|
Cosgun A, Oren H. Variation of the T-wave peak-end interval and heart rate variability values in healthy males and females at various hours of the same day, and relationship of them. J Arrhythm 2020; 36:118-126. [PMID: 32071630 PMCID: PMC7011832 DOI: 10.1002/joa3.12296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The prolongation of repolarization time between the myocardial epicardium and endocardial cells is closely related to malignant ventricular arrhythmias. The purpose of our study was to compare repolarization markers, namely, T-wave peak-end interval (Tp-e), QT, corrected QT (QTc), Tp-e/QT, Tp-e/corrected QT (QTc), and Heart Rate Variability (HRV) values in healthy men and women and to investigate their daily variations. METHODS A total of 74 male and 78 female participants, being a government employee, and having no health problems, were included in the two study groups (males and females). A 24-hour, 12-lead Holter monitoring was performed on the volunteers. Then, the Tp-e interval and QT interval were measured on recordings. cTp-e and QTc were calculated by the use of Bazzet's formula. RESULTS There was no statistically significant difference between the groups in the cTp-e interval at 07.00 pm; however, it was significantly lower in the female group as compared with the male group at 07.00 am and 01.00 pm. It was significantly higher in the female group at 01.00 am compared with the male group. There were statistically significant moderate negative correlations between Tp-e intervals and a standard deviation of between two normal beats interval (SDNN) values at various hours of the same day. CONCLUSION There were statistically significant differences in terms of Tp-e and cTp-e intervals at various hours of the same day in both groups. In addition, there were statistically significant moderate negative correlations between Tp-e intervals and SDNN at various hours of the same day.
Collapse
Affiliation(s)
- Ayhan Cosgun
- Department of CardiologySincan State HospitalAnkaraTurkey
| | - Huseyin Oren
- Department of CardiologyAnkara City HospitalAnkaraTurkey
| |
Collapse
|
112
|
Hong M, Wei L, Wang Y, Chang Y, Ma J, Li H. Seasonal and circadian variations of hemodynamic and electrocardiographic parameters in telemetered beagle dogs. IRANIAN JOURNAL OF VETERINARY RESEARCH 2020; 21:82-83. [PMID: 32849884 PMCID: PMC7430364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 01/22/2020] [Indexed: 06/11/2023]
Affiliation(s)
- M. Hong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Innostar Bio-tech Haimen Site, Shanghai Innostar Bio-tech Co. Ltd., Nantong, Jiangsu, 226133, China
| | - L. Wei
- MSc in Toxicology, Innostar Bio-tech Haimen Site, Shanghai Innostar Bio-tech Co. Ltd., Nantong, Jiangsu, 226133, China
| | - Y. Wang
- Innostar Bio-tech Haimen Site, Shanghai Innostar Bio-tech Co. Ltd., Nantong, Jiangsu, 226133, China
| | - Y. Chang
- Innostar Bio-tech Haimen Site, Shanghai Innostar Bio-tech Co. Ltd., Nantong, Jiangsu, 226133, China
| | - J. Ma
- Innostar Bio-tech Haimen Site, Shanghai Innostar Bio-tech Co. Ltd., Nantong, Jiangsu, 226133, China
| | - H. Li
- Innostar Bio-tech Haimen Site, Shanghai Innostar Bio-tech Co. Ltd., Nantong, Jiangsu, 226133, China
| |
Collapse
|
113
|
Chellappa SL, Vujovic N, Williams JS, Scheer FAJL. Impact of Circadian Disruption on Cardiovascular Function and Disease. Trends Endocrinol Metab 2019; 30:767-779. [PMID: 31427142 PMCID: PMC6779516 DOI: 10.1016/j.tem.2019.07.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
The circadian system, that is ubiquitous across species, generates ∼24 h rhythms in virtually all biological processes, and allows them to anticipate and adapt to the 24 h day/night cycle, thus ensuring optimal physiological function. Epidemiological studies show time-of-day variations in adverse cardiovascular (CV) events, and controlled laboratory studies demonstrate a circadian influence on key markers of CV function and risk. Furthermore, circadian misalignment, that is typically experienced by shift workers as well as by individuals who experience late eating, (social) jet lag, or circadian rhythm sleep-wake disturbances, increases CV risk factors. Therefore, understanding the mechanisms by which the circadian system regulates CV function, and which of these are affected by circadian disruption, may help to develop intervention strategies to mitigate CV risk.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nina Vujovic
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan S Williams
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
114
|
Rogovoy NM, Howell SJ, Lee TL, Hamilton C, Perez‐Alday EA, Kabir MM, Zhang Y, Kim ED, Fitzpatrick J, Monroy‐Trujillo JM, Estrella MM, Sozio SM, Jaar BG, Parekh RS, Tereshchenko LG. Hemodialysis Procedure-Associated Autonomic Imbalance and Cardiac Arrhythmias: Insights From Continuous 14-Day ECG Monitoring. J Am Heart Assoc 2019; 8:e013748. [PMID: 31564195 PMCID: PMC6806026 DOI: 10.1161/jaha.119.013748] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background In patients with end‐stage kidney disease, sudden cardiac death is more frequent after a long interdialytic interval, within 6 hours after the end of a hemodialysis session. We hypothesized that the occurrence of paroxysmal arrhythmias is associated with changes in heart rate and heart rate variability in different phases of hemodialysis. Methods and Results We conducted a prospective ancillary study of the Predictors of Arrhythmic and Cardiovascular Risk in End Stage Renal Disease cohort. Continuous ECG monitoring was performed using an ECG patch, and short‐term heart rate variability was measured for 3 minutes every hour (by root mean square of the successive normal‐to‐normal intervals, spectral analysis, Poincaré plot, and entropy), up to 300 hours. Out of enrolled participants (n=28; age 54±13 years; 57% men; 96% black; 33% with a history of cardiovascular disease; left ventricular ejection fraction 70±9%), arrhythmias were detected in 13 (46%). Nonsustained ventricular tachycardia occurred more frequently during/posthemodialysis than pre‐/between hemodialysis (63% versus 37%, P=0.015). In adjusted for cardiovascular disease time‐series analysis, nonsustained ventricular tachycardia was preceded by a sudden heart rate increase (by 11.2 [95% CI 10.1–12.3] beats per minute; P<0.0001). During every‐other‐day dialysis, root mean square of the successive normal‐to‐normal intervals had a significant circadian pattern (Mesor 10.6 [ 95% CI 0.9–11.2] ms; amplitude 1.5 [95% CI 1.0–3.1] ms; peak at 02:01 [95% CI 20:22–03:16] am; P<0.0001), which was replaced by a steady worsening on the second day without dialysis (root mean square of the successive normal‐to‐normal intervals −1.41 [95% CI −1.67 to −1.15] ms/24 h; P<0.0001). Conclusions Sudden increase in heart rate during/posthemodialysis is associated with nonsustained ventricular tachycardia. Every‐other‐day hemodialysis preserves circadian rhythm, but a second day without dialysis is characterized by parasympathetic withdrawal.
Collapse
Affiliation(s)
| | | | | | | | | | - Muammar M. Kabir
- Oregon Health & Science UniversityPortlandOR
- The Hospital for Sick ChildrenThe University of TorontoOntarioCanada
| | | | - Esther D. Kim
- The Hospital for Sick ChildrenThe University of TorontoOntarioCanada
- Johns Hopkins UniversityBaltimoreMD
| | | | | | - Michelle M. Estrella
- Johns Hopkins UniversityBaltimoreMD
- Kidney Health Research CollaborativeUniversity of CaliforniaSan FranciscoCA
- San Francisco VA Health Care SystemSan FranciscoCA
| | | | | | - Rulan S. Parekh
- The Hospital for Sick ChildrenThe University of TorontoOntarioCanada
- Johns Hopkins UniversityBaltimoreMD
| | | |
Collapse
|
115
|
D’Souza A, Trussell T, Morris GM, Dobrzynski H, Boyett MR. Supraventricular Arrhythmias in Athletes: Basic Mechanisms and New Directions. Physiology (Bethesda) 2019; 34:314-326. [DOI: 10.1152/physiol.00009.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Athletes are prone to supraventricular rhythm disturbances including sinus bradycardia, heart block, and atrial fibrillation. Mechanistically, this is attributed to high vagal tone and cardiac electrical and structural remodeling. Here, we consider the supporting evidence for these three pro-arrhythmic mechanisms in athletic human cohorts and animal models, featuring current controversies, emerging data, and future directions of relevance to the translational research agenda.
Collapse
Affiliation(s)
- Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Tariq Trussell
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Gwilym M. Morris
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Mark R. Boyett
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
116
|
Zimmet P, Alberti KGMM, Stern N, Bilu C, El‐Osta A, Einat H, Kronfeld‐Schor N. The Circadian Syndrome: is the Metabolic Syndrome and much more! J Intern Med 2019; 286:181-191. [PMID: 31081577 PMCID: PMC6851668 DOI: 10.1111/joim.12924] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Metabolic Syndrome is a cluster of cardio-metabolic risk factors and comorbidities conveying high risk of both cardiovascular disease and type 2 diabetes. It is responsible for huge socio-economic costs with its resulting morbidity and mortality in most countries. The underlying aetiology of this clustering has been the subject of much debate. More recently, significant interest has focussed on the involvement of the circadian system, a major regulator of almost every aspect of human health and metabolism. The Circadian Syndrome has now been implicated in several chronic diseases including type 2 diabetes and cardiovascular disease. There is now increasing evidence connecting disturbances in circadian rhythm with not only the key components of the Metabolic Syndrome but also its main comorbidities including sleep disturbances, depression, steatohepatitis and cognitive dysfunction. Based on this, we now propose that circadian disruption may be an important underlying aetiological factor for the Metabolic Syndrome and we suggest that it be renamed the 'Circadian Syndrome'. With the increased recognition of the 'Circadian Syndrome', circadian medicine, through the timing of exercise, light exposure, food consumption, dispensing of medications and sleep, is likely to play a much greater role in the maintenance of both individual and population health in the future.
Collapse
Affiliation(s)
- P. Zimmet
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Sagol Center for Epigenetics and MetabolismTel Aviv Medical CenterTel AvivIsrael
| | | | - N. Stern
- Sagol Center for Epigenetics and MetabolismTel Aviv Medical CenterTel AvivIsrael
| | - C. Bilu
- School of ZoologyTel Aviv UniversityTel AvivIsrael
| | - A. El‐Osta
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of PathologyThe University of MelbourneParkvilleVic.Australia
- Hong Kong Institute of Diabetes and ObesityPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SARChina
| | - H. Einat
- School of Behavioral SciencesTel Aviv‐Yaffo Academic CollegeTel AvivIsrael
| | | |
Collapse
|
117
|
Kiley JP, Twery MJ, Gibbons GH. The National Center on Sleep Disorders Research-progress and promise. Sleep 2019; 42:5498425. [PMID: 31125417 DOI: 10.1093/sleep/zsz105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- James P Kiley
- Division of Lung Diseases, National Heart Lung and Blood Institute, Bethesda, MD
| | - Michael J Twery
- Division of Lung Diseases, National Heart Lung and Blood Institute, Bethesda, MD
| | - Gary H Gibbons
- Division of Lung Diseases, National Heart Lung and Blood Institute, Bethesda, MD
| |
Collapse
|