101
|
Teodoro AAM, Silva DH, Saadi M, Okey OD, Rosa RL, Otaibi SA, Rodríguez DZ. An Analysis of Image Features Extracted by CNNs to Design Classification Models for COVID-19 and Non-COVID-19. JOURNAL OF SIGNAL PROCESSING SYSTEMS 2021; 95:101-113. [PMID: 34777680 PMCID: PMC8572648 DOI: 10.1007/s11265-021-01714-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 05/11/2023]
Abstract
The SARS-CoV-2 virus causes a respiratory disease in humans, known as COVID-19. The confirmatory diagnostic of this disease occurs through the real-time reverse transcription and polymerase chain reaction test (RT-qPCR). However, the period of obtaining the results limits the application of the mass test. Thus, chest X-ray computed tomography (CT) images are analyzed to help diagnose the disease. However, during an outbreak of a disease that causes respiratory problems, radiologists may be overwhelmed with analyzing medical images. In the literature, some studies used feature extraction techniques based on CNNs, with classification models to identify COVID-19 and non-COVID-19. This work compare the performance of applying pre-trained CNNs in conjunction with classification methods based on machine learning algorithms. The main objective is to analyze the impact of the features extracted by CNNs, in the construction of models to classify COVID-19 and non-COVID-19. A SARS-CoV-2 CT data-set is used in experimental tests. The CNNs implemented are visual geometry group (VGG-16 and VGG-19), inception V3 (IV3), and EfficientNet-B0 (EB0). The classification methods were k-nearest neighbor (KNN), support vector machine (SVM), and explainable deep neural networks (xDNN). In the experiments, the best results were obtained by the EfficientNet model used to extract data and the SVM with an RBF kernel. This approach achieved an average performance of 0.9856 in the precision macro, 0.9853 in the sensitivity macro, 0.9853 in the specificity macro, and 0.9853 in the F1 score macro.
Collapse
Affiliation(s)
- Arthur A M Teodoro
- Department of Computer Science, Federal University of Lavras, Lavras, MG Brazil
| | - Douglas H Silva
- Department of Computer Science, Federal University of Lavras, Lavras, MG Brazil
| | - Muhammad Saadi
- Department of Electrical Engineering, University of Central Punjab, Lahore, 54000 Pakistan
| | - Ogobuchi D Okey
- Department of Systems Engineering and Automation, Federal University of Lavras, Lavras, MG Brazil
| | - Renata L Rosa
- Department of Computer Science, Federal University of Lavras, Lavras, MG Brazil
| | - Sattam Al Otaibi
- Department of Electrical Engineering, College of Engineering, Taif University, Taif, 21944 Saudi Arabia
| | | |
Collapse
|
102
|
Kong L, Cheng J. Based on improved deep convolutional neural network model pneumonia image classification. PLoS One 2021; 16:e0258804. [PMID: 34735483 PMCID: PMC8568342 DOI: 10.1371/journal.pone.0258804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022] Open
Abstract
Pneumonia remains the leading infectious cause of death in children under the age of five, killing about 700,000 children each year and affecting 7% of the world's population. X-ray images of lung become the key to the diagnosis of this disease, skilled doctors in the diagnosis of a certain degree of subjectivity, if the use of computer-aided medical diagnosis to automatically detect lung abnormalities, will improve the accuracy of diagnosis. This research aims to introduce a deep learning technology based on the combination of Xception neural network and long-term short-term memory (LSTM), which can realize automatic diagnosis of patients with pneumonia in X-ray images. First, the model uses the Xception network to extract the deep features of the data, passes the extracted features to the LSTM, and then the LSTM detects the extracted features, and finally selects the most needed features. Secondly, in the training set samples, the traditional cross-entropy loss cannot more balance the mismatch between categories. Therefore, this research combines Pearson's feature selection ideas, fusion of the correlation between the two loss functions, and optimizes the problem. The experimental results show that the accuracy rate of this paper is 96%, the receiver operator characteristic curve accuracy rate is 99%, the precision rate is 98%, the recall rate is 91%, and the F1 score accuracy rate is 94%. Compared with the existing technical methods, the research has achieved expected results on the currently available datasets. And assist doctors to provide higher reliability in the classification task of childhood pneumonia.
Collapse
Affiliation(s)
- Lingzhi Kong
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jinyong Cheng
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
103
|
Cao Z, Mu C, Ying H, Wu J. Full Scale Attention for Automated COVID-19 Diagnosis from CT Images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3213-3216. [PMID: 34891925 DOI: 10.1109/embc46164.2021.9630536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The wide spread of coronavirus pneumonia (COVID-19) has been a severe threat to global health since 2019. Apart from the nucleic acid detection, medical imaging examination is a vital diagnostic modality to confirm and treat the disease. Thus, implementing the automatic diagnosis of the COVID-19 bears particular significance. However, the limitations of data quality and size strongly hinder the clas-sification and segmentation performance and it also result in high misdiagnosis rate. To this end, we propose a novel full scale attention mechanism (FUSA) to capture more contextual dependencies of features, which enables the model easier to classify positive cases and improve the sensitivity. Specifically, FUSA parallelly extracts the information of channel domain and spatial domain, and fuses them together. The experimental study shows FUSA can significantly improve the COVID-19 automated diagnosis performance and eliminate false negative cases compared with other state-of-the-art ones.
Collapse
|
104
|
Suri JS, Agarwal S, Elavarthi P, Pathak R, Ketireddy V, Columbu M, Saba L, Gupta SK, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Ferenc N, Ruzsa Z, Gupta A, Naidu S, Kalra MK. Inter-Variability Study of COVLIAS 1.0: Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography. Diagnostics (Basel) 2021; 11:2025. [PMID: 34829372 PMCID: PMC8625039 DOI: 10.3390/diagnostics11112025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: For COVID-19 lung severity, segmentation of lungs on computed tomography (CT) is the first crucial step. Current deep learning (DL)-based Artificial Intelligence (AI) models have a bias in the training stage of segmentation because only one set of ground truth (GT) annotations are evaluated. We propose a robust and stable inter-variability analysis of CT lung segmentation in COVID-19 to avoid the effect of bias. Methodology: The proposed inter-variability study consists of two GT tracers for lung segmentation on chest CT. Three AI models, PSP Net, VGG-SegNet, and ResNet-SegNet, were trained using GT annotations. We hypothesized that if AI models are trained on the GT tracings from multiple experience levels, and if the AI performance on the test data between these AI models is within the 5% range, one can consider such an AI model robust and unbiased. The K5 protocol (training to testing: 80%:20%) was adapted. Ten kinds of metrics were used for performance evaluation. Results: The database consisted of 5000 CT chest images from 72 COVID-19-infected patients. By computing the coefficient of correlations (CC) between the output of the two AI models trained corresponding to the two GT tracers, computing their differences in their CC, and repeating the process for all three AI-models, we show the differences as 0%, 0.51%, and 2.04% (all < 5%), thereby validating the hypothesis. The performance was comparable; however, it had the following order: ResNet-SegNet > PSP Net > VGG-SegNet. Conclusions: The AI models were clinically robust and stable during the inter-variability analysis on the CT lung segmentation on COVID-19 patients.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA; (S.A.); (P.E.)
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA; (S.A.); (P.E.)
- Department of Computer Science Engineering, PSIT, Kanpur 209305, India
| | - Pranav Elavarthi
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA; (S.A.); (P.E.)
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| | - Rajesh Pathak
- Department of Computer Science Engineering, Rawatpura Sarkar University, Raipur 492001, India;
| | | | - Marta Columbu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Suneet K. Gupta
- Department of Computer Science, Bennett University, Noida 201310, India;
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 10558 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 10015 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National & Kapodistrian University of Athens, 10679 Athens, Greece;
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 54636 Thessaloniki, Greece;
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PT, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2368, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- AtheroPoint LLC, Roseville, CA 95611, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Nagy Ferenc
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Zoltan Invasive Cardiology Division, University of Szeged, 6725 Szeged, Hungary;
| | - Archna Gupta
- Radiology Department, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| |
Collapse
|
105
|
Chakraborty S, Paul S, Hasan KMA. A Transfer Learning-Based Approach with Deep CNN for COVID-19- and Pneumonia-Affected Chest X-ray Image Classification. SN COMPUTER SCIENCE 2021; 3:17. [PMID: 34723208 PMCID: PMC8547126 DOI: 10.1007/s42979-021-00881-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 01/22/2023]
Abstract
The COVID-19 pandemic creates a significant impact on everyone's life. One of the fundamental movements to cope with this challenge is identifying the COVID-19-affected patients as early as possible. In this paper, we classified COVID-19, Pneumonia, and Healthy cases from the chest X-ray images by applying the transfer learning approach on the pre-trained VGG-19 architecture. We use MongoDB as a database to store the original image and corresponding category. The analysis is performed on a public dataset of 3797 X-ray images, among them COVID-19 affected (1184 images), Pneumonia affected (1294 images), and Healthy (1319 images) (https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/version/3). This research gained an accuracy of 97.11%, average precision of 97%, and average Recall of 97% on the test dataset.
Collapse
Affiliation(s)
- Soarov Chakraborty
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna, 9203 Bangladesh
| | - Shourav Paul
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna, 9203 Bangladesh
| | - K. M. Azharul Hasan
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna, 9203 Bangladesh
| |
Collapse
|
106
|
A L A, S AH, S S VC. COVID-19 diagnosis and severity detection from CT-images using transfer learning and back propagation neural network. J Infect Public Health 2021; 14:1435-1445. [PMID: 34362695 PMCID: PMC8319091 DOI: 10.1016/j.jiph.2021.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND COVID-19 diagnosis in symptomatic patients is an important factor for arranging the necessary lifesaving facilities like ICU care and ventilator support. For this purpose, we designed a computer-aided diagnosis and severity detection method by using transfer learning and a back propagation neural network. METHOD To increase the learning capability, we used data augmentation. Most of the previously done works in this area concentrate on private datasets, but we used two publicly available datasets. The first section diagnose COVID-19 from the input CT image using the transfer learning of the pre-trained network ResNet-50. We used ResNet-50 and DenseNet-201 pre-trained networks for feature extraction and trained a back propagation neural network to classify it into High, Medium, and Low severity. RESULTS The proposed method for COVID-19 diagnosis gave an accuracy of 98.5% compared with the state-of-the-art methods. The experimental evaluation shows that combining the ResNet-50 and DenseNet-201 features gave more accurate results with the test data. The proposed system for COVID-19 severity detection gave better average classification accuracy of 97.84% compared with the state-of-the-art methods. This enables medical practitioners to identify the resources and treatment plans correctly. CONCLUSIONS This work is useful in the medical field as a first-line severity risk detection that is helpful for medical personnel to plan patient care and assess the need for ICU facilities and ventilator support. A computer-aided system that is helpful to make a care plan for the huge amount of patient inflow each day is sure to be an asset in these turbulent times.
Collapse
Affiliation(s)
- Aswathy A L
- Department of Computer Science, University of Kerala, Trivandum, India.
| | - Anand Hareendran S
- Department of Computer Science and Engineering, Muthoot Institute of Technology and Science, Kochi, India.
| | - Vinod Chandra S S
- Department of Computer Science, University of Kerala, Trivandum, India.
| |
Collapse
|
107
|
Murugan R, Goel T, Mirjalili S, Chakrabartty DK. WOANet: Whale optimized deep neural network for the classification of COVID-19 from radiography images. Biocybern Biomed Eng 2021; 41:1702-1718. [PMID: 34720309 PMCID: PMC8536521 DOI: 10.1016/j.bbe.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Coronavirus Diseases (COVID-19) is a new disease that will be declared a global pandemic in 2020. It is characterized by a constellation of traits like fever, dry cough, dyspnea, fatigue, chest pain, etc. Clinical findings have shown that the human chest Computed Tomography(CT) images can diagnose lung infection in most COVID-19 patients. Visual changes in CT scan due to COVID-19 is subjective and evaluated by radiologists for diagnosis purpose. Deep Learning (DL) can provide an automatic diagnosis tool to relieve radiologists' burden for quantitative analysis of CT scan images in patients. However, DL techniques face different training problems like mode collapse and instability. Deciding on training hyper-parameters to adjust the weight and biases of DL by a given CT image dataset is crucial for achieving the best accuracy. This paper combines the backpropagation algorithm and Whale Optimization Algorithm (WOA) to optimize such DL networks. Experimental results for the diagnosis of COVID-19 patients from a comprehensive COVID-CT scan dataset show the best performance compared to other recent methods. The proposed network architecture results were validated with the existing pre-trained network to prove the efficiency of the network.
Collapse
Affiliation(s)
- R Murugan
- Bio-Medical Imaging Laboratory(BIOMIL), Department of Electronics and communication Engineering, National Institute Of Technology Silchar, Assam 788010, India
| | - Tripti Goel
- Bio-Medical Imaging Laboratory(BIOMIL), Department of Electronics and communication Engineering, National Institute Of Technology Silchar, Assam 788010, India
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006, Australia
- Yonsei Frontier Lab, Yonsei University, Seoul, South Korea
| | | |
Collapse
|
108
|
Lahsaini I, El Habib Daho M, Chikh MA. Deep transfer learning based classification model for covid-19 using chest CT-scans. Pattern Recognit Lett 2021; 152:122-128. [PMID: 34566222 PMCID: PMC8455169 DOI: 10.1016/j.patrec.2021.08.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/10/2021] [Accepted: 08/22/2021] [Indexed: 12/14/2022]
Abstract
COVID-19 is an infectious and contagious virus. As of this writing, more than 160 million people have been infected since its emergence, including more than 125,000 in Algeria. In this work, We first collected a dataset of 4986 COVID and non-COVID images confirmed by RT-PCR tests at Tlemcen hospital in Algeria. Then we performed a transfer learning on deep learning models that got the best results on the ImageNet dataset, such as DenseNet121, DenseNet201, VGG16, VGG19, Inception Resnet-V2, and Xception, in order to conduct a comparative study. Therefore, We have proposed an explainable model based on the DenseNet201 architecture and the GradCam explanation algorithm to detect COVID-19 in chest CT images and explain the output decision. Experiments have shown promising results and proven that the introduced model can be beneficial for diagnosing and following up patients with COVID-19.
Collapse
Affiliation(s)
- Ilyas Lahsaini
- Biomedical Engineering Laboratory, Faculty of Technology, University of Tlemcen, Tlemcen, 13000, Algeria
| | - Mostafa El Habib Daho
- Biomedical Engineering Laboratory, Faculty of Technology, University of Tlemcen, Tlemcen, 13000, Algeria
| | - Mohamed Amine Chikh
- Biomedical Engineering Laboratory, Faculty of Technology, University of Tlemcen, Tlemcen, 13000, Algeria
| |
Collapse
|
109
|
GÜNGÖR S, KAYA M, ALHAJJ R. Renklendirilmiş BT Görüntülerinden Covid-19 Tespiti İçin Derin Öğrenmeye Dayalı Bir Yöntem. COMPUTER SCIENCE 2021. [DOI: 10.53070/bbd.990750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
110
|
Shakarami A, Menhaj MB, Tarrah H. Diagnosing COVID-19 disease using an efficient CAD system. OPTIK 2021; 241:167199. [PMID: 34028466 PMCID: PMC8130607 DOI: 10.1016/j.ijleo.2021.167199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 05/28/2023]
Abstract
Todays, COVID-19 has caused much death and its spreading speed is increasing, regarding virus mutation. This outbreak warns diagnosing infected people is an important issue. So, in this research, a computer-aided diagnosis (CAD) system called COV-CAD is proposed for diagnosing COVID-19 disease. This COV-CAD system is created by a feature extractor, a classification method, and a content-based imaged retrieval (CBIR) system. The proposed feature extractor is created by using the modified AlexNet CNN. The first modification changes ReLU activation functions to LeakyReLU for increasing efficiency. The second change is converting a fully connected (FC) layer of AlexNet CNN with a new FC, which results in reducing learnable parameters and training time. Another FC layer with dimensions 1 × 64 is added at the end of the feature extractor as the feature vector. In the classification section, a new classification method is defined in which the majority voting technique is applied on outputs of CBIR, SVM, KNN, and Random Forest for final diagnosing. Furthermore, in retrieval section, the proposed method uses CBIR because of its ability to retrieve the most similar images to the image of a patient. Since this feature helps physicians to find the most similar cases, they could conduct further statistical evaluations on profiles of similar patients. The system has been evaluated by accuracy, sensitivity, specificity, F1-score, and mean average precision and its accuracy for CT and X-ray datasets is 93.20% and 99.38%, respectively. The results demonstrate that the proposed method is more efficient than other similar studies.
Collapse
Affiliation(s)
- Ashkan Shakarami
- Department of Computer Engineering, Afarinesh Institute of Higher Education, Borujerd, Iran
| | - Mohammad Bagher Menhaj
- Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hadis Tarrah
- Department of Electrical, Computer and Biomedical Engineering, Islamic Azad University, Qazvin, Iran
| |
Collapse
|
111
|
Song X, Li H, Gao W, Chen Y, Wang T, Ma G, Lei B. Augmented Multicenter Graph Convolutional Network for COVID-19 Diagnosis. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2021; 17:6499-6509. [PMID: 37981914 PMCID: PMC8545009 DOI: 10.1109/tii.2021.3056686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/05/2020] [Accepted: 01/24/2021] [Indexed: 08/14/2023]
Abstract
Chest computed tomography (CT) scans of coronavirus 2019 (COVID-19) disease usually come from multiple datasets gathered from different medical centers, and these images are sampled using different acquisition protocols. While integrating multicenter datasets increases sample size, it suffers from inter-center heterogeneity. To address this issue, we propose an augmented multicenter graph convolutional network (AM-GCN) to diagnose COVID-19 with steps as follows. First, we use a 3-D convolutional neural network to extract features from the initial CT scans, where a ghost module and a multitask framework are integrated to improve the network's performance. Second, we exploit the extracted features to construct a multicenter graph, which considers the intercenter heterogeneity and the disease status of training samples. Third, we propose an augmentation mechanism to augment training samples which forms an augmented multicenter graph. Finally, the diagnosis results are obtained by inputting the augmented multi-center graph into GCN. Based on 2223 COVID-19 subjects and 2221 normal controls from seven medical centers, our method has achieved a mean accuracy of 97.76%. The code for our model is made publicly.1.
Collapse
Affiliation(s)
- Xuegang Song
- Health Science Center, School of Biomedical EngineeringShenzhen UniversityShenzhen518060China
| | - Haimei Li
- Department of RadiologyFuxing Hospital affiliated to Capital Medical UniversityBeijing100038China
| | - Wenwen Gao
- Department of RadiologyChina-Japan Friendship HospitalBeijing100029China
| | - Yue Chen
- Department of RadiologyChina-Japan Friendship HospitalBeijing100029China
| | - Tianfu Wang
- Health Science Center, School of Biomedical EngineeringShenzhen UniversityShenzhen518060China
| | - Guolin Ma
- Department of RadiologyChina-Japan Friendship HospitalBeijing100029China
| | - Baiying Lei
- Health Science Center, School of Biomedical EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
112
|
Hasan MK, Jawad MT, Hasan KNI, Partha SB, Masba MMA, Saha S, Moni MA. COVID-19 identification from volumetric chest CT scans using a progressively resized 3D-CNN incorporating segmentation, augmentation, and class-rebalancing. INFORMATICS IN MEDICINE UNLOCKED 2021; 26:100709. [PMID: 34642640 PMCID: PMC8494187 DOI: 10.1016/j.imu.2021.100709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
The novel COVID-19 is a global pandemic disease overgrowing worldwide. Computer-aided screening tools with greater sensitivity are imperative for disease diagnosis and prognosis as early as possible. It also can be a helpful tool in triage for testing and clinical supervision of COVID-19 patients. However, designing such an automated tool from non-invasive radiographic images is challenging as many manually annotated datasets are not publicly available yet, which is the essential core requirement of supervised learning schemes. This article proposes a 3D Convolutional Neural Network (CNN)-based classification approach considering both the inter-and intra-slice spatial voxel information. The proposed system is trained end-to-end on the 3D patches from the whole volumetric Computed Tomography (CT) images to enlarge the number of training samples, performing the ablation studies on patch size determination. We integrate progressive resizing, segmentation, augmentations, and class-rebalancing into our 3D network. The segmentation is a critical prerequisite step for COVID-19 diagnosis enabling the classifier to learn prominent lung features while excluding the outer lung regions of the CT scans. We evaluate all the extensive experiments on a publicly available dataset named MosMed, having binary- and multi-class chest CT image partitions. Our experimental results are very encouraging, yielding areas under the Receiver Operating Characteristics (ROC) curve of 0 . 914 ± 0 . 049 and 0 . 893 ± 0 . 035 for the binary- and multi-class tasks, respectively, applying 5-fold cross-validations. Our method's promising results delegate it as a favorable aiding tool for clinical practitioners and radiologists to assess COVID-19.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | - Md Tasnim Jawad
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | - Kazi Nasim Imtiaz Hasan
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | - Sajal Basak Partha
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | - Md Masum Al Masba
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | - Shumit Saha
- Department of Electronics and Communication Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | - Mohammad Ali Moni
- Department of Computer Science & Engineering, Pabna University of Science and Technology, Pabna-6600, Bangladesh
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
113
|
Shekhar S, Garg H, Agrawal R, Shivani S, Sharma B. Hatred and trolling detection transliteration framework using hierarchical LSTM in code-mixed social media text. COMPLEX INTELL SYST 2021. [DOI: 10.1007/s40747-021-00487-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractThe paper describes the usage of self-learning Hierarchical LSTM technique for classifying hatred and trolling contents in social media code-mixed data. The Hierarchical LSTM-based learning is a novel learning architecture inspired from the neural learning models. The proposed HLSTM model is trained to identify the hatred and trolling words available in social media contents. The proposed HLSTM systems model is equipped with self-learning and predicting mechanism for annotating hatred words in transliteration domain. The Hindi–English data are ordered into Hindi, English, and hatred labels for classification. The mechanism of word embedding and character-embedding features are used here for word representation in the sentence to detect hatred words. The method developed based on HLSTM model helps in recognizing the hatred word context by mining the intention of the user for using that word in the sentence. Wide experiments suggests that the HLSTM-based classification model gives the accuracy of 97.49% when evaluated against the standard parameters like BLSTM, CRF, LR, SVM, Random Forest and Decision Tree models especially when there are some hatred and trolling words in the social media data.
Collapse
|
114
|
Turkoglu M. COVID-19 Detection System Using Chest CT Images and Multiple Kernels-Extreme Learning Machine Based on Deep Neural Network. Ing Rech Biomed 2021; 42:207-214. [PMID: 33527035 PMCID: PMC7839628 DOI: 10.1016/j.irbm.2021.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Coronavirus disease is a fatal epidemic that has originated in Wuhan, China in December 2019. This disease is diagnosed using radiological images taken with the help of basic scanning methods besides the test kits for Reverse Transcription Polymerase Chain Reaction (RT-PCR). Automatic analysis of chest Computed Tomography (CT) images that are based on image processing technology plays an important role in combating this infectious disease. MATERIAL AND METHODS In this paper, a new Multiple Kernels-ELM-based Deep Neural Network (MKs-ELM-DNN) method is proposed for the detection of novel coronavirus disease - also known as COVID-19, through chest CT scanning images. In the model proposed, deep features are extracted from CT scan images using a Convolutional Neural Network (CNN). For this purpose, pre-trained CNN-based DenseNet201 architecture, which is based on the transfer learning approach is used. Extreme Learning Machine (ELM) classifier based on different activation methods is used to calculate the architecture's performance. Lastly, the final class label is determined using the majority voting method for prediction of the results obtained from each architecture based on ReLU-ELM, PReLU-ELM, and TanhReLU-ELM. RESULTS In experimental works, a public dataset containing COVID-19 and Non-COVID-19 classes was used to verify the validity of the MKs-ELM-DNN model proposed. According to the results obtained, the accuracy score was obtained as 98.36% using the MKs-ELM-DNN model. The results have demonstrated that, when compared, the MKs-ELM-DNN model proposed is proven to be more successful than the state-of-the-art algorithms and previous studies. CONCLUSION This study shows that the proposed Multiple Kernels-ELM-based Deep Neural Network model can effectively contribute to the identification of COVID-19 disease.
Collapse
Affiliation(s)
- M Turkoglu
- Computer Engineering Department, Engineering Faculty, Bingol University, 12000, Bingol, Turkey
| |
Collapse
|
115
|
Akyol K, Şen B. Automatic Detection of Covid-19 with Bidirectional LSTM Network Using Deep Features Extracted from Chest X-ray Images. Interdiscip Sci 2021; 14:89-100. [PMID: 34313974 PMCID: PMC8313418 DOI: 10.1007/s12539-021-00463-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022]
Abstract
Coronavirus disease, which comes up in China at the end of 2019 and showed different symptoms in people infected, affected millions of people. Computer-aided expert systems are needed due to the inadequacy of the reverse transcription-polymerase chain reaction kit, which is widely used in the diagnosis of this disease. Undoubtedly, expert systems that provide effective solutions to many problems will be very useful in the detection of Covid-19 disease, especially when unskilled personnel and financial deficiencies in underdeveloped countries are taken into consideration. In the literature, there are numerous machine learning approaches built with different classifiers in the detection of this disease. This paper proposes an approach based on deep learning which detects Covid-19 and no-finding cases using chest X-ray images. Here, the classification performance of the Bi-LSTM network on the deep features was compared with the Deep Neural Network within the frame of the fivefold cross-validation technique. Accuracy, sensitivity, specificity and precision metrics were used to evaluate the classification performance of the trained models. Bi-LSTM network presented better performance compare to DNN with 97.6% value of high accuracy despite the few numbers of Covid-19 images in the dataset. In addition, it is understood that concatenated deep features more meaningful than deep features obtained with pre-trained networks by one by, as well. Consequently, it is thought that the proposed study based on the Bi-LSTM network and concatenated deep features will be noteworthy in the design of highly sensitive automated Covid-19 monitoring systems.
Collapse
Affiliation(s)
- Kemal Akyol
- Department of Computer Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey.
| | - Baha Şen
- Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
116
|
Hasan N, Bao Y, Shawon A, Huang Y. DenseNet Convolutional Neural Networks Application for Predicting COVID-19 Using CT Image. SN COMPUTER SCIENCE 2021; 2:389. [PMID: 34337432 PMCID: PMC8300985 DOI: 10.1007/s42979-021-00782-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/17/2021] [Indexed: 01/12/2023]
Abstract
Recently, the destructive impact of Coronavirus 2019, commonly known as COVID-19, has affected public health and human lives. This catastrophic effect disrupted human experience by introducing an exponentially more damaging unpredictable health crisis since the Second World War (Kursumovic et al. in Anaesthesia 75: 989-992, 2020). Strong communicable characteristics of COVID-19 within human communities make the world's crisis a severe pandemic. Due to the unavailable vaccine of COVID-19 to control rather than cure, early and accurate detection of the virus can be a promising technique for tracking and preventing the infection from spreading (e.g., by isolating the patients). This situation indicates improving the auxiliary COVID-19 detection technique. Computed tomography (CT) imaging is a widely used technique for pneumonia because of its expected availability. The artificial intelligence-aided images analysis might be a promising alternative for identifying COVID-19. This paper presents a promising technique of predicting COVID-19 patients from the CT image using convolutional neural networks (CNN). The novel approach is based on the most recent modified CNN architecture (DenseNet-121) to predict COVID-19. The results outperformed 92% accuracy, with a 95% recall showing acceptable performance for the prediction of COVID-19.
Collapse
Affiliation(s)
- Najmul Hasan
- Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Yukun Bao
- Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | | | - Yanmei Huang
- Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu, 338029 People’s Republic of China
| |
Collapse
|
117
|
Yasar H, Ceylan M. Deep Learning-Based Approaches to Improve Classification Parameters for Diagnosing COVID-19 from CT Images. Cognit Comput 2021:1-28. [PMID: 34306240 PMCID: PMC8280590 DOI: 10.1007/s12559-021-09915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/07/2021] [Indexed: 11/10/2022]
Abstract
Patients infected with the COVID-19 virus develop severe pneumonia, which generally leads to death. Radiological evidence has demonstrated that the disease causes interstitial involvement in the lungs and lung opacities, as well as bilateral ground-glass opacities and patchy opacities. In this study, new pipeline suggestions are presented, and their performance is tested to decrease the number of false-negative (FN), false-positive (FP), and total misclassified images (FN + FP) in the diagnosis of COVID-19 (COVID-19/non-COVID-19 and COVID-19 pneumonia/other pneumonia) from CT lung images. A total of 4320 CT lung images, of which 2554 were related to COVID-19 and 1766 to non-COVID-19, were used for the test procedures in COVID-19 and non-COVID-19 classifications. Similarly, a total of 3801 CT lung images, of which 2554 were related to COVID-19 pneumonia and 1247 to other pneumonia, were used for the test procedures in COVID-19 pneumonia and other pneumonia classifications. A 24-layer convolutional neural network (CNN) architecture was used for the classification processes. Within the scope of this study, the results of two experiments were obtained by using CT lung images with and without local binary pattern (LBP) application, and sub-band images were obtained by applying dual-tree complex wavelet transform (DT-CWT) to these images. Next, new classification results were calculated from these two results by using the five pipeline approaches presented in this study. For COVID-19 and non-COVID-19 classification, the highest sensitivity, specificity, accuracy, F-1, and AUC values obtained without using pipeline approaches were 0.9676, 0.9181, 0.9456, 0.9545, and 0.9890, respectively; using pipeline approaches, the values were 0.9832, 0.9622, 0.9577, 0.9642, and 0.9923, respectively. For COVID-19 pneumonia/other pneumonia classification, the highest sensitivity, specificity, accuracy, F-1, and AUC values obtained without using pipeline approaches were 0.9615, 0.7270, 0.8846, 0.9180, and 0.9370, respectively; using pipeline approaches, the values were 0.9915, 0.8140, 0.9071, 0.9327, and 0.9615, respectively. The results of this study show that classification success can be increased by reducing the time to obtain per-image results through using the proposed pipeline approaches.
Collapse
Affiliation(s)
- Huseyin Yasar
- Ministry of Health of Republic of Turkey, Ankara, Turkey
| | - Murat Ceylan
- Department of Electrical and Electronics Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey
| |
Collapse
|
118
|
Dogan O, Tiwari S, Jabbar MA, Guggari S. A systematic review on AI/ML approaches against COVID-19 outbreak. COMPLEX INTELL SYST 2021; 7:2655-2678. [PMID: 34777970 PMCID: PMC8256231 DOI: 10.1007/s40747-021-00424-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/05/2021] [Indexed: 12/24/2022]
Abstract
A pandemic disease, COVID-19, has caused trouble worldwide by infecting millions of people. The studies that apply artificial intelligence (AI) and machine learning (ML) methods for various purposes against the COVID-19 outbreak have increased because of their significant advantages. Although AI/ML applications provide satisfactory solutions to COVID-19 disease, these solutions can have a wide diversity. This increase in the number of AI/ML studies and diversity in solutions can confuse deciding which AI/ML technique is suitable for which COVID-19 purposes. Because there is no comprehensive review study, this study systematically analyzes and summarizes related studies. A research methodology has been proposed to conduct the systematic literature review for framing the research questions, searching criteria and relevant data extraction. Finally, 264 studies were taken into account after following inclusion and exclusion criteria. This research can be regarded as a key element for epidemic and transmission prediction, diagnosis and detection, and drug/vaccine development. Six research questions are explored with 50 AI/ML approaches in COVID-19, 8 AI/ML methods for patient outcome prediction, 14 AI/ML techniques in disease predictions, along with five AI/ML methods for risk assessment of COVID-19. It also covers AI/ML method in drug development, vaccines for COVID-19, models in COVID-19, datasets and their usage and dataset applications with AI/ML.
Collapse
Affiliation(s)
- Onur Dogan
- Department of Industrial Engineering, Izmir Bakircay University, 35665 Izmir, Turkey
- Research Center for Data Analytics and Spatial Data Modeling (RC-DAS), Izmir Bakircay University, 35665 Izmir, Turkey
| | - Sanju Tiwari
- Department of Computer Science, Universidad Autonoma de Tamaulipas, Ciudad Victoria, Mexico
| | - M. A. Jabbar
- Vardhaman College of Engineering, Kacharam, India
| | | |
Collapse
|
119
|
Pathak Y, Shukla PK, Arya KV. Deep Bidirectional Classification Model for COVID-19 Disease Infected Patients. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1234-1241. [PMID: 32750891 DOI: 10.1109/tcbb.2020.3009859] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In December of 2019, a novel coronavirus (COVID-19) appeared in Wuhan city, China and has been reported in many countries with millions of people infected within only four months. Chest computed Tomography (CT) has proven to be a useful supplement to reverse transcription polymerase chain reaction (RT-PCR) and has been shown to have high sensitivity to diagnose this condition. Therefore, radiological examinations are becoming crucial in early examination of COVID-19 infection. Currently, CT findings have already been suggested as an important evidence for scientific examination of COVID-19 in Hubei, China. However, classification of patient from chest CT images is not an easy task. Therefore, in this paper, a deep bidirectional long short-term memory network with mixture density network (DBM) model is proposed. To tune the hyperparameters of the DBM model, a Memetic Adaptive Differential Evolution (MADE) algorithm is used. Extensive experiments are drawn by considering the benchmark chest-Computed Tomography (chest-CT) images datasets. Comparative analysis reveals that the proposed MADE-DBM model outperforms the competitive COVID-19 classification approaches in terms of various performance metrics. Therefore, the proposed MADE-DBM model can be used in real-time COVID-19 classification systems.
Collapse
|
120
|
Singh VK, Kolekar MH. Deep learning empowered COVID-19 diagnosis using chest CT scan images for collaborative edge-cloud computing platform. MULTIMEDIA TOOLS AND APPLICATIONS 2021; 81:3-30. [PMID: 34220289 PMCID: PMC8236565 DOI: 10.1007/s11042-021-11158-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/01/2021] [Accepted: 06/07/2021] [Indexed: 05/04/2023]
Abstract
The novel coronavirus outbreak has spread worldwide, causing respiratory infections in humans, leading to a huge global pandemic COVID-19. According to World Health Organization, the only way to curb this spread is by increasing the testing and isolating the infected. Meanwhile, the clinical testing currently being followed is not easily accessible and requires much time to give the results. In this scenario, remote diagnostic systems could become a handy solution. Some existing studies leverage the deep learning approach to provide an effective alternative to clinical diagnostic techniques. However, it is difficult to use such complex networks in resource constraint environments. To address this problem, we developed a fine-tuned deep learning model inspired by the architecture of the MobileNet V2 model. Moreover, the developed model is further optimized in terms of its size and complexity to make it compatible with mobile and edge devices. The results of extensive experimentation performed on a real-world dataset consisting of 2482 chest Computerized Tomography scan images strongly suggest the superiority of the developed fine-tuned deep learning model in terms of high accuracy and faster diagnosis time. The proposed model achieved a classification accuracy of 96.40%, with approximately ten times shorter response time than prevailing deep learning models. Further, McNemar's statistical test results also prove the efficacy of the proposed model.
Collapse
Affiliation(s)
- Vipul Kumar Singh
- Department of Electrical Engineering, Indian Institute of Technology, Patna, India
| | | |
Collapse
|
121
|
Zhang J, Yu L, Chen D, Pan W, Shi C, Niu Y, Yao X, Xu X, Cheng Y. Dense GAN and multi-layer attention based lesion segmentation method for COVID-19 CT images. Biomed Signal Process Control 2021; 69:102901. [PMID: 34178095 PMCID: PMC8220920 DOI: 10.1016/j.bspc.2021.102901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 02/01/2023]
Abstract
As the COVID-19 virus spreads around the world, testing and screening of patients have become a headache for governments. With the accumulation of clinical diagnostic data, the imaging big data features of COVID-19 are gradually clear, and CT imaging diagnosis results become more important. To obtain clear lesion information from the CT images of patients' lungs is helpful for doctors to adopt effective medical methods, and at the same time, is helpful to screen the patients with real infection. Deep learning image segmentation is widely used in the field of medical image segmentation. However, there are some challenges in using deep learning to segment the lung lesions of COVID-19 patients. Since image segmentation requires the labeling of lesion information on a pixel by pixel basis, most professional radiologists need to screen and diagnose patients on the front line, and they do not have enough energy to label a large amount of image data. In this paper, an improved Dense GAN to expand data set is developed, and a multi-layer attention mechanism method, combined with U-Net's COVID-19 pulmonary CT image segmentation, is proposed. The experimental results showed that the segmentation method proposed in this paper improved the segmentation accuracy of COVID-19 pulmonary medical CT image by comparing with other image segmentation methods.
Collapse
Affiliation(s)
- Ju Zhang
- Zhijiang College of Zhejiang University of Technology, Shaoxing 312030, China
| | - Lundun Yu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Decheng Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Weidong Pan
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chao Shi
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yan Niu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xinwei Yao
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaobin Xu
- Department of Medical Imaging, Zhejiang Hospital, Hangzhou 310013, China
| | - Yun Cheng
- Department of Medical Imaging, Zhejiang Hospital, Hangzhou 310013, China
| |
Collapse
|
122
|
Uçar E, Atila Ü, Uçar M, Akyol K. Automated detection of Covid-19 disease using deep fused features from chest radiography images. Biomed Signal Process Control 2021; 69:102862. [PMID: 34131433 PMCID: PMC8192891 DOI: 10.1016/j.bspc.2021.102862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
The health systems of many countries are desperate in the face of Covid-19, which has become a pandemic worldwide and caused the death of hundreds of thousands of people. In order to keep Covid-19, which has a very high propagation rate, under control, it is necessary to develop faster, low-cost and highly accurate methods, rather than a costly Polymerase Chain Reaction test that can yield results in a few hours. In this study, a deep learning-based approach that can detect Covid-19 quickly and with high accuracy on X-ray images, which are common in every hospital and can be obtained at low cost, was proposed. Deep features were extracted from X-Ray images in RGB, CIE Lab and RGB CIE color spaces using DenseNet121 and EfficientNet B0 pre-trained deep learning architectures and then obtained features were fed into a two-stage classifier approach. Each of the classifiers in the proposed approach performed binary classification. In the first stage, healthy and infected samples were separated, and in the second stage, infected samples were detected as Covid-19 or pneumonia. In the experiments, Bi-LSTM network and well-known ensemble approaches such as Gradient Boosting, Random Forest and Extreme Gradient Boosting were used as the classifier model and it was seen that the Bi-LSTM network had a superior performance than other classifiers with 92.489% accuracy.
Collapse
Affiliation(s)
- Emine Uçar
- Department of Management Information Systems, Faculty of Business and Management Science, Iskenderun Technical University, Hatay, Turkey
| | - Ümit Atila
- Department of Computer Engineering, Faculty of Engineering, Gazi University, Ankara, Turkey
| | - Murat Uçar
- Department of Management Information Systems, Faculty of Business and Management Science, Iskenderun Technical University, Hatay, Turkey
| | - Kemal Akyol
- Department of Computer Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
123
|
Surianarayanan C, Chelliah PR. Leveraging Artificial Intelligence (AI) Capabilities for COVID-19 Containment. NEW GENERATION COMPUTING 2021; 39:717-741. [PMID: 34131359 PMCID: PMC8191724 DOI: 10.1007/s00354-021-00128-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/05/2021] [Indexed: 05/15/2023]
Abstract
The Coronavirus disease (COVID-19) is an infectious disease caused by the newly discovered Severe Acute Respiratory Syndrome Coronavirus two (SARS-CoV-2). Most of the people do not have the acquired immunity to fight this virus. There is no specific treatment or medicine to cure the disease. The effects of this disease appear to vary from individual to individual, right from mild cough, fever to respiratory disease. It also leads to mortality in many people. As the virus has a very rapid transmission rate, the entire world is in distress. The control and prevention of this disease has evolved as an urgent and critical issue to be addressed through technological solutions. The Healthcare industry therefore needs support from the domain of artificial intelligence (AI). AI has the inherent capability of imitating the human brain and assisting in decision-making support by automatically learning from input data. It can process huge amounts of data quickly without getting tiresome and making errors. AI technologies and tools significantly relieve the burden of healthcare professionals. In this paper, we review the critical role of AI in responding to different research challenges around the COVID-19 crisis. A sample implementation of a powerful probabilistic machine learning (ML) algorithm for assessment of risk levels of individuals is incorporated in this paper. Other pertinent application areas such as surveillance of people and hotspots, mortality prediction, diagnosis, prognostic assistance, drug repurposing and discovery of protein structure, and vaccine are presented. The paper also describes various challenges that are associated with the implementation of AI-based tools and solutions for practical use.
Collapse
Affiliation(s)
- Chellammal Surianarayanan
- Government Arts and Science College (Formerly Bharathidasan University Constituent Arts and Science College), Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu India
| | - Pethuru Raj Chelliah
- Site Reliability Engineering Division, Reliance Jio Platforms Ltd, Bangalore, India
| |
Collapse
|
124
|
Rasheed J, Jamil A, Hameed AA, Al-Turjman F, Rasheed A. COVID-19 in the Age of Artificial Intelligence: A Comprehensive Review. Interdiscip Sci 2021; 13:153-175. [PMID: 33886097 PMCID: PMC8060789 DOI: 10.1007/s12539-021-00431-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022]
Abstract
The recent COVID-19 pandemic, which broke at the end of the year 2019 in Wuhan, China, has infected more than 98.52 million people by today (January 23, 2021) with over 2.11 million deaths across the globe. To combat the growing pandemic on urgent basis, there is need to design effective solutions using new techniques that could exploit recent technology, such as machine learning, deep learning, big data, artificial intelligence, Internet of Things, for identification and tracking of COVID-19 cases in near real time. These technologies have offered inexpensive and rapid solution for proper screening, analyzing, prediction and tracking of COVID-19 positive cases. In this paper, a detailed review of the role of AI as a decisive tool for prognosis, analyze, and tracking the COVID-19 cases is performed. We searched various databases including Google Scholar, IEEE Library, Scopus and Web of Science using a combination of different keywords consisting of COVID-19 and AI. We have identified various applications, where AI can help healthcare practitioners in the process of identification and monitoring of COVID-19 cases. A compact summary of the corona virus cases are first highlighted, followed by the application of AI. Finally, we conclude the paper by highlighting new research directions and discuss the research challenges. Even though scientists and researchers have gathered and exchanged sufficient knowledge over last couple of months, but this structured review also examined technological perspectives while encompassing the medical aspect to help the healthcare practitioners, policymakers, decision makers, policymakers, AI scientists and virologists to quell this infectious COVID-19 pandemic outbreak.
Collapse
Affiliation(s)
- Jawad Rasheed
- Department of Computer Engineering, Istanbul Aydin University, Istanbul, 34295, Turkey.
| | - Akhtar Jamil
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Alaa Ali Hameed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Fadi Al-Turjman
- Artificial Intelligence Engineering Department, Research Center for AI and IoT, Near East University, Nicosia, Mersin 10, Turkey
| | - Ahmad Rasheed
- Department of Electrical and Electronics Engineering, Eastern Mediterranean University, Famagusta, Mersin 10, Turkey
| |
Collapse
|
125
|
Ozdemir MA, Ozdemir GD, Guren O. Classification of COVID-19 electrocardiograms by using hexaxial feature mapping and deep learning. BMC Med Inform Decis Mak 2021; 21:170. [PMID: 34034715 PMCID: PMC8146190 DOI: 10.1186/s12911-021-01521-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has become a pandemic since its first appearance in late 2019. Deaths caused by COVID-19 are still increasing day by day and early diagnosis has become crucial. Since current diagnostic methods have many disadvantages, new investigations are needed to improve the performance of diagnosis. METHODS A novel method is proposed to automatically diagnose COVID-19 by using Electrocardiogram (ECG) data with deep learning for the first time. Moreover, a new and effective method called hexaxial feature mapping is proposed to represent 12-lead ECG to 2D colorful images. Gray-Level Co-Occurrence Matrix (GLCM) method is used to extract features and generate hexaxial mapping images. These generated images are then fed into a new Convolutional Neural Network (CNN) architecture to diagnose COVID-19. RESULTS Two different classification scenarios are conducted on a publicly available paper-based ECG image dataset to reveal the diagnostic capability and performance of the proposed approach. In the first scenario, ECG data labeled as COVID-19 and No-Findings (normal) are classified to evaluate COVID-19 classification ability. According to results, the proposed approach provides encouraging COVID-19 detection performance with an accuracy of 96.20% and F1-Score of 96.30%. In the second scenario, ECG data labeled as Negative (normal, abnormal, and myocardial infarction) and Positive (COVID-19) are classified to evaluate COVID-19 diagnostic ability. The experimental results demonstrated that the proposed approach provides satisfactory COVID-19 prediction performance with an accuracy of 93.00% and F1-Score of 93.20%. Furthermore, different experimental studies are conducted to evaluate the robustness of the proposed approach. CONCLUSION Automatic detection of cardiovascular changes caused by COVID-19 can be possible with a deep learning framework through ECG data. This not only proves the presence of cardiovascular changes caused by COVID-19 but also reveals that ECG can potentially be used in the diagnosis of COVID-19. We believe the proposed study may provide a crucial decision-making system for healthcare professionals. SOURCE CODE All source codes are made publicly available at: https://github.com/mkfzdmr/COVID-19-ECG-Classification.
Collapse
Affiliation(s)
- Mehmet Akif Ozdemir
- Department of Biomedical Engineering, Faculty of Enigneering and Architecture, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
| | - Gizem Dilara Ozdemir
- Department of Biomedical Engineering, Faculty of Enigneering and Architecture, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
| | - Onan Guren
- Department of Biomedical Engineering, Faculty of Enigneering and Architecture, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
| |
Collapse
|
126
|
An optimized initialization for LDPC decoding over GF(q) in impulsive noise environments. PLoS One 2021; 16:e0250930. [PMID: 33956886 PMCID: PMC8101722 DOI: 10.1371/journal.pone.0250930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 04/17/2021] [Indexed: 11/30/2022] Open
Abstract
Modern navigation satellite communication has the characteristic of high transmitting rate. To avoid bit errors in data transmission, low density parity check (LDPC) codes are widely recognized as efficient ways for navigation communication. Conventionally, the LDPC decoding is applied for additive white Gaussian noise (AWGN) channel and degrades severely while facing the impulsive noise. However, navigation communication often suffers from impulsive interference due to the occurrence of high amplitude “spikes”. At this time, the conventional Gaussian noise assumption is inadequate. The impulsive component of interference has been found to be significant which influences the reliability of transmitted information. Therefore the LDPC decoding algorithms for AWGN channel are not suitable for impulsive noise environments. Consider that LDPC codes over GF(q) perform better than binary LDPC in resisting burst errors for current navigation system, it is necessary to conduct research on LDPC codes over GF(q). In this paper, an optimized initialization by calculating posterior probabilities of received symbols is proposed for non-binary LDPC decoding on additive white Class A noise (AWAN) channel. To verify the performance of the proposed initialization, extensive experiments are performed in terms of convergence, validity, and robustness. Preliminary results demonstrate that the decoding algorithm with the optimized initialization for non-binary LDPC codes performs better than the competing methods and that of binary LDPC codes on AWAN channel.
Collapse
|
127
|
Kumar N, Narayan Das N, Gupta D, Gupta K, Bindra J. Efficient Automated Disease Diagnosis Using Machine Learning Models. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9983652. [PMID: 34035886 PMCID: PMC8101482 DOI: 10.1155/2021/9983652] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/07/2021] [Accepted: 04/24/2021] [Indexed: 01/01/2023]
Abstract
Recently, many researchers have designed various automated diagnosis models using various supervised learning models. An early diagnosis of disease may control the death rate due to these diseases. In this paper, an efficient automated disease diagnosis model is designed using the machine learning models. In this paper, we have selected three critical diseases such as coronavirus, heart disease, and diabetes. In the proposed model, the data are entered into an android app, the analysis is then performed in a real-time database using a pretrained machine learning model which was trained on the same dataset and deployed in firebase, and finally, the disease detection result is shown in the android app. Logistic regression is used to carry out computation for prediction. Early detection can help in identifying the risk of coronavirus, heart disease, and diabetes. Comparative analysis indicates that the proposed model can help doctors to give timely medications for treatment.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Computer Science & Engineering, Maharaja Surajmal Institute of Technology, C-4, Janakpuri, New Delhi 110058, India
| | - Nripendra Narayan Das
- Department of Information Technology, School of Computing and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Deepali Gupta
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Kamali Gupta
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Jatin Bindra
- Department of Computer Science & Engineering, Maharaja Surajmal Institute of Technology, C-4, Janakpuri, New Delhi 110058, India
| |
Collapse
|
128
|
Shahid O, Nasajpour M, Pouriyeh S, Parizi RM, Han M, Valero M, Li F, Aledhari M, Sheng QZ. Machine learning research towards combating COVID-19: Virus detection, spread prevention, and medical assistance. J Biomed Inform 2021; 117:103751. [PMID: 33771732 PMCID: PMC7987503 DOI: 10.1016/j.jbi.2021.103751] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 was first discovered in December 2019 and has continued to rapidly spread across countries worldwide infecting thousands and millions of people. The virus is deadly, and people who are suffering from prior illnesses or are older than the age of 60 are at a higher risk of mortality. Medicine and Healthcare industries have surged towards finding a cure, and different policies have been amended to mitigate the spread of the virus. While Machine Learning (ML) methods have been widely used in other domains, there is now a high demand for ML-aided diagnosis systems for screening, tracking, predicting the spread of COVID-19 and finding a cure against it. In this paper, we present a journey of what role ML has played so far in combating the virus, mainly looking at it from a screening, forecasting, and vaccine perspective. We present a comprehensive survey of the ML algorithms and models that can be used on this expedition and aid with battling the virus.
Collapse
Affiliation(s)
- Osama Shahid
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Mohammad Nasajpour
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Seyedamin Pouriyeh
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Reza M Parizi
- Department of Software Engineering and Game Development, Kennesaw State University, Marietta, GA, USA.
| | - Meng Han
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Maria Valero
- Department of Information Technology, Kennesaw State University, Marietta, GA, USA.
| | - Fangyu Li
- Department of Electrical and Computer Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Mohammed Aledhari
- Department of Computer Science, Kennesaw State University, Marietta, GA, USA.
| | - Quan Z Sheng
- Department of Computing, Macquarie University, Sydney, Australia.
| |
Collapse
|
129
|
Ozyurt F, Tuncer T, Subasi A. An automated COVID-19 detection based on fused dynamic exemplar pyramid feature extraction and hybrid feature selection using deep learning. Comput Biol Med 2021; 132:104356. [PMID: 33799219 PMCID: PMC7997855 DOI: 10.1016/j.compbiomed.2021.104356] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
The new coronavirus disease known as COVID-19 is currently a pandemic that is spread out the whole world. Several methods have been presented to detect COVID-19 disease. Computer vision methods have been widely utilized to detect COVID-19 by using chest X-ray and computed tomography (CT) images. This work introduces a model for the automatic detection of COVID-19 using CT images. A novel handcrafted feature generation technique and a hybrid feature selector are used together to achieve better performance. The primary goal of the proposed framework is to achieve a higher classification accuracy than convolutional neural networks (CNN) using handcrafted features of the CT images. In the proposed framework, there are four fundamental phases, which are preprocessing, fused dynamic sized exemplars based pyramid feature generation, ReliefF, and iterative neighborhood component analysis based feature selection and deep neural network classifier. In the preprocessing phase, CT images are converted into 2D matrices and resized to 256 × 256 sized images. The proposed feature generation network uses dynamic-sized exemplars and pyramid structures together. Two basic feature generation functions are used to extract statistical and textural features. The selected most informative features are forwarded to artificial neural networks (ANN) and deep neural network (DNN) for classification. ANN and DNN models achieved 94.10% and 95.84% classification accuracies respectively. The proposed fused feature generator and iterative hybrid feature selector achieved the best success rate, according to the results obtained by using CT images.
Collapse
Affiliation(s)
- Fatih Ozyurt
- Department of Software Engineering, College of Engineering, Firat University, Elazig, Turkey.
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey.
| | - Abdulhamit Subasi
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, 20520, Finland; Department of Computer Science, College of Engineering, Effat University, Jeddah, 21478, Saudi Arabia.
| |
Collapse
|
130
|
Poly TN, Islam MM, Li YCJ, Alsinglawi B, Hsu MH, Jian WS, Yang HC. Application of Artificial Intelligence for Screening COVID-19 Patients Using Digital Images: Meta-analysis. JMIR Med Inform 2021; 9:e21394. [PMID: 33764884 PMCID: PMC8086786 DOI: 10.2196/21394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/04/2020] [Accepted: 03/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The COVID-19 outbreak has spread rapidly and hospitals are overwhelmed with COVID-19 patients. While analysis of nasal and throat swabs from patients is the main way to detect COVID-19, analyzing chest images could offer an alternative method to hospitals, where health care personnel and testing kits are scarce. Deep learning (DL), in particular, has shown impressive levels of performance when analyzing medical images, including those related to COVID-19 pneumonia. OBJECTIVE The goal of this study was to perform a systematic review with a meta-analysis of relevant studies to quantify the performance of DL algorithms in the automatic stratification of COVID-19 patients using chest images. METHODS A search strategy for use in PubMed, Scopus, Google Scholar, and Web of Science was developed, where we searched for articles published between January 1 and April 25, 2020. We used the key terms "COVID-19," or "coronavirus," or "SARS-CoV-2," or "novel corona," or "2019-ncov," and "deep learning," or "artificial intelligence," or "automatic detection." Two authors independently extracted data on study characteristics, methods, risk of bias, and outcomes. Any disagreement between them was resolved by consensus. RESULTS A total of 16 studies were included in the meta-analysis, which included 5896 chest images from COVID-19 patients. The pooled sensitivity and specificity of the DL models in detecting COVID-19 were 0.95 (95% CI 0.94-0.95) and 0.96 (95% CI 0.96-0.97), respectively, with an area under the receiver operating characteristic curve of 0.98. The positive likelihood, negative likelihood, and diagnostic odds ratio were 19.02 (95% CI 12.83-28.19), 0.06 (95% CI 0.04-0.10), and 368.07 (95% CI 162.30-834.75), respectively. The pooled sensitivity and specificity for distinguishing other types of pneumonia from COVID-19 were 0.93 (95% CI 0.92-0.94) and 0.95 (95% CI 0.94-0.95), respectively. The performance of radiologists in detecting COVID-19 was lower than that of the DL models; however, the performance of junior radiologists was improved when they used DL-based prediction tools. CONCLUSIONS Our study findings show that DL models have immense potential in accurately stratifying COVID-19 patients and in correctly differentiating them from patients with other types of pneumonia and normal patients. Implementation of DL-based tools can assist radiologists in correctly and quickly detecting COVID-19 and, consequently, in combating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tahmina Nasrin Poly
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Md Mohaimenul Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chuan Jack Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Dermatology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Belal Alsinglawi
- School of Computer, Data, and Mathematical Science, Western Sydney University, Sydney, Australia
| | - Min-Huei Hsu
- Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Wen Shan Jian
- School of Health Care Administration, Taipei Medical University, Taipei, Taiwan
| | - Hsuan-Chia Yang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology, Taipei Medical University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
131
|
Ghaderzadeh M, Asadi F, Jafari R, Bashash D, Abolghasemi H, Aria M. Deep Convolutional Neural Network-Based Computer-Aided Detection System for COVID-19 Using Multiple Lung Scans: Design and Implementation Study. J Med Internet Res 2021; 23:e27468. [PMID: 33848973 PMCID: PMC8078376 DOI: 10.2196/27468] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 04/03/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Owing to the COVID-19 pandemic and the imminent collapse of health care systems following the exhaustion of financial, hospital, and medicinal resources, the World Health Organization changed the alert level of the COVID-19 pandemic from high to very high. Meanwhile, more cost-effective and precise COVID-19 detection methods are being preferred worldwide. OBJECTIVE Machine vision-based COVID-19 detection methods, especially deep learning as a diagnostic method in the early stages of the pandemic, have been assigned great importance during the pandemic. This study aimed to design a highly efficient computer-aided detection (CAD) system for COVID-19 by using a neural search architecture network (NASNet)-based algorithm. METHODS NASNet, a state-of-the-art pretrained convolutional neural network for image feature extraction, was adopted to identify patients with COVID-19 in their early stages of the disease. A local data set, comprising 10,153 computed tomography scans of 190 patients with and 59 without COVID-19 was used. RESULTS After fitting on the training data set, hyperparameter tuning, and topological alterations of the classifier block, the proposed NASNet-based model was evaluated on the test data set and yielded remarkable results. The proposed model's performance achieved a detection sensitivity, specificity, and accuracy of 0.999, 0.986, and 0.996, respectively. CONCLUSIONS The proposed model achieved acceptable results in the categorization of 2 data classes. Therefore, a CAD system was designed on the basis of this model for COVID-19 detection using multiple lung computed tomography scans. The system differentiated all COVID-19 cases from non-COVID-19 ones without any error in the application phase. Overall, the proposed deep learning-based CAD system can greatly help radiologists detect COVID-19 in its early stages. During the COVID-19 pandemic, the use of a CAD system as a screening tool would accelerate disease detection and prevent the loss of health care resources.
Collapse
Affiliation(s)
- Mustafa Ghaderzadeh
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Asadi
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramezan Jafari
- Department of Radiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrad Aria
- Department of Computer Engineering, Faculty of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
132
|
Singh M, Bansal S, Ahuja S, Dubey RK, Panigrahi BK, Dey N. Transfer learning-based ensemble support vector machine model for automated COVID-19 detection using lung computerized tomography scan data. Med Biol Eng Comput 2021; 59:825-839. [PMID: 33738639 DOI: 10.21203/rs.3.rs-32493/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/18/2020] [Indexed: 05/19/2023]
Abstract
The novel discovered disease coronavirus popularly known as COVID-19 is caused due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared a pandemic by the World Health Organization (WHO). An early-stage detection of COVID-19 is crucial for the containment of the pandemic it has caused. In this study, a transfer learning-based COVID-19 screening technique is proposed. The motivation of this study is to design an automated system that can assist medical staff especially in areas where trained staff are outnumbered. The study investigates the potential of transfer learning-based models for automatically diagnosing diseases like COVID-19 to assist the medical force, especially in times of an outbreak. In the proposed work, a deep learning model, i.e., truncated VGG16 (Visual Geometry Group from Oxford) is implemented to screen COVID-19 CT scans. The VGG16 architecture is fine-tuned and used to extract features from CT scan images. Further principal component analysis (PCA) is used for feature selection. For the final classification, four different classifiers, namely deep convolutional neural network (DCNN), extreme learning machine (ELM), online sequential ELM, and bagging ensemble with support vector machine (SVM) are compared. The best performing classifier bagging ensemble with SVM within 385 ms achieved an accuracy of 95.7%, the precision of 95.8%, area under curve (AUC) of 0.958, and an F1 score of 95.3% on 208 test images. The results obtained on diverse datasets prove the superiority and robustness of the proposed work. A pre-processing technique has also been proposed for radiological data. The study further compares pre-trained CNN architectures and classification models against the proposed technique.
Collapse
Affiliation(s)
- Mukul Singh
- Computer Science and Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Shrey Bansal
- Computer Science and Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sakshi Ahuja
- Electrical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Rahul Kumar Dubey
- Robert Bosch Engineering and Business Solutions Private Limited Head Office, 123, Hosur Rd, 7th Block, Koramangala, Bengaluru, Karnataka, 560095, India.
| | - Bijaya Ketan Panigrahi
- Electrical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | | |
Collapse
|
133
|
Mohammad-Rahimi H, Nadimi M, Ghalyanchi-Langeroudi A, Taheri M, Ghafouri-Fard S. Application of Machine Learning in Diagnosis of COVID-19 Through X-Ray and CT Images: A Scoping Review. Front Cardiovasc Med 2021; 8:638011. [PMID: 33842563 PMCID: PMC8027078 DOI: 10.3389/fcvm.2021.638011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease, first detected in late 2019 (COVID-19), has spread fast throughout the world, leading to high mortality. This condition can be diagnosed using RT-PCR technique on nasopharyngeal and throat swabs with sensitivity values ranging from 30 to 70%. However, chest CT scans and X-ray images have been reported to have sensitivity values of 98 and 69%, respectively. The application of machine learning methods on CT and X-ray images has facilitated the accurate diagnosis of COVID-19. In this study, we reviewed studies which used machine and deep learning methods on chest X-ray images and CT scans for COVID-19 diagnosis and compared their performance. The accuracy of these methods ranged from 76% to more than 99%, indicating the applicability of machine and deep learning methods in the clinical diagnosis of COVID-19.
Collapse
Affiliation(s)
- Hossein Mohammad-Rahimi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Nadimi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran, Iran
| | - Azadeh Ghalyanchi-Langeroudi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
134
|
Transfer learning-based ensemble support vector machine model for automated COVID-19 detection using lung computerized tomography scan data. Med Biol Eng Comput 2021; 59:825-839. [PMID: 33738639 PMCID: PMC7972022 DOI: 10.1007/s11517-020-02299-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/18/2020] [Indexed: 01/09/2023]
Abstract
The novel discovered disease coronavirus popularly known as COVID-19 is caused due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared a pandemic by the World Health Organization (WHO). An early-stage detection of COVID-19 is crucial for the containment of the pandemic it has caused. In this study, a transfer learning–based COVID-19 screening technique is proposed. The motivation of this study is to design an automated system that can assist medical staff especially in areas where trained staff are outnumbered. The study investigates the potential of transfer learning–based models for automatically diagnosing diseases like COVID-19 to assist the medical force, especially in times of an outbreak. In the proposed work, a deep learning model, i.e., truncated VGG16 (Visual Geometry Group from Oxford) is implemented to screen COVID-19 CT scans. The VGG16 architecture is fine-tuned and used to extract features from CT scan images. Further principal component analysis (PCA) is used for feature selection. For the final classification, four different classifiers, namely deep convolutional neural network (DCNN), extreme learning machine (ELM), online sequential ELM, and bagging ensemble with support vector machine (SVM) are compared. The best performing classifier bagging ensemble with SVM within 385 ms achieved an accuracy of 95.7%, the precision of 95.8%, area under curve (AUC) of 0.958, and an F1 score of 95.3% on 208 test images. The results obtained on diverse datasets prove the superiority and robustness of the proposed work. A pre-processing technique has also been proposed for radiological data. The study further compares pre-trained CNN architectures and classification models against the proposed technique. ![]()
Collapse
|
135
|
Ghaderzadeh M, Asadi F. Deep Learning in the Detection and Diagnosis of COVID-19 Using Radiology Modalities: A Systematic Review. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6677314. [PMID: 33747419 PMCID: PMC7958142 DOI: 10.1155/2021/6677314] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
Introduction The early detection and diagnosis of COVID-19 and the accurate separation of non-COVID-19 cases at the lowest cost and in the early stages of the disease are among the main challenges in the current COVID-19 pandemic. Concerning the novelty of the disease, diagnostic methods based on radiological images suffer from shortcomings despite their many applications in diagnostic centers. Accordingly, medical and computer researchers tend to use machine-learning models to analyze radiology images. Material and Methods. The present systematic review was conducted by searching the three databases of PubMed, Scopus, and Web of Science from November 1, 2019, to July 20, 2020, based on a search strategy. A total of 168 articles were extracted and, by applying the inclusion and exclusion criteria, 37 articles were selected as the research population. Result This review study provides an overview of the current state of all models for the detection and diagnosis of COVID-19 through radiology modalities and their processing based on deep learning. According to the findings, deep learning-based models have an extraordinary capacity to offer an accurate and efficient system for the detection and diagnosis of COVID-19, the use of which in the processing of modalities would lead to a significant increase in sensitivity and specificity values. Conclusion The application of deep learning in the field of COVID-19 radiologic image processing reduces false-positive and negative errors in the detection and diagnosis of this disease and offers a unique opportunity to provide fast, cheap, and safe diagnostic services to patients.
Collapse
Affiliation(s)
- Mustafa Ghaderzadeh
- Student Research Committee, Department and Faculty of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Asadi
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
136
|
Abbasi WA, Abbas SA, Andleeb S, Ul Islam G, Ajaz SA, Arshad K, Khalil S, Anjam A, Ilyas K, Saleem M, Chughtai J, Abbas A. COVIDC: An expert system to diagnose COVID-19 and predict its severity using chest CT scans: Application in radiology. INFORMATICS IN MEDICINE UNLOCKED 2021; 23:100540. [PMID: 33644298 PMCID: PMC7901302 DOI: 10.1016/j.imu.2021.100540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023] Open
Abstract
Early diagnosis of Coronavirus disease 2019 (COVID-19) is significantly important, especially in the absence or inadequate provision of a specific vaccine, to stop the surge of this lethal infection by advising quarantine. This diagnosis is challenging as most of the patients having COVID-19 infection stay asymptomatic while others showing symptoms are hard to distinguish from patients having different respiratory infections such as severe flu and Pneumonia. Due to cost and time-consuming wet-lab diagnostic tests for COVID-19, there is an utmost requirement for some alternate, non-invasive, rapid, and discounted automatic screening system. A chest CT scan can effectively be used as an alternative modality to detect and diagnose the COVID-19 infection. In this study, we present an automatic COVID-19 diagnostic and severity prediction system called COVIDC (COVID-19 detection using CT scans) that uses deep feature maps from the chest CT scans for this purpose. Our newly proposed system not only detects COVID-19 but also predicts its severity by using a two-phase classification approach (COVID vs non-COVID, and COVID-19 severity) with deep feature maps and different shallow supervised classification algorithms such as SVMs and random forest to handle data scarcity. We performed a stringent COVIDC performance evaluation not only through 10-fold cross-validation and an external validation dataset but also in a real setting under the supervision of an experienced radiologist. In all the evaluation settings, COVIDC outperformed all the existing state-of-the-art methods designed to detect COVID-19 with an F1 score of 0.94 on the validation dataset and justified its use to diagnose COVID-19 effectively in the real setting by classifying correctly 9 out of 10 COVID-19 CT scans. We made COVIDC openly accessible through a cloud-based webserver and python code available at https://sites.google.com/view/wajidarshad/software and https://github.com/wajidarshad/covidc.
Collapse
Affiliation(s)
- Wajid Arshad Abbasi
- Computational Biology and Data Analysis Lab., Department of Computer Science & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, 13100, Pakistan
| | - Syed Ali Abbas
- Computational Biology and Data Analysis Lab., Department of Computer Science & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, 13100, Pakistan
| | - Saiqa Andleeb
- Biotechnology Lab., Department of Zoology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, 13100, Pakistan
| | - Ghafoor Ul Islam
- Biotechnology Lab., Department of Zoology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, 13100, Pakistan
| | - Syeda Adin Ajaz
- Computational Biology and Data Analysis Lab., Department of Computer Science & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, 13100, Pakistan
| | - Kinza Arshad
- Computational Biology and Data Analysis Lab., Department of Computer Science & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, 13100, Pakistan
| | - Sadia Khalil
- Computational Biology and Data Analysis Lab., Department of Computer Science & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, 13100, Pakistan
| | - Asma Anjam
- Computational Biology and Data Analysis Lab., Department of Computer Science & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, 13100, Pakistan
| | - Kashif Ilyas
- Computational Biology and Data Analysis Lab., Department of Computer Science & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, 13100, Pakistan
| | - Mohsib Saleem
- Computational Biology and Data Analysis Lab., Department of Computer Science & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, 13100, Pakistan
| | - Jawad Chughtai
- Computational Biology and Data Analysis Lab., Department of Computer Science & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, 13100, Pakistan
| | - Ayesha Abbas
- Computational Biology and Data Analysis Lab., Department of Computer Science & Information Technology, King Abdullah Campus, University of Azad Jammu & Kashmir, Muzaffarabad, AJ&K, 13100, Pakistan
| |
Collapse
|
137
|
Chandra TB, Verma K, Singh BK, Jain D, Netam SS. Coronavirus disease (COVID-19) detection in Chest X-Ray images using majority voting based classifier ensemble. EXPERT SYSTEMS WITH APPLICATIONS 2021; 165:113909. [PMID: 32868966 PMCID: PMC7448820 DOI: 10.1016/j.eswa.2020.113909] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 05/02/2023]
Abstract
Novel coronavirus disease (nCOVID-19) is the most challenging problem for the world. The disease is caused by severe acute respiratory syndrome coronavirus-2 (SARS-COV-2), leading to high morbidity and mortality worldwide. The study reveals that infected patients exhibit distinct radiographic visual characteristics along with fever, dry cough, fatigue, dyspnea, etc. Chest X-Ray (CXR) is one of the important, non-invasive clinical adjuncts that play an essential role in the detection of such visual responses associated with SARS-COV-2 infection. However, the limited availability of expert radiologists to interpret the CXR images and subtle appearance of disease radiographic responses remains the biggest bottlenecks in manual diagnosis. In this study, we present an automatic COVID screening (ACoS) system that uses radiomic texture descriptors extracted from CXR images to identify the normal, suspected, and nCOVID-19 infected patients. The proposed system uses two-phase classification approach (normal vs. abnormal and nCOVID-19 vs. pneumonia) using majority vote based classifier ensemble of five benchmark supervised classification algorithms. The training-testing and validation of the ACoS system are performed using 2088 (696 normal, 696 pneumonia and 696 nCOVID-19) and 258 (86 images of each category) CXR images, respectively. The obtained validation results for phase-I (accuracy (ACC) = 98.062%, area under curve (AUC) = 0.956) and phase-II (ACC = 91.329% and AUC = 0.831) show the promising performance of the proposed system. Further, the Friedman post-hoc multiple comparisons and z-test statistics reveals that the results of ACoS system are statistically significant. Finally, the obtained performance is compared with the existing state-of-the-art methods.
Collapse
Affiliation(s)
- Tej Bahadur Chandra
- Department of Computer Applications, National Institute of Technology Raipur, Chhattisgarh, India
| | - Kesari Verma
- Department of Computer Applications, National Institute of Technology Raipur, Chhattisgarh, India
| | - Bikesh Kumar Singh
- Department of Biomedical Engineering, National Institute of Technology Raipur, Chhattisgarh, India
| | - Deepak Jain
- Department of Radiodiagnosis, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| | - Satyabhuwan Singh Netam
- Department of Radiodiagnosis, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| |
Collapse
|
138
|
Kedia P, Anjum, Katarya R. CoVNet-19: A Deep Learning model for the detection and analysis of COVID-19 patients. Appl Soft Comput 2021; 104:107184. [PMID: 33613140 PMCID: PMC7883765 DOI: 10.1016/j.asoc.2021.107184] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Background: The ongoing fight with Novel Corona Virus, getting quick treatment, and rapid diagnosis reports have become an act of high priority. With millions getting infected daily and a fatality rate of 2%, we made it our motive to contribute a little to solve this real-world problem by accomplishing a significant and substantial method for diagnosing COVID-19 patients. Aim: The Exponential growth of COVID-19 cases worldwide has severely affected the health care system of highly populated countries due to proportionally a smaller number of medical practitioners, testing kits, and other resources, thus becoming essential to identify the infected people. Catering to the above problems, the purpose of this paper is to formulate an accurate, efficient, and time-saving method for detecting positive corona patients. Method: In this paper, an Ensemble Deep Convolution Neural Network model “CoVNet-19” is being proposed that can unveil important diagnostic characteristics to find COVID-19 infected patients using X-ray images chest and help radiologists and medical experts to fight this pandemic. Results: The experimental results clearly show that the overall classification accuracy obtained with the proposed approach for three-class classification among COVID-19, Pneumonia, and Normal is 98.28%, along with an average precision and Recall of 98.33% and 98.33%, respectively. Besides this, for binary classification between Non-COVID and COVID Chest X-ray images, an overall accuracy of 99.71% was obtained. Conclusion: Having a high diagnostic accuracy, our proposed ensemble Deep Learning classification model can be a productive and substantial contribution to detecting COVID-19 infected patients.
Collapse
Affiliation(s)
- Priyansh Kedia
- Department of Electrical Engineering, Delhi Technological University, New Delhi, India
| | - Anjum
- Big Data Analytics and Web Intelligence Laboratory, Department of Computer Science, Delhi Technological University, New Delhi, India
| | - Rahul Katarya
- Big Data Analytics and Web Intelligence Laboratory, Department of Computer Science, Delhi Technological University, New Delhi, India
| |
Collapse
|
139
|
DeepCoroNet: A deep LSTM approach for automated detection of COVID-19 cases from chest X-ray images. Appl Soft Comput 2021; 103:107160. [PMID: 33584157 PMCID: PMC7868740 DOI: 10.1016/j.asoc.2021.107160] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/09/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
The new coronavirus, known as COVID-19, first emerged in Wuhan, China, and since then has been transmitted to the whole world. Around 34 million people have been infected with COVID-19 virus so far, and nearly 1 million have died as a result of the virus. Resource shortages such as test kits and ventilator have arisen in many countries as the number of cases have increased beyond the control. Therefore, it has become very important to develop deep learning-based applications that automatically detect COVID-19 cases using chest X-ray images to assist specialists and radiologists in diagnosis. In this study, we propose a new approach based on deep LSTM model to automatically identify COVID-19 cases from X-ray images. Contrary to the transfer learning and deep feature extraction approaches, the deep LSTM model is an architecture, which is learned from scratch. Besides, the Sobel gradient and marker-controlled watershed segmentation operations are applied to raw images for increasing the performance of proposed model in the pre-processing stage. The experimental studies were performed on a combined public dataset constituted by gathering COVID-19, pneumonia and normal (healthy) chest X-ray images. The dataset was randomly separated into two sections as training and testing data. For training and testing, these separations were performed with the rates of 80%-20%, 70%-30% and 60%-40%, respectively. The best performance was achieved with 80% training and 20% testing rate. Moreover, the success rate was 100% for all performance criteria, which composed of accuracy, sensitivity, specificity and F-score. Consequently, the proposed model with pre-processing images ensured promising results on a small dataset compared to big data. Generally, the proposed model can significantly improve the present radiology based approaches and it can be very useful application for radiologists and specialists to help them in detection, quantity determination and tracing of COVID-19 cases throughout the pandemic.
Collapse
|
140
|
Gupta A, Anjum, Gupta S, Katarya R. InstaCovNet-19: A deep learning classification model for the detection of COVID-19 patients using Chest X-ray. Appl Soft Comput 2021; 99:106859. [PMID: 33162872 PMCID: PMC7598372 DOI: 10.1016/j.asoc.2020.106859] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Recently, the whole world became infected by the newly discovered coronavirus (COVID-19). SARS-CoV-2, or widely known as COVID-19, has proved to be a hazardous virus severely affecting the health of people. It causes respiratory illness, especially in people who already suffer from other diseases. Limited availability of test kits as well as symptoms similar to other diseases such as pneumonia has made this disease deadly, claiming the lives of millions of people. Artificial intelligence models are found to be very successful in the diagnosis of various diseases in the biomedical field In this paper, an integrated stacked deep convolution network InstaCovNet-19 is proposed. The proposed model makes use of various pre-trained models such as ResNet101, Xception, InceptionV3, MobileNet, and NASNet to compensate for a relatively small amount of training data. The proposed model detects COVID-19 and pneumonia by identifying the abnormalities caused by such diseases in Chest X-ray images of the person infected. The proposed model achieves an accuracy of 99.08% on 3 class (COVID-19, Pneumonia, Normal) classification while achieving an accuracy of 99.53% on 2 class (COVID, NON-COVID) classification. The proposed model achieves an average recall, F1 score, and precision of 99%, 99%, and 99%, respectively on ternary classification, while achieving a 100% precision and a recall of 99% on the binary class., while achieving a 100% precision and a recall of 99% on the COVID class. InstaCovNet-19's ability to detect COVID-19 without any human intervention at an economical cost with high accuracy can benefit humankind greatly in this age of Quarantine.
Collapse
Affiliation(s)
- Anunay Gupta
- Department of Electrical Engineering, Delhi Technological University, New Delhi, India
| | - Anjum
- Department of Computer Science, Delhi Technological University, New Delhi, India
| | - Shreyansh Gupta
- Department of Civil Engineering, Delhi Technological University, New Delhi, India
| | - Rahul Katarya
- Department of Computer Science, Delhi Technological University, New Delhi, India
| |
Collapse
|
141
|
Nayak J, Naik B, Dinesh P, Vakula K, Rao BK, Ding W, Pelusi D. Intelligent system for COVID-19 prognosis: a state-of-the-art survey. APPL INTELL 2021; 51:2908-2938. [PMID: 34764577 PMCID: PMC7786871 DOI: 10.1007/s10489-020-02102-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2020] [Indexed: 01/31/2023]
Abstract
This 21st century is notable for experiencing so many disturbances at economic, social, cultural, and political levels in the entire world. The outbreak of novel corona virus 2019 (COVID-19) has been treated as a Public Health crisis of global Concern by the World Health Organization (WHO). Various outbreak models for COVID-19 are being utilized by researchers throughout the world to get well-versed decisions and impose significant control measures. Amid the standard methods for COVID-19 worldwide epidemic prediction, easy statistical, as well as epidemiological methods have got more consideration by researchers and authorities. One main difficulty in controlling the spreading of COVID-19 is the inadequacy and lack of medical tests for detecting as well as identifying a solution. To solve this problem, a few statistical-based advances are being enhanced and turn into a partial resolution up-to some level. To deal with the challenges of the medical field, a broad range of intelligent based methods, frameworks, and equipment have been recommended by Machine Learning (ML) and Deep Learning. As ML and DL have the ability of identifying and predicting patterns in complex large datasets, they are recognized as a suitable procedure for producing effective solutions for the diagnosis of COVID-19. In this paper, a perspective research has been conducted in the applicability of intelligent systems such as ML, DL and others in solving COVID-19 related outbreak issues. The main intention behind this study is (i) to understand the importance of intelligent approaches such as ML and DL for COVID-19 pandemic, (ii) discussing the efficiency and impact of these methods in the prognosis of COVID-19, (iii) the growth in the development of type of ML and advanced ML methods for COVID-19 prognosis,(iv) analyzing the impact of data types and the nature of data along with challenges in processing the data for COVID-19,(v) to focus on some future challenges in COVID-19 prognosis to inspire the researchers for innovating and enhancing their knowledge and research on other impacted sectors due to COVID-19.
Collapse
Affiliation(s)
- Janmenjoy Nayak
- Department of Computer Science and Engineering, Aditya Institute of Technology and Management (AITAM), K Kotturu, Tekkali, AP 532201 India
| | - Bighnaraj Naik
- Department of Computer Application, Veer Surendra Sai University of Technology, Burla, Odisha 768018 India
| | - Paidi Dinesh
- Department of Computer Science and Engineering, Sri Sivani College of Engineering, Srikakulam, AP 532402 India
| | - Kanithi Vakula
- Department of Computer Science and Engineering, Sri Sivani College of Engineering, Srikakulam, AP 532402 India
| | - B. Kameswara Rao
- Department of Computer Science and Engineering, Aditya Institute of Technology and Management (AITAM), K Kotturu, Tekkali, AP 532201 India
| | - Weiping Ding
- School of Information Science and Technology, Nantong University, Nantong, China
| | - Danilo Pelusi
- Faculty of Communication Sciences, University of Teramo, Coste Sant', Agostino Campus, Teramo, Italy
| |
Collapse
|
142
|
Jalali Y, Fateh M, Rezvani M, Abolghasemi V, Anisi MH. ResBCDU-Net: A Deep Learning Framework for Lung CT Image Segmentation. SENSORS (BASEL, SWITZERLAND) 2021; 21:E268. [PMID: 33401581 PMCID: PMC7796094 DOI: 10.3390/s21010268] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/05/2022]
Abstract
Lung CT image segmentation is a key process in many applications such as lung cancer detection. It is considered a challenging problem due to existing similar image densities in the pulmonary structures, different types of scanners, and scanning protocols. Most of the current semi-automatic segmentation methods rely on human factors therefore it might suffer from lack of accuracy. Another shortcoming of these methods is their high false-positive rate. In recent years, several approaches, based on a deep learning framework, have been effectively applied in medical image segmentation. Among existing deep neural networks, the U-Net has provided great success in this field. In this paper, we propose a deep neural network architecture to perform an automatic lung CT image segmentation process. In the proposed method, several extensive preprocessing techniques are applied to raw CT images. Then, ground truths corresponding to these images are extracted via some morphological operations and manual reforms. Finally, all the prepared images with the corresponding ground truth are fed into a modified U-Net in which the encoder is replaced with a pre-trained ResNet-34 network (referred to as Res BCDU-Net). In the architecture, we employ BConvLSTM (Bidirectional Convolutional Long Short-term Memory)as an advanced integrator module instead of simple traditional concatenators. This is to merge the extracted feature maps of the corresponding contracting path into the previous expansion of the up-convolutional layer. Finally, a densely connected convolutional layer is utilized for the contracting path. The results of our extensive experiments on lung CT images (LIDC-IDRI database) confirm the effectiveness of the proposed method where a dice coefficient index of 97.31% is achieved.
Collapse
Affiliation(s)
- Yeganeh Jalali
- Faculty of Computer Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran; (Y.J.); (M.R.)
| | - Mansoor Fateh
- Faculty of Computer Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran; (Y.J.); (M.R.)
| | - Mohsen Rezvani
- Faculty of Computer Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran; (Y.J.); (M.R.)
| | - Vahid Abolghasemi
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK;
| | - Mohammad Hossein Anisi
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK;
| |
Collapse
|
143
|
Tayarani N MH. Applications of artificial intelligence in battling against covid-19: A literature review. CHAOS, SOLITONS, AND FRACTALS 2021; 142:110338. [PMID: 33041533 PMCID: PMC7532790 DOI: 10.1016/j.chaos.2020.110338] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/14/2023]
Abstract
Colloquially known as coronavirus, the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), that causes CoronaVirus Disease 2019 (COVID-19), has become a matter of grave concern for every country around the world. The rapid growth of the pandemic has wreaked havoc and prompted the need for immediate reactions to curb the effects. To manage the problems, many research in a variety of area of science have started studying the issue. Artificial Intelligence is among the area of science that has found great applications in tackling the problem in many aspects. Here, we perform an overview on the applications of AI in a variety of fields including diagnosis of the disease via different types of tests and symptoms, monitoring patients, identifying severity of a patient, processing covid-19 related imaging tests, epidemiology, pharmaceutical studies, etc. The aim of this paper is to perform a comprehensive survey on the applications of AI in battling against the difficulties the outbreak has caused. Thus we cover every way that AI approaches have been employed and to cover all the research until the writing of this paper. We try organize the works in a way that overall picture is comprehensible. Such a picture, although full of details, is very helpful in understand where AI sits in current pandemonium. We also tried to conclude the paper with ideas on how the problems can be tackled in a better way and provide some suggestions for future works.
Collapse
Affiliation(s)
- Mohammad-H Tayarani N
- Biocomputation Group, School of Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| |
Collapse
|
144
|
Abstract
In this paper, considering year 2020 and Covid-19, we analyze medical imaging tools and their performance scores in accordance with the dataset size and their complexity. For this, we mainly consider AI-driven tools that employ two different types of image data, namely chest Computed Tomography (CT) and X-ray. We elaborate on their strengths and weaknesses by taking the following important factors into account: i) dataset size; ii) model fitting criteria (over-fitting and under-fitting); iii) transfer learning in the deep learning era; and iv) data augmentation. Medical imaging tools do not explicitly analyze model fitting. Also, using transfer learning, with fewer data, one could possibly build Covid-19 deep learning model but they are limited to education and training. We observe that, in both image modalities, neither the dataset size nor does data augmentation work well for Covid-19 screening purposes because a large dataset does not guarantee all possible Covid-19 manifestations and data augmentation does not create new Covid-19 cases.
Collapse
|
145
|
Yasar H, Ceylan M. A novel comparative study for detection of Covid-19 on CT lung images using texture analysis, machine learning, and deep learning methods. MULTIMEDIA TOOLS AND APPLICATIONS 2021; 80:5423-5447. [PMID: 33041635 PMCID: PMC7537375 DOI: 10.1007/s11042-020-09894-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 05/15/2023]
Abstract
The Covid-19 virus outbreak that emerged in China at the end of 2019 caused a huge and devastating effect worldwide. In patients with severe symptoms of the disease, pneumonia develops due to Covid-19 virus. This causes intense involvement and damage in lungs. Although the emergence of the disease occurred a short time ago, many literature studies have been carried out in which these effects of the disease on the lungs were revealed by the help of lung CT imaging. In this study, 1.396 lung CT images in total (386 Covid-19 and 1.010 Non-Covid-19) were subjected to automatic classification. In this study, Convolutional Neural Network (CNN), one of the deep learning methods, was used which suggested automatic classification of CT images of lungs for early diagnosis of Covid-19 disease. In addition, k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM) was used to compare the classification successes of deep learning with machine learning. Within the scope of the study, a 23-layer CNN architecture was designed and used as a classifier. Also, training and testing processes were performed for Alexnet and Mobilenetv2 CNN architectures as well. The classification results were also calculated for the case of increasing the number of images used in training for the first 23-layer CNN architecture by 5, 10, and 20 times using data augmentation methods. To reveal the effect of the change in the number of images in the training and test clusters on the results, two different training and testing processes, 2-fold and 10-fold cross-validation, were performed and the results of the study were calculated. As a result, thanks to these detailed calculations performed within the scope of the study, a comprehensive comparison of the success of the texture analysis method, machine learning, and deep learning methods in Covid-19 classification from CT images was made. The highest mean sensitivity, specificity, accuracy, F-1 score, and AUC values obtained as a result of the study were 0,9197, 0,9891, 0,9473, 0,9058, 0,9888; respectively for 2-fold cross-validation, and they were 0,9404, 0,9901, 0,9599, 0,9284, 0,9903; respectively for 10-fold cross-validation.
Collapse
Affiliation(s)
- Huseyin Yasar
- Ministry of Health of Republic of Turkey, Ankara, Turkey
| | - Murat Ceylan
- Faculty of Engineering and Natural Sciences, Department of Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey
| |
Collapse
|
146
|
Real-time neural network based predictor for cov19 virus spread. PLoS One 2020; 15:e0243189. [PMID: 33332363 PMCID: PMC7745974 DOI: 10.1371/journal.pone.0243189] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
Since the epidemic outbreak in early months of 2020 the spread of COVID-19 has grown rapidly in most countries and regions across the World. Because of that, SARS-CoV-2 was declared as a Public Health Emergency of International Concern (PHEIC) on January 30, 2020, by The World Health Organization (WHO). That’s why many scientists are working on new methods to reduce further growth of new cases and, by intelligent patients allocation, reduce number of patients per doctor, what can lead to more successful treatments. However to properly manage the COVID-19 spread there is a need for real-time prediction models which can reliably support various decisions both at national and international level. The problem in developing such system is the lack of general knowledge how the virus spreads and what would be the number of cases each day. Therefore prediction model must be able to conclude the situation from past data in the way that results will show a future trend and will possibly closely relate to the real numbers. In our opinion Artificial Intelligence gives a possibility to do it. In this article we present a model which can work as a part of an online system as a real-time predictor to help in estimation of COVID-19 spread. This prediction model is developed using Artificial Neural Networks (ANN) to estimate the future situation by the use of geo-location and numerical data from past 2 weeks. The results of our model are confirmed by comparing them with real data and, during our research the model was correctly predicting the trend and very closely matching the numbers of new cases in each day.
Collapse
|
147
|
Rasheed J, Jamil A, Hameed AA, Aftab U, Aftab J, Shah SA, Draheim D. A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic. CHAOS, SOLITONS, AND FRACTALS 2020; 141:110337. [PMID: 33071481 PMCID: PMC7547637 DOI: 10.1016/j.chaos.2020.110337] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/04/2023]
Abstract
While the world has experience with many different types of infectious diseases, the current crisis related to the spread of COVID-19 has challenged epidemiologists and public health experts alike, leading to a rapid search for, and development of, new and innovative solutions to combat its spread. The transmission of this virus has infected more than 18.92 million people as of August 6, 2020, with over half a million deaths across the globe; the World Health Organization (WHO) has declared this a global pandemic. A multidisciplinary approach needs to be followed for diagnosis, treatment and tracking, especially between medical and computer sciences, so, a common ground is available to facilitate the research work at a faster pace. With this in mind, this survey paper aimed to explore and understand how and which different technological tools and techniques have been used within the context of COVID-19. The primary contribution of this paper is in its collation of the current state-of-the-art technological approaches applied to the context of COVID-19, and doing this in a holistic way, covering multiple disciplines and different perspectives. The analysis is widened by investigating Artificial Intelligence (AI) approaches for the diagnosis, anticipate infection and mortality rate by tracing contacts and targeted drug designing. Moreover, the impact of different kinds of medical data used in diagnosis, prognosis and pandemic analysis is also provided. This review paper covers both medical and technological perspectives to facilitate the virologists, AI researchers and policymakers while in combating the COVID-19 outbreak.
Collapse
Affiliation(s)
- Jawad Rasheed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Akhtar Jamil
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Alaa Ali Hameed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore 54700, Pakistan
| | - Javaria Aftab
- Department of Chemistry, Istanbul Technical University, Istanbul 34467, Turkey
| | - Syed Attique Shah
- Department of IT, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Dirk Draheim
- Information Systems Group, Tallinn University of Technology, Akadeemia tee 15a, 12618, Tallinn, Estonia
| |
Collapse
|
148
|
Nour M, Cömert Z, Polat K. A Novel Medical Diagnosis model for COVID-19 infection detection based on Deep Features and Bayesian Optimization. Appl Soft Comput 2020; 97:106580. [PMID: 32837453 PMCID: PMC7385069 DOI: 10.1016/j.asoc.2020.106580] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022]
Abstract
A pneumonia of unknown causes, which was detected in Wuhan, China, and spread rapidly throughout the world, was declared as Coronavirus disease 2019 (COVID-19). Thousands of people have lost their lives to this disease. Its negative effects on public health are ongoing. In this study, an intelligence computer-aided model that can automatically detect positive COVID-19 cases is proposed to support daily clinical applications. The proposed model is based on the convolution neural network (CNN) architecture and can automatically reveal discriminative features on chest X-ray images through its convolution with rich filter families, abstraction, and weight-sharing characteristics. Contrary to the generally used transfer learning approach, the proposed deep CNN model was trained from scratch. Instead of the pre-trained CNNs, a novel serial network consisting of five convolution layers was designed. This CNN model was utilized as a deep feature extractor. The extracted deep discriminative features were used to feed the machine learning algorithms, which were k-nearest neighbor, support vector machine (SVM), and decision tree. The hyperparameters of the machine learning models were optimized using the Bayesian optimization algorithm. The experiments were conducted on a public COVID-19 radiology database. The database was divided into two parts as training and test sets with 70% and 30% rates, respectively. As a result, the most efficient results were ensured by the SVM classifier with an accuracy of 98.97%, a sensitivity of 89.39%, a specificity of 99.75%, and an F-score of 96.72%. Consequently, a cheap, fast, and reliable intelligence tool has been provided for COVID-19 infection detection. The developed model can be used to assist field specialists, physicians, and radiologists in the decision-making process. Thanks to the proposed tool, the misdiagnosis rates can be reduced, and the proposed model can be used as a retrospective evaluation tool to validate positive COVID-19 infection cases.
Collapse
Affiliation(s)
- Majid Nour
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zafer Cömert
- Department of Software Engineering, Engineering Faculty, Samsun University, Samsun, Turkey
| | - Kemal Polat
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, 14280, Bolu, Turkey
| |
Collapse
|
149
|
Albahli S, Albattah W. Deep Transfer Learning for COVID-19 Prediction: Case Study for Limited Data Problems. Curr Med Imaging 2020; 17:973-980. [PMID: 33231160 PMCID: PMC8653418 DOI: 10.2174/1573405616666201123120417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Automatic prediction of COVID-19 using deep convolution neural networks based pre-trained transfer models and Chest X-ray images. METHODS This research employs the advantages of computer vision and medical image analysis to develop an automated model that has the clinical potential for early detection of the disease. Using Deep Learning models, the research aims at evaluating the effectiveness and accuracy of different convolutional neural networks models in the automatic diagnosis of COVID-19 from X-ray images as compared to diagnosis performed by experts in the medical community. RESULTS Due to the fact that the dataset available for COVID-19 is still limited, the best model to use is the InceptionNetV3. Performance results show that the InceptionNetV3 model yielded the highest accuracy of 98.63% (with data augmentation) and 98.90% (without data augmentation) among the three models designed. However, as the dataset gets bigger, the Inception ResNetV2 and NASNetlarge will do a better job of classification. All the performed networks tend to over-fit when data augmentation is not used, this is due to the small amount of data used for training and validation. CONCLUSION A deep transfer learning is proposed to detecting the COVID-19 automatically from chest X-ray by training it with X-ray images gotten from both COVID-19 patients and people with normal chest X-rays. The study is aimed at helping doctors in making decisions in their clinical practice due its high performance and effectiveness, the study also gives an insight to how transfer learning was used to automatically detect the COVID-19.
Collapse
Affiliation(s)
- Saleh Albahli
- Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Albattah
- Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
150
|
Khadidos A, Khadidos AO, Kannan S, Natarajan Y, Mohanty SN, Tsaramirsis G. Analysis of COVID-19 Infections on a CT Image Using DeepSense Model. Front Public Health 2020; 8:599550. [PMID: 33330341 PMCID: PMC7714903 DOI: 10.3389/fpubh.2020.599550] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022] Open
Abstract
In this paper, a data mining model on a hybrid deep learning framework is designed to diagnose the medical conditions of patients infected with the coronavirus disease 2019 (COVID-19) virus. The hybrid deep learning model is designed as a combination of convolutional neural network (CNN) and recurrent neural network (RNN) and named as DeepSense method. It is designed as a series of layers to extract and classify the related features of COVID-19 infections from the lungs. The computerized tomography image is used as an input data, and hence, the classifier is designed to ease the process of classification on learning the multidimensional input data using the Expert Hidden layers. The validation of the model is conducted against the medical image datasets to predict the infections using deep learning classifiers. The results show that the DeepSense classifier offers accuracy in an improved manner than the conventional deep and machine learning classifiers. The proposed method is validated against three different datasets, where the training data are compared with 70%, 80%, and 90% training data. It specifically provides the quality of the diagnostic method adopted for the prediction of COVID-19 infections in a patient.
Collapse
Affiliation(s)
- Adil Khadidos
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa O Khadidos
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Srihari Kannan
- Department of Computer Science and Engineering, SNS College of Engineering, Coimbatore, India
| | - Yuvaraj Natarajan
- Research and Development, Information Communication Technology Academy, Chennai, India
| | - Sachi Nandan Mohanty
- Department of Computer Science and Engineering, Institute of Chartered Financial Analysts of India Foundation of Higher Education, Hyderabad, India
| | | |
Collapse
|