101
|
Normothermic and subnormothermic ex-vivo liver perfusion in liver transplantation. Curr Opin Organ Transplant 2016; 21:315-21. [DOI: 10.1097/mot.0000000000000305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
102
|
Reduction in circulating level of HMGB-1 following continuous renal replacement therapy in sepsis. Cytokine 2016; 83:206-209. [PMID: 27155819 DOI: 10.1016/j.cyto.2016.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 11/23/2022]
Abstract
Early recovery from shock improves prognosis in patients with severe sepsis and septic shock. During this period, cytokine imbalances mediate the development of organ damage and mortality. In Japan, we have access to hemoperfusion using an immobilized polymyxin B fiber column for endotoxin removal (PMX-DHP) and continuous hemodiafiltration (CHDF) as artificial support for patients with septic shock, with the aim of improving hemodynamics and organ dysfunction caused by elevated inflammatory cytokines and mediators. In this Short communication, we discuss recent findings showing anti-inflammatory treatment following these continuous renal replacement therapies in sepsis.
Collapse
|
103
|
Barbas AS, Goldaracena N, Dib MJ, Selzner M. Ex-vivo liver perfusion for organ preservation: Recent advances in the field. Transplant Rev (Orlando) 2016; 30:154-60. [PMID: 27158081 DOI: 10.1016/j.trre.2016.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 01/13/2023]
Abstract
Liver transplantation is the optimal treatment for end-stage liver disease but is limited by the severe shortage of donor organs. This shortage has prompted increased utilization of marginal grafts from DCD and extended criteria donors, which poorly tolerate cold storage in comparison to standard criteria grafts. Ex-vivo liver perfusion (EVLP) technology has emerged as a potential alternative to cold storage for organ preservation, but there is no consensus regarding the optimal temperature or conditions for EVLP. Herein, we review recent advances in both pre-clinical and clinical studies, organized by perfusion temperature (hypothermic, subnormothermic, normothermic).
Collapse
Affiliation(s)
- A S Barbas
- University of Toronto, Multi-Organ Transplant Program, Department of Surgery, Canada.
| | - N Goldaracena
- University of Toronto, Multi-Organ Transplant Program, Department of Surgery, Canada
| | - M J Dib
- University of Toronto, Multi-Organ Transplant Program, Department of Surgery, Canada
| | - M Selzner
- University of Toronto, Multi-Organ Transplant Program, Department of Surgery, Canada
| |
Collapse
|
104
|
Reply to 'Is single portal vein perfusion the best approach for machine preservation of liver grafts?'. J Hepatol 2016; 64:1195-1196. [PMID: 26845037 DOI: 10.1016/j.jhep.2016.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 01/06/2023]
|
105
|
Sutherland AI, Oniscu GC. Challenges and advances in optimizing liver allografts from donation after circulatory death donors. J Nat Sci Biol Med 2016; 7:10-5. [PMID: 27003962 PMCID: PMC4780154 DOI: 10.4103/0976-9668.175017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, there has been a shift in the donor demographics with an increase in donation after circulatory death (DCD). Livers obtained from DCD donors are known to have poorer outcomes when compared to donors after brainstem death and currently only a small proportion of DCD livers are used. This review outlines the recent technological developments in liver DCD donation, including clinical studies using normothermic regional perfusion and extracorporal machine perfusion of livers from DCD donors.
Collapse
Affiliation(s)
| | - Gabriel C Oniscu
- Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
106
|
First Comparison of Hypothermic Oxygenated PErfusion Versus Static Cold Storage of Human Donation After Cardiac Death Liver Transplants: An International-matched Case Analysis. Ann Surg 2016; 262:764-70; discussion 770-1. [PMID: 26583664 DOI: 10.1097/sla.0000000000001473] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Exposure of donor liver grafts to prolonged periods of warm ischemia before procurement causes injuries including intrahepatic cholangiopathy, which may lead to graft loss. Due to unavoidable prolonged ischemic time before procurement in donation after cardiac death (DCD) donation in 1 participating center, each liver graft of this center was pretreated with the new machine perfusion "Hypothermic Oxygenated PErfusion" (HOPE) in an attempt to improve graft quality before implantation. METHODS HOPE-treated DCD livers (n = 25) were matched and compared with normally preserved (static cold preservation) DCD liver grafts (n = 50) from 2 well-established European programs. Criteria for matching included duration of warm ischemia and key confounders summarized in the balance of risk score. In a second step, perfused and unperfused DCD livers were compared with liver grafts from standard brain dead donors (n = 50), also matched to the balance of risk score, serving as baseline controls. RESULTS HOPE treatment of DCD livers significantly decreased graft injury compared with matched cold-stored DCD livers regarding peak alanine-aminotransferase (1239 vs 2065 U/L, P = 0.02), intrahepatic cholangiopathy (0% vs 22%, P = 0.015), biliary complications (20% vs 46%, P = 0.042), and 1-year graft survival (90% vs 69%, P = 0.035). No graft failure due to intrahepatic cholangiopathy or nonfunction occurred in HOPE-treated livers, whereas 18% of unperfused DCD livers needed retransplantation. In addition, HOPE-perfused DCD livers achieved similar results as control donation after brain death livers in all investigated endpoints. CONCLUSIONS HOPE seems to offer important benefits in preserving higher-risk DCD liver grafts.
Collapse
|
107
|
Schlegel A, Kron P, De Oliveira ML, Clavien PA, Dutkowski P. Is single portal vein approach sufficient for hypothermic machine perfusion of DCD liver grafts? J Hepatol 2016; 64:239-41. [PMID: 26432684 DOI: 10.1016/j.jhep.2015.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/11/2015] [Accepted: 09/19/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Andrea Schlegel
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Philipp Kron
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Michelle L De Oliveira
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland.
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| |
Collapse
|
108
|
Pezzati D, Ghinolfi D, De Simone P, Balzano E, Filipponi F. Strategies to optimize the use of marginal donors in liver transplantation. World J Hepatol 2015; 7:2636-47. [PMID: 26609341 PMCID: PMC4651908 DOI: 10.4254/wjh.v7.i26.2636] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/04/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation is the treatment of choice for end stage liver disease, but availability of liver grafts is still the main limitation to its wider use. Extended criteria donors (ECD) are considered not ideal for several reasons but their use has dramatically grown in the last decades in order to augment the donor liver pool. Due to improvement in surgical and medical strategies, results using grafts from these donors have become acceptable in terms of survival and complications; nevertheless a big debate still exists regarding their selection, discharge criteria and allocation policies. Many studies analyzed the use of these grafts from many points of view producing different or contradictory results so that accepted guidelines do not exist and the use of these grafts is still related to non-standardized policies changing from center to center. The aim of this review is to analyze every step of the donation-transplantation process emphasizing all those strategies, both clinical and experimental, that can optimize results using ECD.
Collapse
Affiliation(s)
- Daniele Pezzati
- Daniele Pezzati, Davide Ghinolfi, Paolo De Simone, Emanuele Balzano, Franco Filipponi, Hepatobiliary Surgery and Liver Transplantation Unit, University of Pisa Medical School Hospital, 56124 Pisa, Italy
| | - Davide Ghinolfi
- Daniele Pezzati, Davide Ghinolfi, Paolo De Simone, Emanuele Balzano, Franco Filipponi, Hepatobiliary Surgery and Liver Transplantation Unit, University of Pisa Medical School Hospital, 56124 Pisa, Italy
| | - Paolo De Simone
- Daniele Pezzati, Davide Ghinolfi, Paolo De Simone, Emanuele Balzano, Franco Filipponi, Hepatobiliary Surgery and Liver Transplantation Unit, University of Pisa Medical School Hospital, 56124 Pisa, Italy
| | - Emanuele Balzano
- Daniele Pezzati, Davide Ghinolfi, Paolo De Simone, Emanuele Balzano, Franco Filipponi, Hepatobiliary Surgery and Liver Transplantation Unit, University of Pisa Medical School Hospital, 56124 Pisa, Italy
| | - Franco Filipponi
- Daniele Pezzati, Davide Ghinolfi, Paolo De Simone, Emanuele Balzano, Franco Filipponi, Hepatobiliary Surgery and Liver Transplantation Unit, University of Pisa Medical School Hospital, 56124 Pisa, Italy
| |
Collapse
|
109
|
Olthof PB, Reiniers MJ, Dirkes MC, Gulik TMV, Golen RFV. Protective Mechanisms of Hypothermia in Liver Surgery and Transplantation. Mol Med 2015; 21:833-846. [PMID: 26552060 DOI: 10.2119/molmed.2015.00158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a side effect of major liver surgery that often cannot be avoided. Prolonged periods of ischemia put a metabolic strain on hepatocytes and limit the tolerable ischemia and preservation times during liver resection and transplantation, respectively. In both surgical settings, temporarily lowering the metabolic demand of the organ by reducing organ temperature effectively counteracts the negative consequences of an ischemic insult. Despite its routine use, the application of liver cooling is predicated on an incomplete understanding of the underlying protective mechanisms, which has limited a uniform and widespread implementation of liver-cooling techniques. This review therefore addresses how hypothermia-induced hypometabolism modulates hepatocyte metabolism during ischemia and thereby reduces hepatic I/R injury. The mechanisms underlying hypothermia-mediated reduction in energy expenditure during ischemia and the attenuation of mitochondrial production of reactive oxygen species during early reperfusion are described. It is further addressed how hypothermia suppresses the sterile hepatic I/R immune response and preserves the metabolic functionality of hepatocytes. Lastly, a summary of the clinical status quo of the use of liver cooling for liver resection and transplantation is provided.
Collapse
Affiliation(s)
- Pim B Olthof
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Megan J Reiniers
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcel C Dirkes
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Thomas M van Gulik
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rowan F van Golen
- Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
110
|
Schlegel A, Dutkowski P. Hypothermic liver perfusion. Liver Transpl 2015; 21 Suppl 1:S8-12. [PMID: 26334767 DOI: 10.1002/lt.24321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Andrea Schlegel
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
111
|
Impact of Donation Mode on the Proportion and Function of T Lymphocytes in the Liver. PLoS One 2015; 10:e0139791. [PMID: 26513368 PMCID: PMC4626218 DOI: 10.1371/journal.pone.0139791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/17/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Liver T-cells respond to the inflammatory insult generated during organ procurement and contribute to the injury following reperfusion. The mode of liver donation alters various metabolic and inflammatory pathways but the way it affects intrahepatic T-cells is still unclear. METHODS We investigated the modifications occurring in the proportion and function of T-cells during liver procurement for transplantation. We isolated hepatic mononuclear cells (HMC) from liver perfusate of living donors (LD) and donors after brain death (DBD) or cardiac death (DCD) and assessed the frequency of T-cell subsets, their cytokine secretion profile and CD8 T-cell cytotoxicity function, responsiveness to a danger associated molecular pattern (High Mobility Group Box1, HMGB1) and association with donor and recipient clinical parameters and immediate graft outcome. RESULTS We found that T-cells in healthy human livers were enriched in memory CD8 T-cells exhibiting a phenotype of non-circulating tissue-associated lymphocytes, functionally dominated by more cytotoxicity and IFN-γ-production in DBD donors, including upon activation by HMGB1 and correlating with peak of post-transplant AST. This liver-specific pattern of CD8 T-cell was prominent in DBD livers compared to DCD and LD livers suggesting that it was influenced by events surrounding brain death, prior to retrieval. CONCLUSION Mode of liver donation can affect liver T-cells with increased liver damage in DBD donors. These findings may be relevant in designing therapeutic strategies aimed at organ optimization prior to transplantation.
Collapse
|
112
|
Westerkamp AC, Mahboub P, Meyer SL, Hottenrott M, Ottens PJ, Wiersema-Buist J, Gouw ASH, Lisman T, Leuvenink HGD, Porte RJ. End-ischemic machine perfusion reduces bile duct injury in donation after circulatory death rat donor livers independent of the machine perfusion temperature. Liver Transpl 2015; 21:1300-11. [PMID: 26097213 DOI: 10.1002/lt.24200] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/06/2015] [Accepted: 06/08/2015] [Indexed: 12/20/2022]
Abstract
A short period of oxygenated machine perfusion (MP) after static cold storage (SCS) may reduce biliary injury in donation after cardiac death (DCD) donor livers. However, the ideal perfusion temperature for protection of the bile ducts is unknown. In this study, the optimal perfusion temperature for protection of the bile ducts was assessed. DCD rat livers were preserved by SCS for 6 hours. Thereafter, 1 hour of oxygenated MP was performed using either hypothermic machine perfusion, subnormothermic machine perfusion, or with controlled oxygenated rewarming (COR) conditions. Subsequently, graft and bile duct viability were assessed during 2 hours of normothermic ex situ reperfusion. In the MP study groups, lower levels of transaminases, lactate dehydrogenase (LDH), and thiobarbituric acid reactive substances were measured compared to SCS. In parallel, mitochondrial oxygen consumption and adenosine triphosphate (ATP) production were significantly higher in the MP groups. Biomarkers of biliary function, including bile production, biliary bicarbonate concentration, and pH, were significantly higher in the MP groups, whereas biomarkers of biliary epithelial injury (biliary gamma-glutamyltransferase [GGT] and LDH), were significantly lower in MP preserved livers. Histological analysis revealed less injury of large bile duct epithelium in the MP groups compared to SCS. In conclusion, compared to SCS, end-ischemic oxygenated MP of DCD livers provides better preservation of biliary epithelial function and morphology, independent of the temperature at which MP is performed. End-ischemic oxygenated MP could reduce biliary injury after DCD liver transplantation.
Collapse
Affiliation(s)
- Andrie C Westerkamp
- Surgical Research Laboratory.,Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery
| | | | - Sophie L Meyer
- Surgical Research Laboratory.,Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery
| | | | | | | | - Annette S H Gouw
- Departments of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Surgical Research Laboratory.,Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery
| | | | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery
| |
Collapse
|
113
|
Li P, Liu YF, Yang L. Advantages of dual hypothermic oxygenated machine perfusion over simple cold storage in the preservation of liver from porcine donors after cardiac death. Clin Transplant 2015; 29:820-8. [PMID: 26147375 DOI: 10.1111/ctr.12586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Peng Li
- Department of Organ Transplantation; First Affiliated Hospital; China Medical University; Shenyang China
| | - Yong-Feng Liu
- Department of Organ Transplantation; First Affiliated Hospital; China Medical University; Shenyang China
| | - Lei Yang
- Department of Organ Transplantation; First Affiliated Hospital; China Medical University; Shenyang China
| |
Collapse
|
114
|
Amer AO, Probert PM, Dunn M, Knight M, Vallance AE, Flecknell PA, Oakley F, Cameron I, White SA, Blain PG, Wright MC. Sustained Isoprostane E2 Elevation, Inflammation and Fibrosis after Acute Ischaemia-Reperfusion Injury Are Reduced by Pregnane X Receptor Activation. PLoS One 2015; 10:e0136173. [PMID: 26302150 PMCID: PMC4547732 DOI: 10.1371/journal.pone.0136173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022] Open
Abstract
Liver grafts donated after cardiac death are increasingly used to expand the donor pool but are prone to ischaemic-type biliary lesions. The anti-inflammatory effects of the activated pregnane X receptor have previously been shown to be beneficial in a number of inflammatory liver conditions. However, its role in reducing peri-portal inflammation and fibrosis following ischaemia-reperfusion injury has not been investigated. Hepatic injury and its response to pregnane X receptor activation was examined after partial hepatic ischaemia-reperfusion injury induced by surgically clamping the left and middle lobar blood vessels in rats. Molecular and pathological changes in the liver were examined over the following 28 days. Ischaemia-reperfusion injury resulted in transient cholestasis associated with microvillar changes in biliary epithelial cell membranes and hepatocellular injury which resolved within days after reperfusion. However, in contrast to chemically-induced acute liver injuries, this was followed by sustained elevation in isoprostane E2, peri-portal inflammation and fibrosis that remained unresolved in the ischaemic reperfused lobe for at least 28 days after clamping. Administration of pregnenolone-16α-carbonitrile—a rodent-specific pregnane X receptor activator—resulted in significant reductions in cholestasis, hepatic injury, ischaemic lobe isoprostane E2 levels, peri-portal inflammation and fibrosis. Hepatic ischaemia-reperfusion injury therefore results in inflammatory and fibrotic changes that persist well beyond the initial ischaemic insult. Drug-mediated activation of the pregnane X receptor reduced these adverse changes in rats, suggesting that the pregnane X receptor is a viable drug target to reduce ischaemic-type biliary lesions in recipients of liver transplants donated after cardiac death.
Collapse
Affiliation(s)
- Aimen O Amer
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Philip M Probert
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Michael Dunn
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; Medical Toxicology Centre, Newcastle University, Newcastle, United Kingdom
| | - Margaret Knight
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; Medical Toxicology Centre, Newcastle University, Newcastle, United Kingdom
| | - Abigail E Vallance
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Paul A Flecknell
- Comparative Biology Centre, Newcastle University, Newcastle, United Kingdom
| | - Fiona Oakley
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Iain Cameron
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; Department of Pathology, Altnagelvin Hospital, Londonderry, United Kingdom
| | - Steven A White
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Peter G Blain
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; Medical Toxicology Centre, Newcastle University, Newcastle, United Kingdom
| | - Matthew C Wright
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
115
|
Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Molecular pathways in protecting the liver from ischaemia/reperfusion injury: a 2015 update. Clin Sci (Lond) 2015; 129:345-362. [PMID: 26014222 DOI: 10.1042/cs20150223] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischaemia/reperfusion injury is an important cause of liver damage during surgical procedures such as hepatic resection and liver transplantation, and represents the main cause of graft dysfunction post-transplantation. Molecular processes occurring during hepatic ischaemia/reperfusion are diverse, and continuously include new and complex mechanisms. The present review aims to summarize the newest concepts and hypotheses regarding the pathophysiology of liver ischaemia/reperfusion, making clear distinction between situations of cold and warm ischaemia. Moreover, the most updated therapeutic strategies including pharmacological, genetic and surgical interventions, as well as some of the scientific controversies in the field are described.
Collapse
Affiliation(s)
- Jordi Gracia-Sancho
- *Barcelona Hepatic Hemodynamic Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Araní Casillas-Ramírez
- †Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Carmen Peralta
- †Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
116
|
Weeder PD, van Rijn R, Porte RJ. Machine perfusion in liver transplantation as a tool to prevent non-anastomotic biliary strictures: Rationale, current evidence and future directions. J Hepatol 2015; 63:265-75. [PMID: 25770660 DOI: 10.1016/j.jhep.2015.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 02/08/2023]
Abstract
The high incidence of non-anastomotic biliary strictures (NAS) after transplantation of livers from extended criteria donors is currently a major barrier to widespread use of these organs. This review provides an update on the most recent advances in the understanding of the etiology of NAS. These new insights give reason to believe that machine perfusion can reduce the incidence of NAS after transplantation by providing more protective effects on the biliary tree during preservation of the donor liver. An overview is presented regarding the different endpoints that have been used for assessment of biliary injury and function before and after transplantation, emphasizing on methods used during machine perfusion. The wide spectrum of different approaches to machine perfusion is discussed, including the many different combinations of techniques, temperatures and perfusates at varying time points. In addition, the current understanding of the effect of machine perfusion in relation to biliary injury is reviewed. Finally, we explore directions for future research such as the application of (pharmacological) strategies during machine perfusion to further improve preservation. We stress the great potential of machine perfusion to possibly expand the donor pool by reducing the incidence of NAS in extended criteria organs.
Collapse
Affiliation(s)
- Pepijn D Weeder
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rianne van Rijn
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
117
|
Schlegel A, Kron P, Dutkowski P. Hypothermic Oxygenated Liver Perfusion: Basic Mechanisms and Clinical Application. CURRENT TRANSPLANTATION REPORTS 2015; 2:52-62. [PMID: 26097802 PMCID: PMC4469295 DOI: 10.1007/s40472-014-0046-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic preservation strategies such as hypothermic machine perfusion are increasingly discussed to improve liver graft quality before transplantation. This review summarizes current knowledge of this perfusion technique for liver preservation. We discuss optimization of perfusion conditions and current strategies to assess graft quality during cold perfusion. Next, we provide an overview of possible pathways of protection from ischemia-reperfusion injury. Finally, we report on recent clinical applications of human hypothermic machine liver perfusion.
Collapse
Affiliation(s)
- A. Schlegel
- Department of Surgery and Transplantation, University Hospital Zürich, Raemistr. 100, 8091 Zurich, Switzerland
| | - P. Kron
- Department of Surgery and Transplantation, University Hospital Zürich, Raemistr. 100, 8091 Zurich, Switzerland
| | - P. Dutkowski
- Department of Surgery and Transplantation, University Hospital Zürich, Raemistr. 100, 8091 Zurich, Switzerland
| |
Collapse
|
118
|
Hypothermic Oxygenated Perfusion (HOPE) downregulates the immune response in a rat model of liver transplantation. Ann Surg 2015; 260:931-7; discussion 937-8. [PMID: 25243553 DOI: 10.1097/sla.0000000000000941] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the impact of a novel oxygenated perfusion approach on rejection after orthotopic liver transplantation (OLT). BACKGROUND Hypothermic oxygenated perfusion (HOPE) was designed to prevent graft failure after OLT. One of the mechanisms is downregulation of Kupffer cells (in situ macrophages). We, therefore, designed experiments to test the effects of HOPE on the immune response in an allogeneic rodent model of nonarterialized OLT. METHODS Livers from Lewis rats were transplanted into Brown Norway rats to induce liver rejection in untreated recipients within 4 weeks. Next, Brown Norway recipients were treated with tacrolimus (1 mg/kg), whereas in a third group, liver grafts from Lewis rats underwent HOPE or deoxygenated machine perfusion for 1 hour before implantation, but recipients received no immunosuppression. In a last step, low-dose tacrolimus treatment (0.3 mg/kg) was assessed with and without HOPE. RESULTS Allogeneic OLT without immunosuppression led to death within 3 weeks after nonarterialized OLT due to severe acute rejection. Full-dose tacrolimus prevented rejection, whereas low-dose tacrolimus led to graft fibrosis within 4 weeks. HOPE treatment without immunosuppression also protected from lethal rejection. The combination of low-dose tacrolimus and 1-hour HOPE resulted in 100% survival within 4 weeks without any signs of rejection. CONCLUSIONS We demonstrate that allograft treatment by HOPE not only protects against preservation injury but also impressively downregulates the immune system, blunting the alloimmune response. Therefore, HOPE may offer many beneficial effects, not only to rescue marginal grafts but also by preventing rejection and the need for immunosuppression.
Collapse
|
119
|
Abstract
The current standard for liver preservation involves cooling of the organ on ice (0-4 °C). Although it is successful for shorter durations, this method of preservation does not allow long-term storage of the liver. The gradual loss of hepatic viability during preservation puts pressure on organ sharing and allocation, may limit the use of suboptimal grafts and necessitates rushed transplantation to achieve desirable post-transplantation outcomes. In an attempt to improve and prolong liver viability during storage, alternative preservation methods are under investigation. For instance, ex vivo machine perfusion systems aim to sustain and even improve viability by supporting hepatic function at warm temperatures, rather than simply slowing down deterioration by cooling. Here we describe a novel subzero preservation technique that combines ex vivo machine perfusion with cryoprotectants to facilitate long-term supercooled preservation. The technique improves the preservation of rat livers to prolong storage times as much as threefold, which is validated by successful long-term recipient survival after orthotopic transplantation. This protocol describes how to load rat livers with cryoprotectants to prevent both intracellular and extracellular ice formation and to protect against hypothermic injury. Cryoprotectants are loaded ex vivo using subnormothermic machine perfusion (SNMP), after which livers can be cooled to -6 °C without freezing and kept viable for up to 96 h. Cooling to a supercooled state is controlled, followed by 3 h of SNMP recovery and orthotopic liver transplantation.
Collapse
|
120
|
Dutkowski P, Linecker M, DeOliveira ML, Müllhaupt B, Clavien PA. Challenges to liver transplantation and strategies to improve outcomes. Gastroenterology 2015; 148:307-23. [PMID: 25224524 DOI: 10.1053/j.gastro.2014.08.045] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 02/07/2023]
Abstract
Liver transplantation (LT) is a highly successful treatment for many patients with nonmalignant and malignant liver diseases. However, there is a worldwide shortage of available organs; many patients deteriorate or die while on waiting lists. We review the important clinical challenges to LT and the best use of the scarce organs. We focus on changes in indications for LT and discuss scoring systems to best match donors with recipients and optimize outcomes, particularly for the sickest patients. We also cover controversial guidelines for the use of LT in patients with hepatocellular carcinoma and cholangiocarcinoma. Strategies to increase the number of functional donor organs involve techniques to perfuse the organs before implantation. Partial LT (living donor and split liver transplantation) techniques might help to overcome organ shortages, and we discuss small-for-size syndrome. Many new developments could increase the success of this procedure, which is already one of the major achievements in medicine during the second part of the 20th century.
Collapse
Affiliation(s)
- Philipp Dutkowski
- Swiss HPB and Transplantation Center, Departments of Surgery and Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Michael Linecker
- Swiss HPB and Transplantation Center, Departments of Surgery and Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Michelle L DeOliveira
- Swiss HPB and Transplantation Center, Departments of Surgery and Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Beat Müllhaupt
- Swiss HPB and Transplantation Center, Departments of Surgery and Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Swiss HPB and Transplantation Center, Departments of Surgery and Medicine, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
121
|
Adam R, Delvart V, Karam V, Ducerf C, Navarro F, Letoublon C, Belghiti J, Pezet D, Castaing D, Le Treut YP, Gugenheim J, Bachellier P, Pirenne J, Muiesan P. Compared efficacy of preservation solutions in liver transplantation: a long-term graft outcome study from the European Liver Transplant Registry. Am J Transplant 2015; 15:395-406. [PMID: 25612492 DOI: 10.1111/ajt.13060] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 01/25/2023]
Abstract
Between 2003 and 2012, 42 869 first liver transplantations performed in Europe with the use of either University of Wisconsin solution (UW; N = 24 562), histidine-tryptophan-ketoglutarate(HTK; N = 8696), Celsior solution (CE; N = 7756) or Institute Georges Lopez preservation solution (IGL-1; N = 1855) preserved grafts. Alternative solutions to the UW were increasingly used during the last decade. Overall, 3-year graft survival was higher with UW, IGL-1 and CE (75%, 75% and 73%, respectively), compared to the HTK (69%) (p < 0.0001). The same trend was observed with a total ischemia time (TIT) >12 h or grafts used for patients with cancer (p < 0.0001). For partial grafts, 3-year graft survival was 89% for IGL-1, 67% for UW, 68% for CE and 64% for HTK (p = 0.009). Multivariate analysis identified HTK as an independent factor of graft loss, with recipient HIV (+), donor age ≥65 years, recipient HCV (+), main disease acute hepatic failure, use of a partial liver graft, recipient age ≥60 years, no identical ABO compatibility, recipient hepatitis B surface antigen (-), TIT ≥ 12 h, male recipient and main disease other than cirrhosis. HTK appears to be an independent risk factor of graft loss. Both UW and IGL-1, and CE to a lesser extent, provides similar results for full size grafts. For partial deceased donor liver grafts, IGL-1 tends to offer the best graft outcome.
Collapse
Affiliation(s)
- R Adam
- Centre Hépatobiliaire, AP-HP Hôpital Paul Brousse, Inserm U 776, Univ Paris Sud, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
PURPOSE OF REVIEW This review considers the biliary complications associated with liver transplantation using donation after cardiac death (DCD) donor grafts. RECENT FINDINGS The increasing use of DCD liver grafts with their increased incidence of biliary complications is discussed. The ethics of this greater use is briefly analysed. Recent animal and human study evidence to support the peribiliary vascular plexus' role in ischaemic cholangiopathy is reviewed. Recent advances in in-vivo and ex-vivo perfusion are explored. In particular, the latest theories regarding perfusion's peribiliary plexus preserving effects and the mechanism by which biliary regeneration may be promoted as a consequence are discussed. SUMMARY This article explores the need for DCD liver graft use and the associated biliary complications. The current theories regarding the cause of DCD biliary complications are reviewed, as are the current strategies to reduce them.
Collapse
|
123
|
Bejaoui M, Pantazi E, Folch-Puy E, Baptista PM, García-Gil A, Adam R, Roselló-Catafau J. Emerging concepts in liver graft preservation. World J Gastroenterol 2015; 21:396-407. [PMID: 25593455 PMCID: PMC4292271 DOI: 10.3748/wjg.v21.i2.396] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/24/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023] Open
Abstract
The urgent need to expand the donor pool in order to attend to the growing demand for liver transplantation has obliged physicians to consider the use of suboptimal liver grafts and also to redefine the preservation strategies. This review examines the different methods of liver graft preservation, focusing on the latest advances in both static cold storage and machine perfusion (MP). The new strategies for static cold storage are mainly designed to increase the fatty liver graft preservation via the supplementation of commercial organ preservation solutions with additives. In this paper we stress the importance of carrying out effective graft washout after static cold preservation, and present a detailed discussion of the future perspectives for dynamic graft preservation using MP at different temperatures (hypothermia at 4 °C, normothermia at 37 °C and subnormothermia at 20 °C-25 °C). Finally, we highlight some emerging applications of regenerative medicine in liver graft preservation. In conclusion, this review discusses the "state of the art" and future perspectives in static and dynamic liver graft preservation in order to improve graft viability.
Collapse
|
124
|
Schlegel A, Kron P, Graf R, Dutkowski P, Clavien PA. Warm vs. cold perfusion techniques to rescue rodent liver grafts. J Hepatol 2014; 61:1267-75. [PMID: 25086285 DOI: 10.1016/j.jhep.2014.07.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/26/2014] [Accepted: 07/15/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS A variety of liver perfusion techniques have been proposed to protect liver grafts prior to implantation. We compared hypothermic and normothermic oxygenated perfusion techniques in a rat liver transplant model, using higher risk grafts obtained after cardiac arrest (DCD). METHODS Rat livers were subjected to 30 or 60 min in situ warm ischemia, without application of heparin. Livers were excised and stored for 4 h at 4°C, mimicking DCD organ procurement, followed by conventional organ transport. In experimental groups, DCD liver grafts received a 4 h normothermic oxygenated perfusion through the portal vein and the hepatic artery instead of cold storage. The perfusate consisted of either full blood or leukocyte-depleted blood (normothermic groups). Other livers underwent hypothermic oxygenated perfusion (HOPE) for 1 h after warm ischemia and 4 h cold storage (HOPE group). Liver injury was assessed during machine perfusion and after isolated liver reperfusion, and by orthotopic liver transplantation (OLT). RESULTS DCD livers, subjected to normothermic perfusion, disclosed reduced injury and improved survival compared to cold storage after limited warm ischemia of 30 min (70%; 7/10), but failed to protect from lethal injury in grafts exposed to 60 min warm ischemia (0%; 0/10). This finding was consistent with Kupffer and endothelial cell activation in cold stored and normothermic perfused livers. In contrast, HOPE protected from hepatocyte and non-parenchymal cell injury and led to 90% (9/10) and 63% (5/8) animal survival after 30 and 60 min of donor warm ischemia, respectively. CONCLUSIONS This is the first evidence that HOPE is superior to normothermic oxygenated perfusion in a clinically relevant model through modulation of the innate immunity and endothelial cell activation.
Collapse
Affiliation(s)
- Andrea Schlegel
- Department of Surgery, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Philipp Kron
- Department of Surgery, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Rolf Graf
- Department of Surgery, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland.
| |
Collapse
|
125
|
Shimada S, Fukai M, Wakayama K, Ishikawa T, Kobayashi N, Kimura T, Yamashita K, Kamiyama T, Shimamura T, Taketomi A, Todo S. Hydrogen sulfide augments survival signals in warm ischemia and reperfusion of the mouse liver. Surg Today 2014; 45:892-903. [PMID: 25362520 DOI: 10.1007/s00595-014-1064-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/19/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Hydrogen sulfide (H2S) ameliorates hepatic ischemia and reperfusion injury (IRI), but the precise mechanism remains elusive. We investigated whether sodium hydrogen sulfide (NaHS), a soluble derivative of H2S, would ameliorate hepatic IRI, and if so, via what mechanism. METHODS Mice were subjected to partial warm ischemia for 75 min followed by reperfusion. Either NaHS or saline was administered intravenously 10 min before reperfusion. The liver and serum were collected 3, 6, and 24 h after reperfusion. RESULTS In the NaHS(-) group, severe IRI was apparent by the ALT leakage, tissue injury score, apoptosis, lipid peroxidation, and inflammation (higher plasma TNF-α, IL-6, IL-1β, IFN-γ, IL-23, IL-17, and CD40L), whereas IRI was significantly ameliorated in the NaHS(+) group. These effects could be explained by the augmented nuclear translocation of Nrf2, and the resulting up-regulation of HO-1 and thioredoxin-1. Phosphorylation of the PDK-1/Akt/mTOR/p70S6k axis, which is known to mediate pro-survival and anti-apoptotic signals, was significantly augmented in the NaHS(+) group, with a higher rate of PCNA-positive cells thereafter. CONCLUSION NaHS ameliorated hepatic IRI by direct and indirect anti-oxidant activities by augmenting pro-survival, anti-apoptotic, and anti-inflammatory signals via mechanisms involving Nrf-2, and by accelerating hepatic regeneration via mechanisms involving Akt-p70S6k.
Collapse
Affiliation(s)
- Shingo Shimada
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Knaak JM, Spetzler VN, Goldaracena N, Boehnert MU, Bazerbachi F, Louis KS, Adeyi OA, Minkovich L, Yip PM, Keshavjee S, Levy GA, Grant DR, Selzner N, Selzner M. Subnormothermic ex vivo liver perfusion reduces endothelial cell and bile duct injury after donation after cardiac death pig liver transplantation. Liver Transpl 2014; 20:1296-305. [PMID: 25179693 DOI: 10.1002/lt.23986] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/18/2014] [Accepted: 08/11/2014] [Indexed: 12/18/2022]
Abstract
An ischemic-type biliary stricture (ITBS) is a common feature after liver transplantation using donation after cardiac death (DCD) grafts. We compared sequential subnormothermic ex vivo liver perfusion (SNEVLP; 33°C) with cold storage (CS) for the prevention of ITBS in DCD liver grafts in pig liver transplantation (n = 5 for each group). Liver grafts were stored for 10 hours at 4°C (CS) or preserved with combined 7-hour CS and 3-hour SNEVLP. Parameters of hepatocyte [aspartate aminotransferase (AST), international normalized ratio (INR), factor V, and caspase 3 immunohistochemistry], endothelial cell (EC; CD31 immunohistochemistry and hyaluronic acid), and biliary injury and function [alkaline phosphatase (ALP), total bilirubin, and bile lactate dehydrogenase (LDH)] were determined. Long-term survival (7 days) after transplantation was similar between the SNEVLP and CS groups (60% versus 40%, P = 0.13). No difference was observed between SNEVLP- and CS-treated animals with respect to the peak of serum INR, factor V, or AST levels within 24 hours. CD31 staining 8 hours after transplantation demonstrated intact EC lining in SNEVLP-treated livers (7.3 × 10(-4) ± 2.6 × 10(-4) cells/μm(2)) but not in CS-treated livers (3.7 × 10(-4) ± 1.3 × 10(-4) cells/μm(2) , P = 0.03). Posttransplant SNEVLP animals had decreased serum ALP and serum bilirubin levels in comparison with CS animals. In addition, LDH in bile fluid was lower in SNEVLP pigs versus CS pigs (14 ± 10 versus 60 ± 18 μmol/L, P = 0.02). Bile duct histology revealed severe bile duct necrosis in 3 of 5 animals in the CS group but none in the SNEVLP group (P = 0.03). Sequential SNEVLP preservation of DCD grafts reduces bile duct and EC injury after liver transplantation.
Collapse
Affiliation(s)
- Jan M Knaak
- Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Chen L, Chen G, Guo Y, Liu L, Xiao L, Fan W, Shi B, Qian Y. Ketanserin, a serotonin 2A receptor antagonist, alleviates ischemia-related biliary fibrosis following donation after cardiac death liver transplantation in rats. Liver Transpl 2014; 20:1317-1326. [PMID: 25045122 DOI: 10.1002/lt.23947] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/02/2014] [Indexed: 12/21/2022]
Abstract
Biliary fibrosis is a major complication after donation after cardiac death (DCD) liver transplantation. In this process, the roles of serotonin [5-hydroxytryptamine (5-HT)] and the 5-HT2A receptor subtype are still unknown. In this study, we analyzed markers of portal fibroblast (PF)/myofibroblast (MF) transdifferentiation such as transforming growth factor β1 (TGF-β1), phosphorylated smad2/3, α-smooth muscle actin (α-SMA), collagen I, and collagen III in a primary culture system of PFs after the administration of 5-HT or 5-HT plus ketanserin (a selective 5-HT2A receptor antagonist). A rat DCD transplant model was established with 30 minutes of warm ischemia and 4 hours of cold ischemia during organ procurement. Recipients were intraperitoneally injected with ketanserin (1 mg·kg(-1)·day(-1)) or normal saline. Grafts without in situ warm ischemia instead of minimal cold storage (30 minutes) served as controls. The serum biochemistry, the liver contents of 5-HT and hydroxyproline (HYP), and the expression of fibrosis-related genes (including TGF-β1, matrix metalloproteinase 2, procollagen α1, and α-SMA messenger RNA) were determined. The extent of biliary fibrosis was also assessed histopathologically. The results indicated that ketanserin inhibited 5-HT-activated TGF-β1-smad2/3 signaling in vitro and thereby depressed the MF conversion of PFs. Rats receiving DCD livers showed increased liver contents of 5-HT and HYP, impaired biliary function, up-regulation of fibrosis-related genes, and aggravated biliary fibrosis. However, these phenomena were alleviated by treatment with ketanserin. We concluded that the profibrotic activity of 5-HT occurred through the activation of TGF-β1 signaling and the 5-HT2A receptor. Thus, these data suggest that the 5-HT2A receptor may be a potential therapeutic target for ischemia-related biliary fibrosis after DCD liver transplantation.
Collapse
Affiliation(s)
- Liping Chen
- Institute of Organ Transplantation, the 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Reply to: "pre-retrieval reperfusion decreases cancer recurrence after rat ischemic liver graft transplantation". J Hepatol 2014; 61:962-3. [PMID: 24950481 DOI: 10.1016/j.jhep.2014.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 06/08/2014] [Indexed: 12/04/2022]
|
129
|
Verhoeven CJ, Farid WRR, de Jonge J, Metselaar HJ, Kazemier G, van der Laan LJW. Biomarkers to assess graft quality during conventional and machine preservation in liver transplantation. J Hepatol 2014; 61:672-84. [PMID: 24798616 DOI: 10.1016/j.jhep.2014.04.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/11/2014] [Accepted: 04/24/2014] [Indexed: 02/08/2023]
Abstract
A global rising organ shortage necessitates the use of extended criteria donors (ECD) for liver transplantation (LT). However, poor preservation and extensive ischemic injury of ECD grafts have been recognized as important factors associated with primary non-function, early allograft dysfunction, and biliary complications after LT. In order to prevent for these ischemia-related complications, machine perfusion (MP) has gained interest as a technique to optimize preservation of grafts and to provide the opportunity to assess graft quality by screening for extensive ischemic injury. For this purpose, however, objective surrogate biomarkers are required which can be easily determined at time of graft preservation and the various techniques of MP. This review provides an overview and evaluation of biomarkers that have been investigated for the assessment of graft quality and viability testing during different types of MP. Moreover, studies regarding conventional graft preservation by static cold storage (SCS) were screened to identify biomarkers that correlated with either allograft dysfunction or biliary complications after LT and which could potentially be applied as predictive markers during MP. The pros and cons of the different biomaterials that are available for biomarker research during graft preservation are discussed, accompanied with suggestions for future research. Though many studies are currently still in the experimental setting or of low evidence level due to small cohort sizes, the biomarkers presented in this review provide a useful handle to monitor recovery of ECD grafts during clinical MP in the near future.
Collapse
Affiliation(s)
- Cornelia J Verhoeven
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Waqar R R Farid
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology & Hepatology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands.
| | - Geert Kazemier
- Department of Surgery, VU University Medical Center Amsterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
130
|
Bazerbachi F, Selzner N, Seal JB, Selzner M. Liver transplantation with grafts obtained after cardiac death-current advances in mastering the challenge. World J Transl Med 2014; 3:58-68. [DOI: 10.5528/wjtm.v3.i2.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/11/2014] [Accepted: 07/17/2014] [Indexed: 02/05/2023] Open
Abstract
The scarcity of donor livers has increased the interest in donation after cardiac death (DCD) as an additional pool to expand the availability of organs. However, the initial results of liver transplantation with DCD grafts have been suboptimal due to an increased rate of complications, as well as decreased graft survival. These challenges have led to many developments in DCD donation outcome, as well as basic and translational research. In this article we review the unique characteristics of DCD donors, nuances of DCD organ procurement, the effect of prolonged warm and cold ischemia times, and discuss major studies that compared DCD to donation after brain death liver transplantation, in terms of outcomes and complications. We also review the different methods of donor treatment that has been applied to ameliorate DCD organ outcome, and we discuss the role of machine perfusion techniques in organ reconditioning. We discuss the two major perfusion models, namely, hypothermic machine perfusion and normothermic machine perfusion; we compare both methods, and delineate their major differences.
Collapse
|
131
|
Graham JA, Guarrera JV. "Resuscitation" of marginal liver allografts for transplantation with machine perfusion technology. J Hepatol 2014; 61:418-31. [PMID: 24768755 DOI: 10.1016/j.jhep.2014.04.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 04/13/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022]
Abstract
As the rate of medically suitable donors remains relatively static worldwide, clinicians have looked to novel methods to meet the ever-growing demand of the liver transplant waiting lists worldwide. Accordingly, the transplant community has explored many strategies to offset this deficit. Advances in technology that target the ex vivo "preservation" period may help increase the donor pool by augmenting the utilization and improving the outcomes of marginal livers. Novel ex vivo techniques such as hypothermic, normothermic, and subnormothermic machine perfusion may be useful to "resuscitate" marginal organs by reducing ischemia/reperfusion injury. Moreover, other preservation techniques such as oxygen persufflation are explored as they may also have a role in improving function of "marginal" liver allografts. Currently, marginal livers are frequently discarded or can relegate the patient to early allograft dysfunction and primary non-function. Bench to bedside advances are rapidly emerging and hold promise for expanding liver transplantation access and improving outcomes.
Collapse
Affiliation(s)
- Jay A Graham
- Center for Liver Disease and Transplantation, Department of Surgery, Columbia University College of Physicians and Surgeons and New York Presbyterian Hospital, New York, NY 10032, USA
| | - James V Guarrera
- Center for Liver Disease and Transplantation, Department of Surgery, Columbia University College of Physicians and Surgeons and New York Presbyterian Hospital, New York, NY 10032, USA.
| |
Collapse
|
132
|
Schlegel A, Dutkowski P. Role of hypothermic machine perfusion in liver transplantation. Transpl Int 2014; 28:677-89. [PMID: 24852621 DOI: 10.1111/tri.12354] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/05/2014] [Accepted: 05/19/2014] [Indexed: 12/15/2022]
Abstract
Machine liver perfusion has significantly evolved during the last ten years to optimize extended criteria liver grafts and to address the worldwide organ shortage. This review gives an overview on available ex vivo and in vivo data on hypothermic machine liver perfusion. We discuss also possible protective pathways and show most recent clinical applications of hypothermic machine liver perfusion in human.
Collapse
Affiliation(s)
- Andrea Schlegel
- Department of Visceral Surgery and Transplantation, Swiss HPB and Transplant Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, Swiss HPB and Transplant Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
133
|
Bruinsma B, Yeh H, Özer S, Martins P, Farmer A, Wu W, Saeidi N, op den Dries S, Berendsen T, Smith R, Markmann J, Porte R, Yarmush M, Uygun K, Izamis M. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am J Transplant 2014; 14:1400-9. [PMID: 24758155 PMCID: PMC4470578 DOI: 10.1111/ajt.12727] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/25/2023]
Abstract
To reduce widespread shortages, attempts are made to use more marginal livers for transplantation. Many of these grafts are discarded for fear of inferior survival rates or biliary complications. Recent advances in organ preservation have shown that ex vivo subnormothermic machine perfusion has the potential to improve preservation and recover marginal livers pretransplantation. To determine the feasibility in human livers, we assessed the effect of 3 h of oxygenated subnormothermic machine perfusion (21°C) on seven livers discarded for transplantation. Biochemical and microscopic assessment revealed minimal injury sustained during perfusion. Improved oxygen uptake (1.30 [1.11-1.94] to 6.74 [4.15-8.16] mL O2 /min kg liver), lactate levels (4.04 [3.70-5.99] to 2.29 [1.20-3.43] mmol/L) and adenosine triphosphate content (45.0 [70.6-87.5] pmol/mg preperfusion to 167.5 [151.5-237.2] pmol/mg after perfusion) were observed. Liver function, reflected by urea, albumin and bile production, was seen during perfusion. Bile production increased and the composition of bile (bile salts/phospholipid ratio, pH and bicarbonate concentration) became more favorable. In conclusion, ex vivo subnormothermic machine perfusion effectively maintains liver function with minimal injury and sustains or improves various hepatobiliary parameters postischemia.
Collapse
Affiliation(s)
- B.G. Bruinsma
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - H. Yeh
- Transplant Center, Massachusetts General Hospital, Boston, MA, USA
| | - S Özer
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - P.N. Martins
- Organ Transplant Surgery, UMass Memorial Medical Center, Boston, MA, USA
| | - A. Farmer
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - W. Wu
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - N. Saeidi
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - S. op den Dries
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - T.A. Berendsen
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - R.N. Smith
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - J.F. Markmann
- Transplant Center, Massachusetts General Hospital, Boston, MA, USA
| | - R. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M.L. Yarmush
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - K. Uygun
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Corresponding authors Korkut Uygun, PhD , Maria-Louisa Izamis, PhD
| | - M.L. Izamis
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Corresponding authors Korkut Uygun, PhD , Maria-Louisa Izamis, PhD
| |
Collapse
|
134
|
Goldberg DS, Abt PL. Improving outcomes in DCDD liver transplantation: there can only be strength in numbers. Am J Transplant 2014; 14:1016-20. [PMID: 24712410 DOI: 10.1111/ajt.12697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/21/2014] [Accepted: 02/04/2014] [Indexed: 01/25/2023]
Abstract
In the United States, liver transplantation using donation after circulatory determination of death (DCDD) donors is challenged by persistently inferior graft survival compared with donation after neurological death (DND), along with declining rates of liver transplantation relative to the total number of DCDD donors. Advances in adult-to-adult living donor liver transplantation graft survival temporally related to the Adult-to-Adult Living Donor Liver Transplantation Cohort Study consortium suggest that a similarly focused collaborative effort may serve to stimulate evolution within DCDD liver transplantation. Without a multi-center consortium to support innovative trials, the current state of DCDD liver transplantation is unlikely to progress.
Collapse
Affiliation(s)
- D S Goldberg
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
135
|
Dutkowski P, Schlegel A, de Oliveira M, Müllhaupt B, Neff F, Clavien PA. HOPE for human liver grafts obtained from donors after cardiac death. J Hepatol 2014; 60:765-72. [PMID: 24295869 DOI: 10.1016/j.jhep.2013.11.023] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Due to ethical rules in most countries, long ischemia times are unavoidable prior to organ procurement of donors without a heartbeat, which can cause early graft failure after liver transplantation or late biliary strictures. Hypothermic oxygenated machine perfusion, used prior to graft implantation, may rescue these high risk organs. METHODS Eight patients with end stage liver diseases received human livers, obtained after controlled cardiac death (Maastricht category III), with a median donor warm ischemia time of 38 min, followed by a standard cold flush and static storage at 4 °C. Hypothermic oxygenated perfusion (HOPE) was applied for 1-2h prior to implantation through the portal vein. The HOPE-perfusate was cooled at 10 °C and oxygenated (pO2 60 kPa) using an ECOPS device (Organ Assist®). Perfusion pressure was maintained below 3 mmHg. RESULTS Each machine perfused liver graft disclosed excellent early function after transplantation. The release of liver enzymes and kidney function, as well as ICU and hospital stays were comparable or better than in matched liver grafts from brain death donors. No evidence of intrahepatic biliary complications could be documented within a median follow up of 8.5 months. CONCLUSIONS This is the first report on cold machine perfusion of human liver grafts obtained after cardiac arrest and subsequent transplantation. Application of HOPE appears well tolerated, easy-to-use, and protective against early and later injuries.
Collapse
Affiliation(s)
- Philipp Dutkowski
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland
| | - Andrea Schlegel
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland
| | - Michelle de Oliveira
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland
| | - Beat Müllhaupt
- Department of Hepatology and Gastroenterology, University Hospital Zurich, Switzerland
| | - Fabienne Neff
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery & Transplantation, University Hospital Zurich, Switzerland.
| |
Collapse
|
136
|
Keutgen XM, Petrowsky H. Procurement for visceral organ transplantation. Curr Opin Organ Transplant 2014; 19:92-9. [DOI: 10.1097/mot.0000000000000066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
137
|
Bruinsma BG, Yarmush ML, Uygun K. Organomatics and organometrics: Novel platforms for long-term whole-organ culture. TECHNOLOGY 2014; 2:13. [PMID: 25035864 PMCID: PMC4097862 DOI: 10.1142/s2339547814300029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Organ culture systems are instrumental as experimental whole-organ models of physiology and disease, as well as preservation modalities facilitating organ replacement therapies such as transplantation. Nevertheless, a coordinated system of machine perfusion components and integrated regulatory control has yet to be fully developed to achieve long-term maintenance of organ function ex vivo. Here we outline current strategies for organ culture, or organomatics, and how these systems can be regulated by means of computational algorithms, or organometrics, to achieve the organ culture platforms anticipated in modern-day biomedicine.
Collapse
|