101
|
Yun D, Yan Y, Liu J. Isolation, structure and biological activity of polysaccharides from the fruits of Lycium ruthenicum Murr: A review. Carbohydr Polym 2022; 291:119618. [DOI: 10.1016/j.carbpol.2022.119618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
|
102
|
Oladzadabbasabadi N, Mohammadi Nafchi A, Ghasemlou M, Ariffin F, Singh Z, Al-Hassan A. Natural anthocyanins: Sources, extraction, characterization, and suitability for smart packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
103
|
Koop BL, Zenin E, Cesca K, Valencia GA, Monteiro AR. Intelligent labels manufactured by thermo-compression using starch and natural biohybrid based. Int J Biol Macromol 2022; 220:964-972. [PMID: 36007699 DOI: 10.1016/j.ijbiomac.2022.08.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
Abstract
This work aims to develop intelligent labels based on cassava starch and biohybrid pigments by thermo-compression. The biohybrid pigment (BH) was developed by the adsorption of anthocyanins (ACNs) extracted from the jambolan fruit (Syzygium cumini L.) into montmorillonite (Mt) in order to improve its stability. The effect of the addition of biohybrid on the physicochemical properties of the thermo-pressed starch labels was evaluated. ACNs from jambolan extract show a visible pH-dependent color-changing ability at pH 1 - 12, and the adsorption did not modify the color property. The intelligent labels presented a homogeneous surface, and the BH was well dispersed in the starch matrix. The presence of BH increased the solubility in the water of starch labels. Chemical structure characterization revealed that the BH interacted with starch matrices through hydrogen bonds. Furthermore, the thermal stability of starch labels increased with the presence of BH. Hence, the purple color of intelligent labels was preserved at high temperatures. Finally, labels containing BH show visible changes from purple to a blue color when exposed to ammonia vapor, which simulates the degradation of meat products. Thus, the label content jambolan pigments will be used to control meat deterioration.
Collapse
Affiliation(s)
- Betina Luiza Koop
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Emerson Zenin
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Karina Cesca
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Alcilene Rodrigues Monteiro
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
104
|
Santos LG, Alves-Silva GF, Martins VG. Active-intelligent and biodegradable sodium alginate films loaded with Clitoria ternatea anthocyanin-rich extract to preserve and monitor food freshness. Int J Biol Macromol 2022; 220:866-877. [PMID: 35998854 DOI: 10.1016/j.ijbiomac.2022.08.120] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
The aim of this study was to develop and characterize sodium alginate films loaded with 10-40 % Clitoria ternatea extract (CTE) and apply to monitoring the quality of milk, pork and shrimp. Films loaded with CTE showed high light barrier capacity and improved tensile strength by 3.8 times over control films. The incorporation of CTE in alginate films improved the thermal stability of the materials due to intermolecular interactions and crosslinking of polymeric networks. The addition of 40 % of CTE generated films with antibacterial action against E. coli. The alginate films showed biodegradable characteristics in soil and beach sand in 15 days. The food simulant test revealed that the loaded films show good compatibility with aqueous and acidic foods due to the release of higher levels of polyphenols and anthocyanins. The films showed great colorimetric potential due to their ability to change color at different pH (pink-green), ammonia gas (blue-green) and sterilization process (blue-yellow). When the film loaded with 40 % CTE (F40) was applied to monitor the freshness of milk and meat products (shrimp and pork), its blue color changed to purple and green, respectively. Therefore, the F40 has great potential to be used as a biodegradable indicator of freshness.
Collapse
Affiliation(s)
- Luan Gustavo Santos
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| | - Gisele Fernanda Alves-Silva
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
105
|
Figueiredo MTD, Ferreira GMD, Lopez MAR, das Graças Cardoso M, de Oliveira JE, Bianchi RF, Ferreira GMD, Mageste AB. Immobilization of Anthocyanin in Polymeric Film to Obtain a Colorimetric Sensor for Detection of Copper in Cachaça. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
106
|
Comparison of the physical and functional properties of food packaging films containing starch and polyphenols from different varieties of wolfberry. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
107
|
Application of pH-indicating film containing blue corn anthocyanins on corn starch/polyvinyl alcohol as substrate for preservation of tilapia. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
108
|
Intelligent pH-sensing film based on polyvinyl alcohol/cellulose nanocrystal with purple cabbage anthocyanins for visually monitoring shrimp freshness. Int J Biol Macromol 2022; 218:900-908. [PMID: 35907457 DOI: 10.1016/j.ijbiomac.2022.07.194] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/22/2022]
Abstract
We aimed to prepare a new pH-sensing film based on the immobilization of purple cabbage anthocyanins (PCA) into Polyvinyl alcohol (PVA) reinforced by cellulose nanocrystals (CNC). FT-IR, XRD and TGA were used to assess the intermolecular interactions and thermo-stability of films. The addition of CNC and PCA resulted in an enhancement in UV-vis barrier, mechanical properties and moisture resistance. Inclusion of PCA imparted intelligent properties to the films. PCA-loaded films displayed strong visually detectable colorimetric responses to pH (2-13) and volatile ammonia. When applied to monitor shrimp freshness at 4 °C, PVA/CNC films containing 0.6 % PCA exhibited conspicuous color fluctuations from purple to gray blue upon deterioration. As a result, PVA/CNC-PCA colorimetric films were considered as intelligent packaging labels with significant mechanical, water vapor barrier properties and pH-sensing qualities for visual quality evaluation of fresh seafood products.
Collapse
|
109
|
Amaregouda Y, Kamanna K, Gasti T. Fabrication of intelligent/active films based on chitosan/polyvinyl alcohol matrices containing Jacaranda cuspidifolia anthocyanin for real-time monitoring of fish freshness. Int J Biol Macromol 2022; 218:799-815. [PMID: 35905759 DOI: 10.1016/j.ijbiomac.2022.07.174] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/13/2023]
Abstract
The present work describes the natural anthocyanin from Jacaranda cuspidifolia (JC) flower immobilized within a biopolymer matrix composed of chitosan (CS) and polyvinyl alcohol (PVA) gave novel intelligent/active packaging films (CPC). We introduced microwave irradiation to prepare polymeric composite films noticed faster mixing of the polymers and extract take place than the conventional method. The prepared composite films are characterized by various analytical and spectroscopic techniques. The smooth SEM images demonstrated CS/PVA matrix miscibility and compatibility with anthocyanin for the film formation. The addition of anthocyanin to the CS/PVA films significantly reduced UV-Vis light transmission, while causing a slight decrease in the films transparency. An increased anthocyanin concentration on polymer films showed improved oxygen permeability (77.09 %), moisture retention capacity (11.64 %), and water vapor transmission rate (43.10 %) substantially. Additionally, the prepared CPC smart films exhibited strong antioxidant (97.92 %) as well as antibacterial activities against common foodborne pathogens such as S. aureus, and E. coli. Furthermore, the prepared smart films demonstrated pink color in acidic, while grey to yellowish in basic solvent. Further, the color response of the freshness label was consistent with the spoilage Total Volatile Basic-Nitrogen (TVB-N) content determined in the fish samples with varied time period. The CPC smart films also showed promising application in terms of monitoring freshness of the fish fillets at room temperature. The obtained results suggested that, the prepared CPC smart films have potential to be used as quality indicator in the marine food packaging system.
Collapse
Affiliation(s)
- Yamanappagouda Amaregouda
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India
| | - Kantharaju Kamanna
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India.
| | - Tilak Gasti
- Department of Chemistry, Karnatak University, Dharwad 580003, India
| |
Collapse
|
110
|
Preparation and Performance Characterization of a Composite Film Based on Corn Starch, κ-Carrageenan, and Ethanol Extract of Onion Skin. Polymers (Basel) 2022; 14:polym14152986. [PMID: 35893950 PMCID: PMC9330010 DOI: 10.3390/polym14152986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022] Open
Abstract
Using corn starch (CS) and κ-carrageenan(κC) as the raw material and active composite, respectively, films containing different concentrations of ethanol extract of onion skin were prepared. The effects of different concentrations of ethanol extract of onion skin (EEOS) on the physicochemical properties, as well as the antioxidant and antibacterial properties, of CS/κC films were also discussed. The addition of ethanol extract of onion skin inhibited the recrystallization of starch molecules in the composite films. It affected the microstructure of the composite films. The color of the composite films was deepened, the brightness was reduced, and the opacity was increased. Water vapor permeability increased, tensile strength decreased, and elongation at the break increased. The glass-transition temperature decreased. The clearance of DPPH radicals and ABTS cation radicals increased. Moreover, when the concentration of EEOS was 3%, the antioxidant effect of the films on oil was greatly improved and could effectively inhibit Staphylococcus aureus and Escherichia coli. The above results showed that adding ethanol extract of onion skin improved the physicochemical properties and biological activities of the CS/κC composite films, so CS/κC/EEOS composite films can be used as an active packaging material to extend food shelf-life. These results can provide a theoretical basis for the production and application of corn starch/κ-carrageenan/ethanol extract of onion skin composite films.
Collapse
|
111
|
Smart films fabricated from natural pigments for measurement of total volatile basic nitrogen (TVB-N) content of meat for freshness evaluation: A systematic review. Food Chem 2022; 396:133674. [PMID: 35905557 DOI: 10.1016/j.foodchem.2022.133674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 12/31/2022]
Abstract
Major databases were searched from January 2012 to August 2021 and 54 eligible studies were included in the meta-analysis to estimate the overall mean of total volatile basic nitrogen (TVB-N) in meat. The mean of TVB-N was 24.96 mg/100 g (95 % CI:23.10-26.82). The pooled estimate of naphthoquinone, curcumin, anthocyanins, alizarin and betalains were 25.98 mg/100 g (95 %CI:19.63-32.33), 30.03 mg/100 g (95 %CI: 24.15-35.91), 24.92 mg/100 g (95 %CI: 22.55-27.30), 23.37 mg/100 g (95 %CI:19.42-27.33) and 19.50 mg/100 g (95 %CI:17.87-21.12), respectively. Meanwhile, subgroups based on meat types showed that smart film was most used in aquatic products at 27.19 mg/100 g (95 %CI:24.97-29.42), followed by red meat at 19.69 mg/100 g (95 %CI:17.44-21.94). Furthermore, 4 °C was the most storage temperature used for testing the performance of smart films at 25.48 mg/100 g (95 %CI:23.05-27.90), followed by storage at 25 °C of 25.65 mg/100 g (95 %CI:22.17-29.13). Substantial heterogeneity was found across the eligible studies (I2 = 99 %, p = 0.00). The results of the trim-and-fill method demonstrated publication bias was well controlled.
Collapse
|
112
|
Xie Q, Liu G, Zhang Y, Yu J, Wang Y, Ma X. Active edible films with plant extracts: a updated review of their types, preparations, reinforcing properties, and applications in muscle foods packaging and preservation. Crit Rev Food Sci Nutr 2022; 63:11425-11447. [PMID: 35757888 DOI: 10.1080/10408398.2022.2092058] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Currently, edible films have been increasingly explored to solve muscle food spoilage during storage, especially through the incorporation of plant extracts to develop edible packaging materials. Natural polymers matrices with plant extracts are befitting for fabricating edible films by casting methods. In the films system, the structure and physicochemical properties were strengthened via chemical interactions between active molecules in plant extracts and the reactive groups in the polymer chain. The antibacterial and antioxidant properties were dramatically reinforced through both physical and chemical actions of the plant extracts. Additionally, edible films imbedded with color-rich plant extracts could be considered as potential sensitive indicators to monitor the spoilage degree of muscle foods in response to change in gas or temperature. Furthermore, these films could increase sensory acceptability, improve quality and prolong the shelf life of muscle foods. In this article, the types, preparation methods and reinforcing properties of the edible films with plant extracts were discussed. Also, the applications of these films were summarized on quality maintenance and shelf-life extension and intelligent monitoring in muscle foods. Finally, a novel technology for film preparation achieving high-stability and sustained release of active compounds will become an underlying trend for application in muscle food packaging.
Collapse
Affiliation(s)
- Qiwen Xie
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yuanlv Zhang
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
113
|
Liu D, Zhang C, Pu Y, Chen S, Liu L, Cui Z, Zhong Y. Recent Advances in pH-Responsive Freshness Indicators Using Natural Food Colorants to Monitor Food Freshness. Foods 2022; 11:foods11131884. [PMID: 35804701 PMCID: PMC9265506 DOI: 10.3390/foods11131884] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Recently, due to the enhancement in consumer awareness of food safety, considerable attention has been paid to intelligent packaging that displays the quality status of food through color changes. Natural food colorants show useful functionalities (antibacterial and antioxidant activities) and obvious color changes due to their structural changes in different acid and alkali environments, which could be applied to detect these acid and alkali environments, especially in the preparation of intelligent packaging. This review introduces the latest research on the progress of pH-responsive freshness indicators based on natural food colorants and biodegradable polymers for monitoring packaged food quality. Additionally, the current methods of detecting food freshness, the preparation methods for pH-responsive freshness indicators, and their applications for detecting the freshness of perishable food are highlighted. Subsequently, this review addresses the challenges and prospects of pH-responsive freshness indicators in food packaging, to assist in promoting their commercial application.
Collapse
|
114
|
Fernandes GDJC, Campelo PH, de Abreu Figueiredo J, Barbosa de Souza HJ, Peixoto Joele MRS, Yoshida MI, Henriques Lourenço LDF. Effect of polyvinyl alcohol and carboxymethylcellulose on the technological properties of fish gelatin films. Sci Rep 2022; 12:10497. [PMID: 35729201 PMCID: PMC9213542 DOI: 10.1038/s41598-022-14258-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/03/2022] [Indexed: 11/09/2022] Open
Abstract
The objective of this work was to develop biodegradable films by mixing gelatin/carboxymethylcellulose (FG/CMC) and gelatin/polyvinyl alcohol (FG/PVOH) and to evaluate the effect of adding these polymers on the properties of fish gelatin films. The films FG/CMC and FG/PVOH were produced in the proportions 90/10, 80/20 and 70/30 and characterized their physical, chemical and functional properties. The addition of CMC and PVOH improved the mechanical strength, barrier property and water solubility of gelatin films. FG/CMC films showed greater tensile strength and greater solubility than FG/PVOH. The maximum concentration of CMC promoted the highest mechanical resistance, while the highest PVOH content produced the film with the lowest solubility. The proposed mixing systems proved to be adequate to improve the properties of fish gelatin films, with potential for application in the packaging sector.
Collapse
Affiliation(s)
- Gleyca de Jesus Costa Fernandes
- Animal Research Laboratory - LAPOA, Graduate Program in Food Science and Technology - PPGCTA, Federal University of Pará - UFPA, Belém, PA, Brazil.
| | - Pedro Henrique Campelo
- Department of Food Technology, Federal University of Vicosa, Av. PH Rolfs, s/n, Vicosa, MG, 36570-900, Brazil
| | | | | | | | - Maria Irene Yoshida
- Chemical Department, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lúcia de Fátima Henriques Lourenço
- Animal Research Laboratory - LAPOA, Graduate Program in Food Science and Technology - PPGCTA, Federal University of Pará - UFPA, Belém, PA, Brazil
| |
Collapse
|
115
|
|
116
|
Huang J, Hu Z, Li G, Hu L, Chen J, Hu Y. Make your packaging colorful and multifunctional: The molecular interaction and properties characterization of natural colorant-based films and their applications in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
117
|
Falua KJ, Pokharel A, Babaei-Ghazvini A, Ai Y, Acharya B. Valorization of Starch to Biobased Materials: A Review. Polymers (Basel) 2022; 14:polym14112215. [PMID: 35683888 PMCID: PMC9183024 DOI: 10.3390/polym14112215] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Many concerns are being expressed about the biodegradability, biocompatibility, and long-term viability of polymer-based substances. This prompted the quest for an alternative source of material that could be utilized for various purposes. Starch is widely used as a thickener, emulsifier, and binder in many food and non-food sectors, but research focuses on increasing its application beyond these areas. Due to its biodegradability, low cost, renewability, and abundance, starch is considered a "green path" raw material for generating porous substances such as aerogels, biofoams, and bioplastics, which have sparked an academic interest. Existing research has focused on strategies for developing biomaterials from organic polymers (e.g., cellulose), but there has been little research on its polysaccharide counterpart (starch). This review paper highlighted the structure of starch, the context of amylose and amylopectin, and the extraction and modification of starch with their processes and limitations. Moreover, this paper describes nanofillers, intelligent pH-sensitive films, biofoams, aerogels of various types, bioplastics, and their precursors, including drying and manufacturing. The perspectives reveal the great potential of starch-based biomaterials in food, pharmaceuticals, biomedicine, and non-food applications.
Collapse
Affiliation(s)
- Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Department of Agricultural & Biosystems Engineering, University of Ilorin, Ilorin PMB 1515, Nigeria
| | - Anamol Pokharel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Correspondence:
| |
Collapse
|
118
|
Liu L, Zhang J, Zou X, Arslan M, Shi J, Zhai X, Xiao J, Wang X, Huang X, Li Z, Li Y. A high-stable and sensitive colorimetric nanofiber sensor based on PCL incorporating anthocyanins for shrimp freshness. Food Chem 2022; 377:131909. [PMID: 34990946 DOI: 10.1016/j.foodchem.2021.131909] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023]
Abstract
A novel bilayer colorimetric film incorporating polycaprolactone (PCL) with clitoria ternatea Linn anthocyanin (CA) via electrospinning was designed. The PCL nanofibers layer acted as a protective layer against harsh environments as the strong hydrophobic with the WCA (water contact angle) values of 101.79°. The PCL-CA layer worked as an indicator for its significant color changes for pH. The sensitivity test verified the ammonia cycler reversibility of the nanofibers is promising for re-use packaging. And the PCL/PCL-CA film was characterized as suitable WVP (water vapour permeability), and the lower velocity of water penetrating. Moreover, higher elongation at break (240.431%), and color stability were achieved. Besides, the film exhibited the color change from pale-blue to yellow-green response as an indication of shrimp spoilage (21 h). These results suggested the potential application of the PCL/PCL-CA film for a reusable freshness sensor tool in food packaging.
Collapse
Affiliation(s)
- Li Liu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Muhammad Arslan
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Xin Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
119
|
Hu D, Liu X, Qin Y, Yan J, Yang Q. A novel intelligent film with high stability based on chitosan/sodium alginate and coffee peel anthocyanin for monitoring minced beef freshness. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dongsheng Hu
- Faculty of Modern Agricultural Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| | - Xiaogang Liu
- Faculty of Modern Agricultural Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| | - Yuyue Qin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| | - Jiatong Yan
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| | - Qiliang Yang
- Faculty of Modern Agricultural Engineering Kunming University of Science and Technology Kunming Yunnan 650500 PR China
| |
Collapse
|
120
|
He Y, Chen D, Liu Y, Sun X, Guo W, An L, Shi Z, Wen L, Wang Z, Yu H. Protective Effect and Mechanism of Soybean Insoluble Dietary Fiber on the Color Stability of Malvidin-3-O-glucoside. Foods 2022; 11:foods11101474. [PMID: 35627044 PMCID: PMC9140807 DOI: 10.3390/foods11101474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Anthocyanins have great health benefits, especially malvidin. Vitis amurensis Rupr are rich in malvidin, and malvidin-3-O-glucoside (Mv3G) monomer is the most abundant. However, natural anthocyanins are unstable, which limits their wide application in the food field. Soybean insoluble dietary fiber (SIDF) has high stability, and it can be used as an inert substrate to construct a stable system, which may improve the stability of anthocyanins. The optimal condition to construct a stable system of SIDF and Mv3G at pH 3.0 was determined by an orthogonal experiment. The results indicated that SIDF effectively improved the stability of Mv3G under different pH values (1.0~7.0), high temperature (100 °C for 100 min), and sunlight (20 ± 2 °C for 30 d) conditions. The absorption peak intensity of the UV–VIS spectrum of SIDF-Mv3G was enhanced, which indicated that there was interaction between SIDF and Mv3G. Fourier transform infrared spectroscopy analyses revealed that the -OH stretching vibration peak of SIDF-Mv3G was changed, which indicated that the interaction between SIDF and Mv3G was due to hydrogen bonding. X-ray diffraction analysis showed that the crystalline morphology of SIDF was opened, which was combined with Mv3G, and SIDF made Mv3G change to a more stable state. Scanning electron microscope analysis showed that SIDF and Mv3G were closely combined to form an inclusion complex. Overall, this study provides valuable information for enhancing the color stability of anthocyanins, which will further expand the application of anthocyanins in the food field.
Collapse
Affiliation(s)
- Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Dongxia Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Yuheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Xiaozhen Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Wenrui Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Lingyu An
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Zhenming Shi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Zhitong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
- Correspondence: (Z.W.); (H.Y.)
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agriculture Research System, Changchun 130118, China
- Correspondence: (Z.W.); (H.Y.)
| |
Collapse
|
121
|
Cheng M, Yan X, Cui Y, Han M, Wang X, Wang J, Zhang R. An eco-friendly film of pH-responsive indicators for smart packaging. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.110943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
122
|
Wang G, Huang S, He H, Cheng J, Zhang T, Fu Z, Zhang S, Zhou Y, Li H, Liu X. Fabrication of a "progress bar" colorimetric strip sensor array by dye-mixing method as a potential food freshness indicator. Food Chem 2022; 373:131434. [PMID: 34731803 DOI: 10.1016/j.foodchem.2021.131434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022]
Abstract
Colorimetric sensing is a low-cost, intuitive method for monitoring the freshness of food. We prepared a colorimetric strip sensor array by mixing different amounts of bromophenol blue (BPB) and bromocresol green (BCG). As results of NH3 simulation, the array strip turned from yellow to blue, and the number of blue spots increased with the increasing NH3, like a progress bar. Although the actual color is quite different, the color-changing trend was consistent with the simulated model calculated by a computer. The progress bar results remained stable under three lighting conditions. Furthermore, in the Cod preservation experiment, the color-changing progress of the strip sensor array is consistent with the simulation and can indicate Cod freshness while providing more distinguish levels. Therefore, a "progress bar" indicator built by this strategy possess the potential of realizing nondestructive, more accurate, and commercially available food quality monitoring through the naked eye and smart equipment recognition.
Collapse
Affiliation(s)
- Guannan Wang
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Shaoyun Huang
- Department of Graphic Information Processing, Jingchu University of Technology, Jingmen 448000, China
| | - Hui He
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Jiawei Cheng
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Tao Zhang
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Zhiqiang Fu
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Shasha Zhang
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Yuzhi Zhou
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Houbin Li
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China.
| | - Xinghai Liu
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
123
|
Wang Y, Zhang J, Zhang L. An active and pH-responsive film developed by sodium carboxymethyl cellulose/polyvinyl alcohol doped with rose anthocyanin extracts. Food Chem 2022; 373:131367. [PMID: 34731797 DOI: 10.1016/j.foodchem.2021.131367] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022]
Abstract
Many anthocyanins were used in active and pH-responsive packaging. The purpose of the study was to prepare an active and pH-responsive sensitive film based on sodium carboxymethyl cellulose/polyvinyl alcohol (CPVA) by a casting process, which contained rose anthocyanin extracts (RAEs) to monitor the freshness of pork. The concentration of RAEs had an important influence on the physicochemical property of RAEs-CPVA films, especially excellent anti-oxidation and light barrier properties. Importantly, the 160-RAEs-CPVA film had a strong response to pH, showing different color at different pHs. Furthermore, when monitoring the freshness of pork stored at 25 °C, the light green color of the 160-RAEs-CPVA film indicated that the freshness of the pork was higher, while the dark green and orange appearance indicated that the pork was spoiled. Therefore, 160-RAEs-CPVA film can be used as a smart indicator for freshness monitoring of pork.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Zhang
- The Food College of Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; The Food College of Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
124
|
Effects of anthocyanin-rich Kadsura coccinea extract on the physical, antioxidant, and pH-sensitive properties of biodegradable film. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09727-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
125
|
Cheng M, Yan X, Cui Y, Han M, Wang Y, Wang J, Zhang R, Wang X. Characterization and Release Kinetics Study of Active Packaging Films Based on Modified Starch and Red Cabbage Anthocyanin Extract. Polymers (Basel) 2022; 14:polym14061214. [PMID: 35335543 PMCID: PMC8950823 DOI: 10.3390/polym14061214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Active packaging films were prepared by adding red cabbage anthocyanin extract (RCAE) into acetylated distarch phosphate (ADSP). This paper investigated the influence of the interaction relationship between RCAE and the film matrix on the structure, barrier, antioxidant and release properties of active films. Sixteen principal compounds in RCAE were identified as anthocyanins based on mass spectroscopic analysis. Micromorphological observations indicated that the RCAE distribution uniformity in the films decreased as the RCAE content increased. When the concentration of RCAE was not higher than 20%, the moisture absorption and oxygen permeability of films decreased. The stability of RCAE in the films was enhanced by the electrostatic interaction between RCAE and ADSP with the formation of hydrogen bonds, which facilitated the sustainability of the antioxidant properties of films. The release kinetics of RCAE proved that the release rate of RCAE in active films was the fastest in distilled water, and Fickian’s law was appropriate for portraying the release behavior. Moreover, the cytocompatibilty assay showed that the test films were biocompatible with a viability of >95% on HepG2 cells. Thus, this study has established the suitability of the films for applications in active and food packaging.
Collapse
|
126
|
Avila LB, Barreto ERC, Moraes CC, Morais MM, da Rosa GS. Promising New Material for Food Packaging: An Active and Intelligent Carrageenan Film with Natural Jaboticaba Additive. Foods 2022; 11:foods11060792. [PMID: 35327215 PMCID: PMC8947434 DOI: 10.3390/foods11060792] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 01/06/2023] Open
Abstract
This research focused on the development of active and intelligent films based on a carrageenan biopolymer incorporated with jaboticaba peels extract (JPE). The bioactive extract was obtained by maceration extraction and showed high concentrations of total phenolic content (TP), total anthocyanin (TA), cyanidin-3-glucoside (Cn-3-Glu), antioxidant activity (AA), and microbial inhibition (MI) against E. coli, being promising for use as a natural additive in food packaging. The carrageenan films were produced using the casting technique, incorporating different concentrations of JPE, and characterized. The results of the thickness and Young’s modulus of the film increased in the films supplemented with JPE and the addition of the extract showed a decrease in elongation capacity and tensile strength, in water vapor permeability, and a lower rate of swelling in the water. In addition, the incorporation of JPE into the polymeric matrix promotes a change in the color of the films when compared to the control film and improves the opacity property. This is a positive effect as the material has a UV-vis light barrier which is interesting for food packaging. The increase in the active potential of the films was directly proportional to the concentration of JPE. The films results showed visible changes from purple to brown when in contact with different pH, which means that films have an intelligent potential. Accordingly, this novel carrageenan based-film incorporated with JPE could be a great strategy to add natural additives into packaging material to obtain an active potential and also an indicator for monitoring food in intelligent packaging.
Collapse
Affiliation(s)
- Luisa Bataglin Avila
- Engineering Graduate Program, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil;
| | - Elis Regina Correa Barreto
- Chemical Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Brazil; (E.R.C.B.); (M.M.M.)
| | - Caroline Costa Moraes
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil;
| | - Marcilio Machado Morais
- Chemical Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Brazil; (E.R.C.B.); (M.M.M.)
| | - Gabriela Silveira da Rosa
- Engineering Graduate Program, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil;
- Chemical Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Brazil; (E.R.C.B.); (M.M.M.)
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil;
- Correspondence: ; Tel.: +55-53-9996-722-26
| |
Collapse
|
127
|
Nano-biocomposite based color sensors: Investigation of structure, function, and applications in intelligent food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100789] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
128
|
Kan J, Liu J, Xu F, Yun D, Yong H, Liu J. Development of pork and shrimp freshness monitoring labels based on starch/polyvinyl alcohol matrices and anthocyanins from 14 plants: A comparative study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
129
|
Liu Y, Ma Y, Liu Y, Zhang J, Hossen MA, Sameen DE, Dai J, Li S, Qin W. Fabrication and characterization of pH-responsive intelligent films based on carboxymethyl cellulose and gelatin/curcumin/chitosan hybrid microcapsules for pork quality monitoring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
130
|
Evaluation of milk deterioration using simple biosensor. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
131
|
A review of recent advances in starch-based materials: Bionanocomposites, pH sensitive films, aerogels and carbon dots. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
132
|
Zhang X, Zou W, Xia M, Zeng Q, Cai Z. Intelligent colorimetric film incorporated with anthocyanins-loaded ovalbumin-propylene glycol alginate nanocomplexes as a stable pH indicator of monitoring pork freshness. Food Chem 2022; 368:130825. [PMID: 34496332 DOI: 10.1016/j.foodchem.2021.130825] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/04/2022]
Abstract
Protein-polysaccharide nanocomplexes system could improve the low stability of ACNs, making ACNs become a potential and stable pH indicator. In this study, intelligent colorimetric film was designed to monitor pork freshness by incorporating ACNs-loaded ovalbumin-propylene glycol alginate nanocomplexes (ACNs-loaded OVA-PGA) into polyvinyl alcohol/ glycerol (PG) matrix. The intelligent film (PG/ACNs-loaded OVA-PGA film) presented well barrier performance (lower water vapor permeability and light transmittance at 200-600 nm). Fourier transform infrared spectroscopy further confirmed the hydrogen bonds among film-forming components. Moreover, Scanning electron microscope and X-ray diffraction showed that ACNs-loaded OVA-PGA was uniformly distributed in film matrix but decreased the crystallinity of polyvinyl alcohol. PG/ACNs-loaded OVA-PGA film had distinguishable colorimetric response to pH 2.0-11.0 buffers and volatile ammonia. In the test, PG/ACNs-loaded OVA-PGA film displayed visible color alterations from purplish-red to dark-blue as pork freshness decreased, suggesting it can be used in intelligent packaging for real-time monitoring freshness of meat products.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Wenjie Zou
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Minquan Xia
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Qi Zeng
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Zhaoxia Cai
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China.
| |
Collapse
|
133
|
Jia R, Teng K, Huang J, Wei X, Qin Z. Hydrogen Bonding Crosslinking of Starch‐Polyvinyl Alcohol Films Reinforced by Ultrasound‐Assisted and Cellulose Nanofibers Dispersed Cellulose Nanocrystals. STARCH-STARKE 2022. [DOI: 10.1002/star.202100227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rui‐Jing Jia
- School of Resources Environment and Materials Guangxi University Nanning 530000 China
- MOE Key Laboratory of New Processing Technology for Non‐ferrous Metals and Materials Nanning Guangxi 530004 China
| | | | | | - Xin Wei
- School of Resources Environment and Materials Guangxi University Nanning 530000 China
- MOE Key Laboratory of New Processing Technology for Non‐ferrous Metals and Materials Nanning Guangxi 530004 China
| | - Zhi‐Yong Qin
- School of Resources Environment and Materials Guangxi University Nanning 530000 China
| |
Collapse
|
134
|
Wang H, Wan T, Wang H, Wang S, Li Q, Cheng B. Novel colorimetric membranes based on polylactic acid-grafted-citrated methacrylated urethane (PLA-CMU) to monitor cod freshness. Int J Biol Macromol 2022; 194:452-460. [PMID: 34822833 DOI: 10.1016/j.ijbiomac.2021.11.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 11/28/2022]
Abstract
Halochromic agent is easy to fall off from the surface of colorimetric membranes during fish freshness monitoring, which would decay the test accuracy. In order to increase its anchoring, citrated methacrylated urethane (CMU) synthesized by using tributyl citrate, β-hydroxyethyl methacrylate and diphenyl-methane-diisocyanate as a halochromic agent was grafted on polylactic acid (PLA). The CMU grafted PLA (PLA-CMU) together with tetrabutylammonium chloride (TBAC) prepared colorimetric membranes via electrospinning. 1H NMR and FTIR analysis showed successful bonding between CMU and PLA, and PLA-CMU grafting efficiency reached to the maximum value of 11.15%. Moreover, DSC confirmed that PLA-CMU existed low cold-crystallization temperature due to the excellent compatibility of CMU with PLA, which enhanced the anchoring of CMU effectively. Nanofiber-based PLA-CMU/TBAC colorimetric membrane enhanced the probability of molecules being captured due to its porous structure and large specific surface area. In addition, the increase in hydrophilicity of the membrane can provide a microenvironment for liquid phase reaction, exhibiting obvious color-changing sensitivity during cod freshness monitoring, from white color to light orange or pink with the deterioration of cod at 25 °C and 4 °C respectively. The results demonstrate PLA-CMU/TBAC colorimetric membranes would provide a simple and promising strategy for monitoring fish freshness.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China
| | - Tong Wan
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China
| | - Hao Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shaoyu Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China.
| | - Quanxiang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Bowen Cheng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology (TUST), Tianjin 300457, PR China.
| |
Collapse
|
135
|
Koshy RR, Reghunadhan A, Mary SK, Thomas K, K. R. A, Thomas S, Pothen LA. Intelligent pH-sensitive films from whole arrowroot powder and soy protein isolate incorporating red cabbage anthocyanin: monitoring freshness of shrimps and ammonia in fish farming ponds. NEW J CHEM 2022. [DOI: 10.1039/d1nj05970j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Whole arrowroot powder, soy protein isolate and red cabbage anthocyanin were used to fabricate packaging films that can monitor the freshness of shrimp and can be used to detect ammonia.
Collapse
Affiliation(s)
- Rekha Rose Koshy
- Postgraduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Alappuzha, University of Kerala, Kerala 690110, India
- Postgraduate and Research Department of Chemistry, CMS College, Kottayam, Kerala, India
| | - Arunima Reghunadhan
- Department of Chemistry, TKM College of Engineering, Karicode, Kollam, Kerala 691005, India
| | - Siji. K. Mary
- Postgraduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Alappuzha, University of Kerala, Kerala 690110, India
- Postgraduate and Research Department of Chemistry, CMS College, Kottayam, Kerala, India
| | - Kiran Thomas
- Postgraduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Alappuzha, University of Kerala, Kerala 690110, India
| | - Ajish K. R.
- Postgraduate and Research Department of Chemistry, CMS College, Kottayam, Kerala, India
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Laly A. Pothen
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
136
|
Degradable photo-crosslinked starch-based films with excellent shape memory property. Int J Biol Macromol 2021; 193:1685-1693. [PMID: 34748788 DOI: 10.1016/j.ijbiomac.2021.10.227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022]
Abstract
With the increasingly serious plastic pollution, people's demand for the multi-functional biodegradable plastics is becoming more and more urgent. Inspired by the crosslinked shape memory polymers, the crosslinked starch films were synthesized by inducing the decomposition of benzophenone into free radical and depriving hydrogen on starch macromolecules under UV irradiation, in order to gain a high shape memory performance. The results showed that a three-dimensional crosslinking network between starch macromolecule chains was formed. Compared with the uncrosslinked starch films, the photo-crosslinked films not only had higher mechanical property (tensile strength increased by 154%), but also had better water resistance (water contact angle from 60° to 87°) due to the reduction of free hydroxyl groups. In addition, the stable covalent bonds serving as netpoints endow photo-crosslinked films with great improvement in shape memory property, with nearly 180° bending recovery. More importantly, the maximum shape memory fixity ratio (Rf) and shape memory recovery ratio (Rr) under stretch deformation were 96.5% and 99.8%, respectively. And the Rf and Rr could reach 94.6% and 79.8% even at higher strain. In all, the excellent shape memory performance and good degradability crosslinked starch films, which have great potential application in disposable heat-shrinkable packaging materials.
Collapse
|
137
|
Boonsiriwit A, Lee M, Kim M, Inthamat P, Siripatrawan U, Lee YS. Hydroxypropyl methylcellulose/microcrystalline cellulose biocomposite film incorporated with butterfly pea anthocyanin as a sustainable pH-responsive indicator for intelligent food-packaging applications. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
138
|
Smart packaging films based on starch/polyvinyl alcohol and Lycium ruthenicum anthocyanins-loaded nano-complexes: Functionality, stability and application. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106850] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
139
|
Yan J, Cui R, Tang Z, Wang Y, Wang H, Qin Y, Yuan M, Yuan M. Development of pH-sensitive films based on gelatin/chitosan/nanocellulose and anthocyanins from hawthorn (Crataegus scabrifolia) fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00978-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
140
|
Laureanti EJG, Paiva TS, Souza Tasso I, Dallabona ID, Helm CV, Matos Jorge LM, Jorge RMM. Development of active cassava starch films reinforced with waste from industrial wine production and enriched with pink pepper extract. J Appl Polym Sci 2021. [DOI: 10.1002/app.50922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Emanuele Joana Gbur Laureanti
- Department of Chemical Engineering, Graduate Program in Chemical Engineering Federal University of Paraná Curitiba Brazil
| | - Thainnane Silva Paiva
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | - Ivisson Souza Tasso
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | - Ithiara Dalponte Dallabona
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| | | | - Luiz Mario Matos Jorge
- Department of Chemical Engineering State University of Maringá (UEM) Maringá Paraná Brazil
| | - Regina Maria Matos Jorge
- Department of Chemical Engineering, Graduate Program in Chemical Engineering Federal University of Paraná Curitiba Brazil
- Department of Chemical Engineering, Graduate Program in Food Engineering Federal University of Paraná Curitiba Brazil
| |
Collapse
|
141
|
Santos FH, Siqueira LE, Cardoso GP, Molina G, Pelissari FM. Antioxidant packaging development and optimization using agroindustrial wastes. J Appl Polym Sci 2021. [DOI: 10.1002/app.50887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fabiana Helen Santos
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Luana Elisa Siqueira
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Giselle Pereira Cardoso
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Gustavo Molina
- Laboratory of Food Biotechnology, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| | - Franciele Maria Pelissari
- Laboratory of Green Materials, Institute of Science and Technology Federal University of Jequitinhonha and Mucuri Valleys Diamantina Brazil
| |
Collapse
|
142
|
Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods 2021; 10:foods10092181. [PMID: 34574290 PMCID: PMC8467936 DOI: 10.3390/foods10092181] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
The accumulation of high amounts of petro-based plastics is a growing environmental devastation issue, leading to the urgent need to innovate eco-safe packaging materials at an equivalent cost to save the environment. Among different substitutes, starch-based types and their blends with biopolymers are considered an innovative and smart material alternative for petrol-based polymers because of their abundance, low cost, biodegradability, high biocompatibility, and better-quality film-forming and improved mechanical characteristics. Furthermore, starch is a valuable, sustainable food packaging material. The rising and growing importance of designing starch-based films from various sources for sustainable food packaging purposes is ongoing research. Research on "starch food packaging" is still at the beginning, based on the few studies published in the last decade in Web of Science. Additionally, the functionality of starch-based biodegradable substances is technically a challenge. It can be improved by starch modification, blending starch with other biopolymers or additives, and using novel preparation techniques. Starch-based films have been applied to packaging various foods, such as fruits and vegetables, bakery goods, and meat, indicating good prospects for commercial utilization. The current review will give a critical snapshot of starch-based films' properties and potential applicability in the sustainable smart (active and intelligent) new packaging concepts and discuss new challenges and opportunities for starch bio composites.
Collapse
|
143
|
Wen Y, Liu J, Jiang L, Zhu Z, He S, He S, Shao W. Development of intelligent/active food packaging film based on TEMPO-oxidized bacterial cellulose containing thymol and anthocyanin-rich purple potato extract for shelf life extension of shrimp. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100709] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
144
|
Qin Y, Yun D, Xu F, Li C, Chen D, Liu J. Impact of storage conditions on the structure and functionality of starch/polyvinyl alcohol films containing Lycium ruthenicum anthocyanins. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
145
|
Sohany M, Tawakkal ISMA, Ariffin SH, Shah NNAK, Yusof YA. Characterization of Anthocyanin Associated Purple Sweet Potato Starch and Peel-Based pH Indicator Films. Foods 2021; 10:2005. [PMID: 34574115 PMCID: PMC8465675 DOI: 10.3390/foods10092005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
In food packaging, smart indicator films based on natural resources have greatly attracted researchers to minimize the environmental issues as well as to satisfy consumer preferences for food safety. In this research, pH-sensitive films were prepared using purple-fleshed sweet potato starch (SPS) and sweet potato peel (SPP). Two categories of the film (i) SPS and (ii) SPS/SPP, were fabricated via solvent casting technique, incorporating different concentrations of commercial purple sweet potato anthocyanin (CA) at 0%, 1%, 1.5%, and 2% (w/v) and the physicochemical, mechanical, thermal, and morphological properties of the films were investigated. The thickness, water solubility, and swelling degree of the films increased with the increment of CA, whereas there were no significant changes in the water content (WC) of the films. Water vapor permeability (WVP) was decreased for SPS films while statistically similar for SPS/SPP films. The addition of CA reduced the tensile strength (TS) and tensile modulus (TM) yet increased the elongation at break (EaB) of the films as compared to films without CA. The FTIR results confirmed the immobilization of anthocyanin into the film. In SEM images, roughness in the surfaces of the CA-associated films was observed. A reduction of thermal stability was found for the films with anthocyanin except for the SPS/SPP CA 2% film. Furthermore, the CA-associated films showed a remarkable color response when subjected to pH buffers (pH 1 to 12) and successfully monitored chicken freshness. The fastest color migration was observed in acidic conditions when the films were immersed into aqueous, acidic, low fat, and fatty food simulants. The findings of this work demonstrated that the developed pH indicator films have the potential to be implemented as smart packaging to monitor food freshness and quality for safe consumption.
Collapse
Affiliation(s)
- Mouluda Sohany
- Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia; (M.S.); (S.H.A.); (N.N.A.K.S.); (Y.A.Y.)
- Department of Food Engineering and Technology, Faculty of Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Intan Syafinaz Mohamed Amin Tawakkal
- Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia; (M.S.); (S.H.A.); (N.N.A.K.S.); (Y.A.Y.)
- Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Siti Hajar Ariffin
- Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia; (M.S.); (S.H.A.); (N.N.A.K.S.); (Y.A.Y.)
- Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nor Nadiah Abdul Karim Shah
- Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia; (M.S.); (S.H.A.); (N.N.A.K.S.); (Y.A.Y.)
- Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia; (M.S.); (S.H.A.); (N.N.A.K.S.); (Y.A.Y.)
- Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
146
|
Luo Q, Hossen A, Sameen DE, Ahmed S, Dai J, Li S, Qin W, Liu Y. Recent advances in the fabrication of pH-sensitive indicators films and their application for food quality evaluation. Crit Rev Food Sci Nutr 2021; 63:1102-1118. [PMID: 34382866 DOI: 10.1080/10408398.2021.1959296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Over a few decades, anthocyanin (ACN)-based colorimetric indicators in intelligent packaging systems have been widely used to monitor the freshness or spoilage of perishable food products. Most of the perishable food products are highly susceptible to enzymatic/microbial spoilage and produce several volatile or nonvolatile organic acid and nitrogenous compounds. As a result, the natural pH of fresh foods significantly changes. Fabrication of CAN-based colorimetric indicators in intelligent packaging systems is an advanced technique that monitors the freshness or spoilage of perishable foods based on the display of color variations at varying pH values. This study focuses on the advancement of pH-sensitive indicators and extraction of colorimetric indicators from commercially available natural sources. Moreover, the fabrication techniques and widespread industrial applications of such indicators have also been discussed. In addition, readers will get information about the color-changing and antioxidant mechanisms of ACN-based indicator films in food packaging.
Collapse
Affiliation(s)
- Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
147
|
Zhao Y, Li B, Li C, Xu Y, Luo Y, Liang D, Huang C. Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach. Foods 2021; 10:1845. [PMID: 34441621 PMCID: PMC8392450 DOI: 10.3390/foods10081845] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
Edible packaging is a sustainable product and technology that uses one kind of "food" (an edible material) to package another kind of food (a packaged product), and organically integrates food with packaging through ingenious material design. Polysaccharides are a reliable source of edible packaging materials with excellent renewable, biodegradable, and biocompatible properties, as well as antioxidant and antimicrobial activities. Using polysaccharide-based materials effectively reduces the dependence on petroleum resources, decreases the carbon footprint of the "product-packaging" system, and provides a "zero-emission" scheme. To date, they have been commercialized and developed rapidly in the food (e.g., fruits and vegetables, meat, nuts, confectioneries, and delicatessens, etc.) packaging industry. However, compared with petroleum-based polymers and plastics, polysaccharides still have limitations in film-forming, mechanical, barrier, and protective properties. Therefore, they need to be improved by reasonable material modifications (chemical or physical modification). This article comprehensively reviews recent research advances, hot issues, and trends of polysaccharide-based materials in edible packaging. Emphasis is given to fundamental compositions and properties, functional modifications, food-packaging applications, and safety risk assessment of polysaccharides (including cellulose, hemicellulose, starch, chitosan, and polysaccharide gums). Therefore, to provide a reference for the development of modern edible packaging.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Bo Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Cuicui Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Yangfan Xu
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Yi Luo
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Dongwu Liang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
148
|
Zhu B, Lu W, Qin Y, Cheng G, Yuan M, Li L. An intelligent pH indicator film based on cassava starch/polyvinyl alcohol incorporating anthocyanin extracts for monitoring pork freshness. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bifen Zhu
- Institute of Agriculture and Food Engineering Kunming University of Science and Technology Kunming China
| | - Wangwei Lu
- Institute of Agriculture and Food Engineering Kunming University of Science and Technology Kunming China
| | - Yuyue Qin
- Institute of Agriculture and Food Engineering Kunming University of Science and Technology Kunming China
| | - Guiguang Cheng
- Institute of Agriculture and Food Engineering Kunming University of Science and Technology Kunming China
| | - Minglong Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan Yunnan Nationalities University Kunming China
| | - Lin Li
- School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan China
| |
Collapse
|
149
|
Claudia Leites L, Julia Menegotto Frick P, Isabel Cristina T. Influence of the incorporation form of waste from the production of orange juice in the properties of cassava starch-based films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
150
|
Bayram B, Ozkan G, Kostka T, Capanoglu E, Esatbeyoglu T. Valorization and Application of Fruit and Vegetable Wastes and By-Products for Food Packaging Materials. Molecules 2021; 26:4031. [PMID: 34279371 PMCID: PMC8271709 DOI: 10.3390/molecules26134031] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
The important roles of food packaging are food protection and preservation during processing, transportation, and storage. Food can be altered biologically, chemically, and physically if the packaging is unsuitable or mechanically damaged. Furthermore, packaging is an important marketing and communication tool to consumers. Due to the worldwide problem of environmental pollution by microplastics and the large amounts of unused food wastes and by-products from the food industry, it is important to find more environmentally friendly alternatives. Edible and functional food packaging may be a suitable alternative to reduce food waste and avoid the use of non-degradable plastics. In the present review, the production and assessment of edible food packaging from food waste as well as fruit and vegetable by-products and their applications are demonstrated. Innovative food packaging made of biopolymers and biocomposites, as well as active packaging, intelligent packaging, edible films, and coatings are covered.
Collapse
Affiliation(s)
- Banu Bayram
- Department of Nutrition and Dietetics, University of Health Sciences, Uskudar, 34668 Istanbul, Turkey
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Tina Kostka
- Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| |
Collapse
|