101
|
Liao M, Li C, Hu C, Ding J. Copper-binding proteins genes set predicting the overall survival and immune infiltration in hepatocellular carcinoma by bioinformatic analysis. Biochem Biophys Rep 2023; 34:101466. [PMID: 37125079 PMCID: PMC10130086 DOI: 10.1016/j.bbrep.2023.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Abnormal Copper (Cu) accumulation shared a close association with hepatocellular carcinoma (HCC), but the regulatory role of Copper-binding proteins in HCC remains largely unknown. The aim of study was to identify the potential regulatory role of Cu-binding proteins, including copper homeostasis maintainer and the downstream effectors of Cu, in the progression of HCC. We conducted a comprehensive bioinformatic analysis of Cu-binding proteins in HCC using data from TCGA and ICGC database. Univariate cox regression analysis was conducted, and four prognostic Cu-binding proteins was identified to be differentially expressed between the normal liver tissues and HCC tissues. In addition, the Cu-binding proteins-based predictive signature (CuPscore) model was generated using the least absolute shrinkage and selection operator (LASSO) cox regression model. Here, we identified the crucial prognostic value of CuPscore in HCC. The pathological stage and CuPscore were independent risk factors for the prognosis of HCC patients. Pathological stage and CuPscore-based nomogram model exhibited great performance in predicting the prognosis of HCC patients. We also observed that the CuPscore shared a close association with several immunomodulatory molecules and the proportion of several tumor infiltrating immune cells, suggesting a potential value of CuPscore in predicting the response to immunotherapy in HCC. Our results demonstrated the prognostic value of Cu-binding proteins and its correlation with immune microenvironment in HCC, providing a therapeutic basis for the precision medicine strategy through targeting Cu-binding proteins in HCC.
Collapse
Affiliation(s)
- Manyu Liao
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Cong Li
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Clinical Center for Liver Cancer, Capital Medical University, Beijing, 100069, China
- Department of Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, 100069, China
- Corresponding author. Department of General Surgery, Beijing Youan Hospital, Capital Medical University, 100069, No. 8, West Toutiao, Outside You'anmen, Fengtai District, Beijing, China.
| | - Caixia Hu
- Center of Oncology and Minimally Invasive Intervention, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jing Ding
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Clinical Center for Liver Cancer, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
102
|
Tang X, Yan Z, Miao Y, Ha W, Li Z, Yang L, Mi D. Copper in cancer: from limiting nutrient to therapeutic target. Front Oncol 2023; 13:1209156. [PMID: 37427098 PMCID: PMC10327296 DOI: 10.3389/fonc.2023.1209156] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
As an essential nutrient, copper's redox properties are both beneficial and toxic to cells. Therefore, leveraging the characteristics of copper-dependent diseases or using copper toxicity to treat copper-sensitive diseases may offer new strategies for specific disease treatments. In particular, copper concentration is typically higher in cancer cells, making copper a critical limiting nutrient for cancer cell growth and proliferation. Hence, intervening in copper metabolism specific to cancer cells may become a potential tumor treatment strategy, directly impacting tumor growth and metastasis. In this review, we discuss the metabolism of copper in the body and summarize research progress on the role of copper in promoting tumor cell growth or inducing programmed cell death in tumor cells. Additionally, we elucidate the role of copper-related drugs in cancer treatment, intending to provide new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zaihua Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yandong Miao
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Wuhua Ha
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zheng Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lixia Yang
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
103
|
Beretta GL, Zaffaroni N. Radiotherapy-induced ferroptosis for cancer treatment. Front Mol Biosci 2023; 10:1216733. [PMID: 37388241 PMCID: PMC10304297 DOI: 10.3389/fmolb.2023.1216733] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Ferroptosis is a regulated cell death mechanism controlled by iron, amino acid and reactive oxygen species metabolisms, which is very relevant for cancer therapy. Radiotherapy-induced ferroptosis is critical for tumor suppression and several preclinical studies have demonstrated that the combination of ionizing radiation with small molecules or nano-systems is effective in combating cancer growth and overcoming drug or ionizing radiation resistance. Here, we briefly overview the mechanisms of ferroptosis and the cross-talk existing between the cellular pathways activated by ferroptosis and those induced by radiotherapy. Lastly, we discuss the recently reported combinational studies involving radiotherapy, small molecules as well as nano-systems and report the recent findings achieved in this field for the treatment of tumors.
Collapse
|
104
|
Ma A, Feng Z, Li Y, Wu Q, Xiong H, Dong M, Cheng J, Wang Z, Yang J, Kang Y. Ferroptosis-related signature and immune infiltration characterization in acute lung injury/acute respiratory distress syndrome. Respir Res 2023; 24:154. [PMID: 37301835 DOI: 10.1186/s12931-023-02429-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/19/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the most life-threatening diseases in the intensive care unit with high mortality and morbidity. Ferroptosis is a newly discovered immune related cell death that is associated with various lung diseases. However, the role of immune-mediated ferroptosis in ALI/ARDS has not been elucidated. METHOD We analyzed two Gene Expression Omnibus (GEO) datasets (GSE2411 and GSE109913) and extracted characteristic ferroptosis-related genes (FRGs) between the control and ALI groups through bioinformatic analysis. Then, we prospectively collected bronchoalveolar lavage fluid (BALF) from patients with ARDS and verified the expression of characteristic FRGs. Lastly, we constructed the ALI/ARDS model induced by LPS and isolated the primary neutrophils of mice. Erastin, an ferroptosis inducer, was used at the cellular level to verify the effect of neutrophils on ferroptosis in lung epithelium cells. RESULT We identified three characteristic FRGs, Cp, Slc39a14 and Slc7a11, by analyzing two gene expression profiling datasets. Immune infiltration analysis showed that the three characteristic genes were significantly positively correlated with the infiltration levels of neutrophils. We collected BALF from 59 ARDS patients to verify the expression of Cp, Slc7a11 and Slc39a14 in humans. The results showed that Cp was elevated in patients with severe ARDS (p = 0.019), Slc7a11 was significantly elevated in patients with moderate ARDS (p = 0.021) relative to patients with mild ARDS. The levels of neutrophils in the peripheral blood of ARDS patients were positively correlated with the expression levels of Slc7a11 (Pearson's R2 = 0.086, p = 0.033). Three characteristic FRGs were significantly activated after the onset of ferroptosis (6 h) early in LPS induced ALI model, and that ferroptosis was alleviated after the organism compensated within 12 to 48 h. We extracted primary activated neutrophils from mice and co-cultured them with MLE-12 in transwell, Slc7a11, Cp and Slc39a14 in MLE-12 cells were significantly upregulated as the number of neutrophils increased. The results showed that neutrophil infiltration alleviated erastin-induced MDA accumulation, GSH depletion, and divalent iron accumulation, accompanied by upregulation of Slc7a11 and Gpx4, implying the existence of a compensatory effect of lipid oxidation in neutrophils after acute lung injury in the organism. CONCLUSION We identified three immune-mediated ferroptosis genes, namely, Cp, Slc7a11 and Slc39a14, which possibly regulated by neutrophils during the development of ALI, and their pathways may be involved in anti-oxidative stress and anti-lipid metabolism. Thus, the present study contributes to the understanding of ALI/ARDS and provide novel targets for future immunotherapeutic.
Collapse
Affiliation(s)
- Aijia Ma
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yang Li
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Huaiyu Xiong
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Meiling Dong
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Jiangli Cheng
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zhenling Wang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
105
|
Liu T, Liu Y, Zhang F, Gao Y. Copper homeostasis dysregulation promoting cell damage and the association with liver diseases. Chin Med J (Engl) 2023:00029330-990000000-00652. [PMID: 37284739 DOI: 10.1097/cm9.0000000000002697] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 06/08/2023] Open
Abstract
ABSTRACT Copper plays an important role in many metabolic activities in the human body. Copper level in the human body is in a state of dynamic equilibrium. Recent research on copper metabolism has revealed that copper dyshomeostasis can cause cell damage and induce or aggravate some diseases by affecting oxidative stress, proteasome, cuprotosis, and angiogenesis. The liver plays a central role in copper metabolism in the human body. Research conducted in recent years has unraveled the relationship between copper homeostasis and liver diseases. In this paper, we review the available evidence of the mechanism by which copper dyshomeostasis promotes cell damage and the development of liver diseases, and identify the future research priorities.
Collapse
Affiliation(s)
- Tao Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | | | | | | |
Collapse
|
106
|
Wang Y, Wang Y, Pan J, Gan L, Xue J. Ferroptosis, necroptosis, and pyroptosis in cancer: Crucial cell death types in radiotherapy and post-radiotherapy immune activation. Radiother Oncol 2023; 184:109689. [PMID: 37150447 DOI: 10.1016/j.radonc.2023.109689] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
Tumor cell death and antitumor immune activation induced by radiotherapy are extensively well-studied. While radiotherapy is believed to mainly induce tumor cell necrosis and apoptosis, recent studies have shown that it can also induce ferroptosis, necroptosis, and pyroptosis in tumor cells. However, studies on the role of ferroptosis, necroptosis, and pyroptosis in radiotherapy and post-radiotherapy immune activation are limited. In this review, we summarize the comprehensive literature on the molecular mechanisms and more recent research progress related to radiotherapy-induced ferroptosis, necroptosis, and pyroptosis in tumor cells. Further, we discuss the role of tumor cells undergoing these types of cell death in immune activation after radiotherapy. In addition, we highlight some unresolved questions on the association of radiotherapy with ferroptosis, necroptosis, and pyroptosis. This review can improve our current understanding of the relationship between radiotherapy and different cell death pathways and provide a theoretical framework to improve the therapeutic effect of tumor radiotherapy in the future.
Collapse
Affiliation(s)
- Youke Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China; The Second Collage of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yali Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Jing Pan
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China.
| |
Collapse
|
107
|
Wang X, Chen D, Shi Y, Luo J, Zhang Y, Yuan X, Zhang C, Shu H, Yu W, Tian J. Copper and cuproptosis-related genes in hepatocellular carcinoma: therapeutic biomarkers targeting tumor immune microenvironment and immune checkpoints. Front Immunol 2023; 14:1123231. [PMID: 37153542 PMCID: PMC10157396 DOI: 10.3389/fimmu.2023.1123231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), one of the most common cancers worldwide, exhibits high immune heterogeneity and mortality. Emerging studies suggest that copper (Cu) plays a key role in cell survival. However, the relationship between Cu and tumor development remains unclear. Methods We investigated the effects of Cu and cuproptosis-related genes (CRGs) in patients with HCC in the TCGA-LIHC (The Cancer Genome Atlas-Liver cancer, n = 347) and ICGC-LIRI-JP (International Cancer Genome Consortium-Liver Cancer-Riken-Japan, n = 203) datasets. Prognostic genes were identified by survival analysis, and a least absolute shrinkage and selection operator (Lasso) regression model was constructed using the prognostic genes in the two datasets. Additionally, we analyzed differentially expressed genes and signal pathway enrichment. We also evaluated the effects of CRGs on tumor immune cell infiltration and their co-expression with immune checkpoint genes (ICGs) and performed validation in different tumor immune microenvironments (TIMs). Finally, we performed validation using clinical samples and predicted the prognosis of patients with HCC using a nomogram. Results A total of 59 CRGs were included for analysis, and 15 genes that significantly influenced the survival of patients in the two datasets were identified. Patients were grouped by risk scores, and pathway enrichment analysis suggested that immune-related pathways were substantially enriched in both datasets. Tumor immune cell infiltration analysis and clinical validation revealed that PRNP (Prion protein), SNCA (Synuclein alpha), and COX17 (Cytochrome c oxidase copper chaperone COX17) may be closely correlated with immune cell infiltration and ICG expression. A nomogram was constructed to predict the prognosis of patients with HCC using patients' characteristics and risk scores. Conclusion CRGs may regulate the development of HCC by targeting the TIM and ICGs. CRGs such as PRNP, SNCA, and COX17 could be promising targets for HCC immune therapy in the future.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongfang Chen
- Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yumiao Shi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamei Luo
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiqi Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohong Yuan
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Chaojin Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huigang Shu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
108
|
Wang X, Zhou M, Liu Y, Si Z. Cope with copper: From copper linked mechanisms to copper-based clinical cancer therapies. Cancer Lett 2023; 561:216157. [PMID: 37011869 DOI: 10.1016/j.canlet.2023.216157] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023]
Abstract
Recent studies have established a strong link between copper and cancer biology, as copper is necessary for cancer growth and metastasis. Beyond the conventional concept of copper serving as a catalytic cofactor of metalloenzymes, emerging evidence demonstrates copper as a regulator for signaling transduction and gene expression, which are vital for tumorigenesis and cancer progression. Interestingly, strong redox-active properties make copper both beneficial and detrimental to cancer cells. Cuproplasia is copper-dependent cell growth and proliferation, whereas cuproptosis is copper-dependent cell death. Both mechanisms act in cancer cells, suggesting that copper depletion and copper supplementation may be viable approaches for developing novel anticancer therapies. In this review, we summarized the current understanding of copper's biological role and related molecular mechanisms in cancer proliferation, angiogenesis, metastasis, autophagy, immunosuppressive microenvironment development, and copper-mediated cancer cell death. We also highlighted copper-based strategies for cancer treatment. The current challenges of copper in cancer biology and therapy and their potential solutions were also discussed. Further investigation in this field will yield a more comprehensive molecular explanation for the causal relationship between copper and cancers. It will reveal a series of key regulators governing copper-dependent signaling pathways, thereby providing potential targets for developing copper-related anticancer drugs.
Collapse
Affiliation(s)
- Xidi Wang
- Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, PR China; Department of Pathology, Health Science Center, Ningbo University, Ningbo, Ningbo, PR China.
| | - Miao Zhou
- Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, PR China
| | - Yu Liu
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, PR China
| | - Zizhen Si
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, PR China.
| |
Collapse
|
109
|
Wang XX, Deng SZ, Wu LH, Liu QQ, Zheng G, Du K, Dou QY, Zheng J, Zhang HM. Cuproptosis-Mediated Patterns Characterized by Distinct Tumor Microenvironment and Predicted the Immunotherapy Response for Gastric Cancer. ACS OMEGA 2023; 8:10851-10862. [PMID: 37008098 PMCID: PMC10061503 DOI: 10.1021/acsomega.2c07052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/28/2023] [Indexed: 05/26/2023]
Abstract
Cuproptosis is a newly discovered programmed cell death process, and several cuproptosis-related genes have been reported to regulate cancer cell proliferation and progression. The association between cuproptosis and tumor microenvironment in gastric cancer (GC) remains unclear. This study aimed to explore multiomics characteristics of cuproptosis-related genes regulating tumor microenvironment and provide strategies for prognosis and prediction of immunotherapy response in GC patients. We collected 1401 GC patients from the TCGA and 5 GEO data sets and identified three different cuproptosis-mediated patterns, each of which shared a distinct tumor microenvironment and different overall survival. The GC patients with high cuproptosis levels were enriched in CD8+ T cells and had a better prognosis. Whereas, the low cuproptosis level patients were associated with inhibitory immune cell infiltration and had the worst prognosis. In addition, we constructed a 3-gene (AHCYL2, ANKRD6 and FDGFRB) cuproptosis-related prognosis signature (CuPS) via Lasso-Cox and multivariate Cox regression analysis. The GC patients in the low-CuPS subgroup had higher TMB levels, MSI-H fractions, and PD-L1 expression, which suggests a better immunotherapy response. Therefore, the CuPS might have the potential value for predicting prognosis and immunotherapy sensitivity in GC patients.
Collapse
Affiliation(s)
- Xiang-Xu Wang
- Department
of Clinical Oncology, Xijing Hospital, Fourth
Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Shi-Zhou Deng
- Department
of Clinical Oncology, Xijing Hospital, Fourth
Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Li-Hong Wu
- Xijing
986 Hospital Department, Fourth Military
Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Qing-Qing Liu
- Department
of Clinical Oncology, Xijing Hospital, Fourth
Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Gaozan Zheng
- Division
of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Kunli Du
- Division
of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Qiong-Yi Dou
- Department
of Clinical Oncology, Xijing Hospital, Fourth
Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Jianyong Zheng
- Division
of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| | - Hong-Mei Zhang
- Department
of Clinical Oncology, Xijing Hospital, Fourth
Military Medical University, Xi’an, Shaanxi 710032, P. R. China
| |
Collapse
|
110
|
Xiang X, Gao J, Su D, Shi D. The advancements in targets for ferroptosis in liver diseases. Front Med (Lausanne) 2023; 10:1084479. [PMID: 36999078 PMCID: PMC10043409 DOI: 10.3389/fmed.2023.1084479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Ferroptosis is a type of regulated cell death caused by iron overload and lipid peroxidation, and its core is an imbalance of redox reactions. Recent studies showed that ferroptosis played a dual role in liver diseases, that was, as a therapeutic target and a pathogenic factor. Therefore, herein, we summarized the role of ferroptosis in liver diseases, reviewed the part of available targets, such as drugs, small molecules, and nanomaterials, that acted on ferroptosis in liver diseases, and discussed the current challenges and prospects.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaohong Xiang
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danyang Su
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Doudou Shi
- Department of Geriatrics, The Ninth Hospital of Xi'an, Xi'an, Shaanxi, China
| |
Collapse
|
111
|
Zhao S, Zhang X, Gao F, Chi H, Zhang J, Xia Z, Cheng C, Liu J. Identification of copper metabolism-related subtypes and establishment of the prognostic model in ovarian cancer. Front Endocrinol (Lausanne) 2023; 14:1145797. [PMID: 36950684 PMCID: PMC10025496 DOI: 10.3389/fendo.2023.1145797] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most common and most malignant gynecological malignancies in gynecology. On the other hand, dysregulation of copper metabolism (CM) is closely associated with tumourigenesis and progression. Here, we investigated the impact of genes associated with copper metabolism (CMRGs) on the prognosis of OC, discovered various CM clusters, and built a risk model to evaluate patient prognosis, immunological features, and therapy response. METHODS 15 CMRGs affecting the prognosis of OC patients were identified in The Cancer Genome Atlas (TCGA). Consensus Clustering was used to identify two CM clusters. lasso-cox methods were used to establish the copper metabolism-related gene prognostic signature (CMRGPS) based on differentially expressed genes in the two clusters. The GSE63885 cohort was used as an external validation cohort. Expression of CM risk score-associated genes was verified by single-cell sequencing and quantitative real-time PCR (qRT-PCR). Nomograms were used to visually depict the clinical value of CMRGPS. Differences in clinical traits, immune cell infiltration, and tumor mutational load (TMB) between risk groups were also extensively examined. Tumour Immune Dysfunction and Rejection (TIDE) and Immune Phenotype Score (IPS) were used to validate whether CMRGPS could predict response to immunotherapy in OC patients. RESULTS In the TCGA and GSE63885 cohorts, we identified two CM clusters that differed significantly in terms of overall survival (OS) and tumor microenvironment. We then created a CMRGPS containing 11 genes to predict overall survival and confirmed its reliable predictive power for OC patients. The expression of CM risk score-related genes was validated by qRT-PCR. Patients with OC were divided into low-risk (LR) and high-risk (HR) groups based on the median CM risk score, with better survival in the LR group. The 5-year AUC value reached 0.74. Enrichment analysis showed that the LR group was associated with tumor immune-related pathways. The results of TIDE and IPS showed a better response to immunotherapy in the LR group. CONCLUSION Our study, therefore, provides a valuable tool to further guide clinical management and tailor the treatment of patients with OC, offering new insights into individualized treatment.
Collapse
Affiliation(s)
- Songyun Zhao
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xin Zhang
- Department of Pathology, The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Feng Gao
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chi
- Southwest Medical University, Luzhou, China
| | | | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
112
|
Aishajiang R, Liu Z, Wang T, Zhou L, Yu D. Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy. Molecules 2023; 28:molecules28052303. [PMID: 36903549 PMCID: PMC10005215 DOI: 10.3390/molecules28052303] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Copper serves as a vital microelement which is widely present in the biosystem, functioning as multi-enzyme active site, including oxidative stress, lipid oxidation and energy metabolism, where oxidation and reduction characteristics are both beneficial and lethal to cells. Since tumor tissue has a higher demand for copper and is more susceptible to copper homeostasis, copper may modulate cancer cell survival through reactive oxygen species (ROS) excessive accumulation, proteasome inhibition and anti-angiogenesis. Therefore, intracellular copper has attracted great interest that multifunctional copper-based nanomaterials can be exploited in cancer diagnostics and antitumor therapy. Therefore, this review explains the potential mechanisms of copper-associated cell death and investigates the effectiveness of multifunctional copper-based biomaterials in the field of antitumor therapy.
Collapse
Affiliation(s)
- Reyida Aishajiang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
| | - Zhongshan Liu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
| | - Tiejun Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
- Correspondence: (T.W.); (L.Z.); (D.Y.)
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (T.W.); (L.Z.); (D.Y.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
- Correspondence: (T.W.); (L.Z.); (D.Y.)
| |
Collapse
|
113
|
Huang Z, Xia H, Cui Y, Yam JWP, Xu Y. Ferroptosis: From Basic Research to Clinical Therapeutics in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:207-218. [PMID: 36406319 PMCID: PMC9647096 DOI: 10.14218/jcth.2022.00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and highly heterogeneous malignancies worldwide. Despite the rapid development of multidisciplinary treatment and personalized precision medicine strategies, the overall survival of HCC patients remains poor. The limited survival benefit may be attributed to difficulty in early diagnosis, the high recurrence rate and high tumor heterogeneity. Ferroptosis, a novel mode of cell death driven by iron-dependent lipid peroxidation, has been implicated in the development and therapeutic response of various tumors, including HCC. In this review, we discuss the regulatory network of ferroptosis, describe the crosstalk between ferroptosis and HCC-related signaling pathways, and elucidate the potential role of ferroptosis in various treatment modalities for HCC, such as systemic therapy, radiotherapy, immunotherapy, interventional therapy and nanotherapy, and applications in the diagnosis and prognosis of HCC, to provide a theoretical basis for the diagnosis and treatment of HCC to effectively improve the survival of HCC patients.
Collapse
Affiliation(s)
- Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence to: Yi Xu, Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China. ORCID: https://orcid.org/0000-0003-2720-0005. Tel/Fax: +852-94791847, E-mail: ; Judy Wai Ping Yam, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong 999077, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Correspondence to: Yi Xu, Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China. ORCID: https://orcid.org/0000-0003-2720-0005. Tel/Fax: +852-94791847, E-mail: ; Judy Wai Ping Yam, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong 999077, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| |
Collapse
|
114
|
Nie G, Peng D, Wen N, Wang Y, Lu J, Li B. Cuproptosis-related genes score: A predictor for hepatocellular carcinoma prognosis, immunotherapy efficacy, and metabolic reprogramming. Front Oncol 2023; 13:1096351. [PMID: 36845733 PMCID: PMC9947795 DOI: 10.3389/fonc.2023.1096351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Background Cuproptosis is a newly identified type of programmed cell death, characterized by aggregation of mitochondrial lipoylated proteins and the destabilization of Fe-S cluster proteins triggered by copper. However, its role in hepatocellular carcinoma (HCC) remains unclear. Methods We analyzed the expression and prognostic significance of cuproptosis-related genes using the data obtained from TCGA and ICGC datasets. A cuproptosis-related genes (CRG) score was constructed and validated via least absolute shrinkage and selection operator (LASSO) Cox regression, multivariate Cox regression and nomogram model. The metabolic features, immune profile and therapy guidance of CRG-classified HCC patients were processed via R packages. The role of kidney-type glutaminase (GLS) in cuproptosis and sorafenib treatment has been confirmed via GLS knockdown. Results The CRG score and its nomogram model performed well in predicting prognosis of HCC patients based on the TCGA cohort (training set), ICGC cohort and GEO cohort (validation set). The risk score was proved as an independent predictor for overall survival (OS) of HCC. The area under the curves (AUCs) of the model in the training and validation cohorts were all around 0.83 (TCGA, 1- year), 0.73 (TCGA, 3- year), 0.92 (ICGC, 1- year), 0.75 (ICGC, 3- year), 0.77 (GEO, 1- year), 0.76(GEO, 3- year). Expression levels of metabolic genes and subtypes of immune cells, and sorafenib sensitiveness varied significantly between the high-CRG group and low-CRG group. One of the model-included gene, GLS, might be involved in the process of cuproptosis and sorafenib treatment in HCC cell line. Conclusion The five cuproptosis-related genes model contributed to prognostic prediction and provided a new sight for cuproptosis-related therapy in HCC.
Collapse
Affiliation(s)
- Guilin Nie
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Dingzhong Peng
- Department of General Surgury, Division of Hepatobiliopancreatic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ningyuan Wen
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoqun Wang
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jiong Lu
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China,Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Jiong Lu, ; Bei Li,
| | - Bei Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China,Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Jiong Lu, ; Bei Li,
| |
Collapse
|
115
|
Zheng C, Peng Y, Wang H, Wang Y, Liu L, Zhao Q. Identification and Validation of Ferroptosis-Related Subtypes and a Predictive Signature in Hepatocellular Carcinoma. Pharmgenomics Pers Med 2023; 16:39-58. [PMID: 36726530 PMCID: PMC9885776 DOI: 10.2147/pgpm.s397892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world with an immunosuppressive Tumor microenvironment (TME). Ferroptosis plays an essential role in tumor proliferation, invasion, and metastasis. However, the relationship between ferroptosis and TME of HCC has remained elusive. Methods Differentially expressed ferroptosis-related genes (DE FRGs) between normal liver tissues and HCC tissues were obtained from The Cancer Genome Atlas (TCGA). On this basis, we identified the molecular subtypes mediated by DE FRGs and TME cell infiltration. Next, a predictive signature was established to quantity the ferroptosis-related characteristics by performing the least absolute shrinkage and selection operator Cox regression analyses. Univariate and multivariate COX analyses determined the independent prognostic factors. Finally, the expression stability of 3 ferroptosis-related signature genes was verified in cancer and paracancerous normal tissues of HCC. Results We identified three different molecular subtypes and found that the subtype with the better prognosis was associated with high enrichment of immune- and metabolic-related hallmark signaling pathways and high infiltration of immune cells in TME. The signature was considered to be an independent prognostic factor. We also found that the signature can reflect the infiltration characteristics of different immune cells in TME. Immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), regulatory T cells, and type 17 T helper cells were significantly enriched in the high-risk group. The analysis data of immune checkpoints and tumor mutation load indicated that the signature had great potential in predicting Immunotherapy response and chemotherapeutic sensitivity. In addition, the overexpression of 3 ferroptosis-related signature genes was confirmed in HCC tissues and HCC cell lines. Ferroptosis inducer RSL3 inhibited the proliferation of HCC cells and was a potential cancer immunotherapy agent. Conclusion These findings enhanced our understanding of the regulatory mechanism of ferroptosis in HCC and provided new insights into evaluating prognosis and developing more effective Immunotherapy and chemotherapy strategies.
Collapse
Affiliation(s)
- Chunlan Zheng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People’s Republic of China,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People’s Republic of China
| | - Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People’s Republic of China,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People’s Republic of China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People’s Republic of China,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People’s Republic of China
| | - Youwei Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People’s Republic of China,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People’s Republic of China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People’s Republic of China,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People’s Republic of China,Correspondence: Lan Liu; Qiu Zhao, Tel +86-027-67812888, Fax +86 027-67812892, Email ;
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People’s Republic of China,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, People’s Republic of China
| |
Collapse
|
116
|
You G, Zhou C, Wang L, Liu Z, Fang H, Yao X, Zhang X. COMMD proteins function and their regulating roles in tumors. Front Oncol 2023; 13:1067234. [PMID: 36776284 PMCID: PMC9910083 DOI: 10.3389/fonc.2023.1067234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The COMMD proteins are a highly conserved protein family with ten members that play a crucial role in a variety of biological activities, including copper metabolism, endosomal sorting, ion transport, and other processes. Recent research have demonstrated that the COMMD proteins are closely associated with a wide range of disorders, such as hepatitis, myocardial ischemia, cerebral ischemia, HIV infection, and cancer. Among these, the role of COMMD proteins in tumors has been thoroughly explored; they promote or inhibit cancers such as lung cancer, liver cancer, gastric cancer, and prostate cancer. COMMD proteins can influence tumor proliferation, invasion, metastasis, and tumor angiogenesis, which are strongly related to the prognosis of tumors and are possible therapeutic targets for treating tumors. In terms of molecular mechanism, COMMD proteins in tumor cells regulate the oncogenes of NF-κB, HIF, c-MYC, and others, and are related to signaling pathways including apoptosis, autophagy, and ferroptosis. For the clinical diagnosis and therapy of malignancies, additional research into the involvement of COMMD proteins in cancer is beneficial.
Collapse
Affiliation(s)
- Guangqiang You
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China
| | - Chen Zhou
- Department of General Affairs, First Hospital of Jilin University (the Eastern Division), Jilin University, Changchun, China
| | - Lei Wang
- Department of Pediatric Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zefeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China
| | - He Fang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaoxao Yao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China,*Correspondence: Xiaoxao Yao, ; Xuewen Zhang,
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China,*Correspondence: Xiaoxao Yao, ; Xuewen Zhang,
| |
Collapse
|
117
|
Liu Q, Zhao Y, Zhou H, Chen C. Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. Regen Biomater 2023; 10:rbad004. [PMID: 36817975 PMCID: PMC9926950 DOI: 10.1093/rb/rbad004] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023] Open
Abstract
Ferroptosis, a completely new form of regulated cell death, is mainly caused by an imbalance between oxidative damage and reductive protection and has shown great anti-cancer potential. However, existing small-molecule ferroptosis inducers have various limitations, such as poor water solubility, drug resistance and low targeting ability, hindering their clinical applications. Nanotechnology provides new opportunities for ferroptosis-driven tumor therapy. Especially, stimuli-responsive nanomaterials stand out among others and have been widely researched because of their unique spatiotemporal control advantages. Therefore, it's necessary to summarize the application of those stimuli-responsive nanomaterials in ferroptosis. Here, we describe the physiological feature of ferroptosis and illustrate the current challenges to induce ferroptosis for cancer therapy. Then, nanomaterials that induce ferroptosis are classified and elaborated according to the external and internal stimuli. Finally, the future perspectives in the field are proposed. We hope this review facilitates paving the way for the design of intelligent nano-ferroptosis inducers.
Collapse
Affiliation(s)
- Qiaolin Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| |
Collapse
|
118
|
Li Y, Yang W, Zheng Y, Dai W, Ji J, Wu L, Cheng Z, Zhang J, Li J, Xu X, Wu J, Yang M, Feng J, Guo C. Targeting fatty acid synthase modulates sensitivity of hepatocellular carcinoma to sorafenib via ferroptosis. J Exp Clin Cancer Res 2023; 42:6. [PMID: 36604718 PMCID: PMC9817350 DOI: 10.1186/s13046-022-02567-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Sorafenib resistance is a key impediment to successful treatment of patients with advanced hepatocellular carcinoma (HCC) and recent studies have reported reversal of drug resistance by targeting ferroptosis. The present study aimed to explore the association of fatty acid synthase (FASN) with sorafenib resistance via regulation of ferroptosis and provide a novel treatment strategy to overcome the sorafenib resistance of HCC patients. METHODS Intracellular levels of lipid peroxides, glutathione, malondialdehyde, and Fe2+ were measured as indicators of ferroptosis status. Biological information analyses, immunofluorescence assays, western blot assays, and co-immunoprecipitation analyses were conducted to elucidate the functions of FASN in HCC. Both in vitro and in vivo studies were conducted to examine the antitumor effects of the combination of orlistat and sorafenib and CalcuSyn software was used to calculate the combination index. RESULTS Solute carrier family 7 member 11 (SLC7A11) was found to play an important role in mediating sorafenib resistance. The up-regulation of FASN antagonize of SLC7A11-mediated ferroptosis and thereby promoted sorafenib resistance. Mechanistically, FASN enhanced sorafenib-induced ferroptosis resistance by binding to hypoxia-inducible factor 1-alpha (HIF1α), promoting HIF1α nuclear translocation, inhibiting ubiquitination and proteasomal degradation of HIF1α, and subsequently enhancing transcription of SLC7A11. Orlistat, an inhibitor of FASN, with sorafenib had significant synergistic antitumor effects and reversed sorafenib resistance both in vitro and in vivo. CONCLUSION Targeting the FASN/HIF1α/SLC7A11 pathway resensitized HCC cells to sorafenib. The combination of orlistat and sorafenib had superior synergistic antitumor effects in sorafenib-resistant HCC cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenjuan Yang
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shidong Hospital, Shanghai, 200433, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ziqi Cheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shidong Hospital, Shanghai, 200433, China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital, Shanghai, 200433, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
| | - Mingwei Yang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China.
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
119
|
Ma YL, Yang YF, Wang HC, Yang CC, Yan LJ, Ding ZN, Tian BW, Liu H, Xue JS, Han CL, Tan SY, Hong JG, Yan YC, Mao XC, Wang DX, Li T. A novel prognostic scoring model based on copper homeostasis and cuproptosis which indicates changes in tumor microenvironment and affects treatment response. Front Pharmacol 2023; 14:1101749. [PMID: 36909185 PMCID: PMC9998499 DOI: 10.3389/fphar.2023.1101749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Intracellular copper homeostasis requires a complex system. It has shown considerable prospects for intervening in the tumor microenvironment (TME) by regulating copper homeostasis and provoking cuproptosis. Their relationship with hepatocellular carcinoma (HCC) remains elusive. Methods: In TCGA and ICGC datasets, LASSO and multivariate Cox regression were applied to obtain the signature on the basis of genes associated with copper homeostasis and cuproptosis. Bioinformatic tools were utilized to reveal if the signature was correlated with HCC characteristics. Single-cell RNA sequencing data analysis identified differences in tumor and T cells' pathway activity and intercellular communication of immune-related cells. Real-time qPCR analysis was conducted to measure the genes' expression in HCC and adjacent normal tissue from 21 patients. CCK8 assay, scratch assay, transwell, and colony formation were conducted to reveal the effect of genes on in vitro cell proliferation, invasion, migration, and colony formation. Results: We constructed a five-gene scoring system in relation to copper homeostasis and cuproptosis. The high-risk score indicated poor clinical prognosis, enhanced tumor malignancy, and immune-suppressive tumor microenvironment. The T cell activity was markedly reduced in high-risk single-cell samples. The high-risk HCC patients had a better expectation of ICB response and reactivity to anti-PD-1 therapy. A total of 156 drugs were identified as potential signature-related drugs for HCC treatment, and most were sensitive to high-risk patients. Novel ligand-receptor pairs such as FASLG, CCL, CD40, IL2, and IFN-Ⅱ signaling pathways were revealed as cellular communication bridges, which may cause differences in TME and immune function. All crucial genes were differentially expressed between HCC and paired adjacent normal tissue. Model-constructed genes affected the phosphorylation of mTOR and AKT in both Huh7 and Hep3B cells. Knockdown of ZCRB1 impaired the proliferation, invasion, migration, and colony formation in HCC cell lines. Conclusion: We obtained a prognostic scoring system to forecast the TME changes and assist in choosing therapy strategies for HCC patients. In this study, we combined copper homeostasis and cuproptosis to show the overall potential risk of copper-related biological processes in HCC for the first time.
Collapse
Affiliation(s)
- Yun-Long Ma
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Han-Chao Wang
- Institute for Financial Studies, Shandong University, Jinan, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Bao-Wen Tian
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jun-Shuai Xue
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Cheng-Long Han
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Si-Yu Tan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Xin-Cheng Mao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China.,Department of hepatobiliary surgery, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
120
|
Ajoolabady A, Tang D, Kroemer G, Ren J. Ferroptosis in hepatocellular carcinoma: mechanisms and targeted therapy. Br J Cancer 2023; 128:190-205. [PMID: 36229582 PMCID: PMC9902568 DOI: 10.1038/s41416-022-01998-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma is the most prevalent form of primary liver cancer with a multifactorial aetiology comprising genetic, environmental, and behavioural factors. Evading cell death is a defining hallmark of hepatocellular carcinoma, underpinning tumour growth, progression, and therapy resistance. Ferroptosis is a form of nonapoptotic cell death driven by an array of cellular events, including intracellular iron overload, free radical production, lipid peroxidation and activation of various cell death effectors, ultimately leading to rupture of the plasma membrane. Although induction of ferroptosis is an emerging strategy to suppress hepatocellular carcinoma, malignant cells manage to develop adaptive mechanisms, conferring resistance to ferroptosis and ferroptosis-inducing drugs. Herein, we aim at elucidating molecular mechanisms and signalling pathways involved in ferroptosis and offer our opinions on druggable targets and new therapeutic strategy in an attempt to restrain the growth and progression of hepatocellular carcinoma through induction of ferroptotic cell death.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China.
| |
Collapse
|
121
|
Huang Y, Wang S, Ke A, Guo K. Ferroptosis and its interaction with tumor immune microenvironment in liver cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188848. [PMID: 36502929 DOI: 10.1016/j.bbcan.2022.188848] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Exploring effective systemic treatments for liver cancer is still a great challenge worldwide. As a novel form of regulated cell death, ferroptosis has been paid more and more attention in the cancer research field. In recent years, targeting ferroptosis has become an encouraging strategy for liver cancer treatment. Cancer cells can be directly killed by inducing ferroptosis; in contrast, ferroptosis can also ameliorate the tumor immunosuppressive microenvironment and sensitize cancers to immunotherapy. Here, we summarize fully current progress in the iron homeostasis in the liver, the internal association between imbalanced iron homeostasis and ferroptosis in liver carcinogenesis and development, as well as ferroptosis-related regulators in liver cancer. Furthermore, we discuss thoroughly the interaction between ferroptosis and tumor immune microenvironment. Finally, we provide certainly a future insight on the potential value of ferroptosis in the immunotherapy of liver cancer.
Collapse
Affiliation(s)
- Yilan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Siwei Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China; Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aiwu Ke
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
122
|
Zhao W, Lin J, Cheng S, Li H, Shu Y, Xu C. Comprehensive analysis of COMMD10 as a novel prognostic biomarker for gastric cancer. PeerJ 2023; 11:e14645. [PMID: 36919165 PMCID: PMC10008319 DOI: 10.7717/peerj.14645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 03/11/2023] Open
Abstract
Background COMMD10 has an important role in the development of certain tumors, but its relevance to gastric cancer (GC) is unclear. The purpose of this study is to investigate the difference of COMMD10 expression in gastric adenocarcinoma (STAD) and analyze the correlation between COMMD10 expression and prognosis of STAD patients. Methods The expression levels of COMMD10 between STAD and normal tissues were explored using the The Cancer Genome Atlas (TCGA) database. In addition, the expression of COMMD10 in GC was further validated by immunohistochemistry (IHC) staining, qRT-PCR and Western blot. Dot blot experiments were used for exploring m6A expression levels in tissues with high and low COMMD10 expression. Kaplan-Meier analysis and COX regression analysis were used to explore the relationship between COMMD10 and STAD prognosis. A nomogram was constructed to predict the survival probability of STAD patients. GO and KEGG functional enrichment of COMMD10-related genes were performed. The Corrlot software package was used to analyze the correlation between COMMD10 expression levels and m6A modifications in STAD. An analysis of immune infiltration based on the CIBERSOFT and the single-sample GSEA (ssGSEA) method was performed. Results COMMD10 expression was significantly associated with multiple cancers, including STAD in TCGA. COMMD10 expression was elevated in STAD cancer tissues compared to paracancerous tissues. COMMD10 upregulation was associated with poorer overall survival (OS), clinical stage, N stage, and primary treatment outcome in STAD. Functional enrichment of COMMD10-related genes was mainly involved in biological processes such as RNA localization, RNA splicing, RNA transport, mRNA surveillance pathways, and spliceosomes. The dot blot experiment showed that m6A levels were higher in cancer tissues with high COMMD10 expression compared with paracancerous tissues. COMMD10 was significantly correlated with most m6A-related genes. COMMD10 was involved in STAD immune cells infiltration, correlated with macrophage cells expression. Conclusion High COMMD10 expression was significantly associated with poor prognosis in STAD patients, and its functional realization was related to m6A modification. COMMD10 involved in STAD immune infiltration.
Collapse
Affiliation(s)
- Wenfang Zhao
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiahui Lin
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Sha Cheng
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huan Li
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yufeng Shu
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Canxia Xu
- The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
123
|
Shao K, Shen H, Chen X, Shao Z, Liu Y, Wang Y, Chen H, Wu X. Copper transporter gene ATP7A: A predictive biomarker for immunotherapy and targeted therapy in hepatocellular carcinoma. Int Immunopharmacol 2023; 114:109518. [PMID: 36502594 DOI: 10.1016/j.intimp.2022.109518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND ATP7A is an important copper transporter that regulates numerous cellular biological processes. However, the role of ATP7A in immunotherapy and targeted therapy, especially for hepatocellular carcinoma (HCC), remains unknown. METHODS We analyzed ATP7A expression and its effect on digestive system tumor prognoses, assessed its expression in tissue microarrays from 319 HCC patients, and investigated the relationship between ATP7A expression and tumor immunity. Specifically, we evaluated the possible association between ATP7A and programmed death ligand 1 (PD-L1) expression in human HCC tissues. Finally, we analyzed the effect of ATP7A on sorafenib efficacy in HCC. RESULTS ATP7A is generally highly expressed in digestive system tumors but related to poor prognosis only in HCC. ATP7A levels are positively associated with immune cell infiltration and immune checkpoint expression (especially PD-L1). HCC patients coexpressing APT7A and PD-L1 demonstrate poor prognoses. Moreover, HCC patients with high ATP7A levels were more sensitive to sorafenib and demonstrated higher survival rates after sorafenib treatment. CONCLUSIONS This study provides insights into the correlation between ATP7A levels and tumor immune infiltration and immune checkpoint function in HCC, sheds light on the significance of ATP7A in cancer progression, and provides guidance for more effective and general therapeutic strategies.
Collapse
Affiliation(s)
- Ke Shao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Shen
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yiwei Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hairong Chen
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiaofeng Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
124
|
The Cuproptosis-Related Long Noncoding RNA Signature Predicts Prognosis and Immune Cell Infiltration in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:9557690. [PMID: 36891559 PMCID: PMC9988371 DOI: 10.1155/2023/9557690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 03/02/2023]
Abstract
Background Hepatocellular carcinoma (HCC), ranking as one of the most common malignant tumors, is one of the leading causes of cancer death, with a poor prognosis. Cuproptosis, a novel programmed cell death modality that has just been confirmed recently, may play an important role in HCC prognosis. Long noncoding RNA (LncRNA) is a key participant in tumorigenesis and immune responses. It may be of great significance to predict HCC based on cuproptosis genes and their related LncRNA. Methods The sample data on HCC patients were obtained from The Cancer Genome Atlas (TCGA) database. Combined with cuproptosis-related genes collected from the literature search, expression analysis was carried out to find cuproptosis genes and their related LncRNAs significantly expressed in HCC. The prognostic model was constructed by least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression. The feasibility of these signature LncRNAs used for the evaluation of the overall survival rate in HCC patients as independent factors was investigated. The expression profile of cuproptosis, immune cell infiltration, and the status of somatic mutation were analyzed and compared. Results A prognostic model of HCC consisting of seven cuproptosis gene-related LncRNA signatures was constructed. Multiple verification methods have showed that this model can accurately predict the prognosis of HCC patients. It was showed that the classified high-risk group under the risk score of this model had worse survival status, more significant expression of the immune function, and higher mutation frequency. During the analysis, the cuproptosis gene CDKN2A was found to be most closely related to LncRNA DDX11-AS1 in the expression profile of HCC patients. Conclusion The cuproptosis-related signature LncRNA in HCC was identified, on the basis of which a model was constructed, and it was verified that it can be used to predict the prognosis of HCC patients. The potential role of these cuproptosis-related signature LncRNAs as new targets for disease therapy in antagonizing HCC development was discussed.
Collapse
|
125
|
Wang Y, Zeng W, Liang H, Wu X, Li H, Chen T, Yang M, Wang X, Li W, Zhang F, Li Q, Ye F, Guan J, Mei L. Targeted Wolfram-Doped Polypyrrole for Photonic Hyperthermia-Synergized Radiotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50557-50568. [PMID: 36322879 DOI: 10.1021/acsami.2c15015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single ionizing radiation at a tolerable dose is ineffectual in eliminating malignancies but readily generates harmful effects on surrounding normal tissues. Herein, we intelligently fabricated novel wolfram-doped polypyrrole (WPPy) through a simple oxidative polymerization method with WCl6 as an oxidizing catalyst, which possessed good biocompatibility, high photothermal conversion, and intensive radiosensitivity capacities to concurrently serve as a photothermal reagent and a radiosensitizer for hyperthermia-synergized radiotherapy (RT) against a malignant tumor. In comparison with traditional polypyrrole without noble metal doping, the innovative introduction of WCl6 not only successfully launched the polymerization of a pyrrole monomer but also endowed WPPy with additional radiosensitization. More importantly, after further decoration with an active targeted component (SP94 polypeptide), the obtained WPPy@SP94 significantly increased tumor internalization and accumulation in vitro and in vivo and induced obvious DNA damage as well as robust ROS generation under X-ray irradiation, which meanwhile synergized with strong photonic hyperthermia to effectively inhibit tumor growth by single drug injection. Moreover, such biocompatible WPPy@SP94 showed negligible adverse effects on normal cells and tissues. WPPy@SP94 developed in this study not only expands the category of polypyrrole chemical syntheses but also sheds light on WPPy@SP94-based radiosensitizers for cancer RT.
Collapse
Affiliation(s)
- Yin Wang
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou 510515, China
| | - Weiwei Zeng
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Huazhen Liang
- The First Tumor Department, Maoming People's Hospital, Maoming 525000, China
| | - Xixi Wu
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou 510515, China
| | - Hanyue Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ting Chen
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Mi Yang
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou 510515, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fan Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qianqian Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Feng Ye
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou 510515, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou 510515, China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
126
|
Radiosensitization-Related Cuproptosis LncRNA Signature in Non-Small Cell Lung Cancer. Genes (Basel) 2022; 13:genes13112080. [PMID: 36360316 PMCID: PMC9690519 DOI: 10.3390/genes13112080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2022] Open
Abstract
A new treatment modality targeting cuproptosis is gradually entering the public horizon. Cuproptosis is a new form of regulated cell death distinct from ferroptosis, apoptosis, autophagy, and necrosis. Previous studies have discovered that the copper level varies considerably in various cancers and that an increase in copper content is directly associated with the proliferation and metastasis of cancer cells. In non-small cell lung cancer (NSCLC) after radiation, the potential utility of cuproptosis-related long noncoding RNAs (lncRNAs) is still unclear. This research aimed to develop a prediction signature based on lncRNAs associated with cuproptosis to predict the prognosis of NSCLC patients following radiation. Methods: Expression data of primary tumors and adjacent solid tissues were downloaded from The Cancer Genome Atlas (TCGA) database, along with the corresponding clinical and mutational data. Univariate and multivariate COX analyses and LASSO regression analyses were performed to obtain a predictive signature of lncRNAs associated with cuproptosis. The data were randomly grouped into a training group used for model construction and a test group used for model validation. The model was validated by drawing a survival curve, risk curve, independent prognostic analysis, ROC curve PFS analysis, etc. Results: The lncRNA signature consisting of six cuproptosis-related lncRNAs (AC104088.1, PPP4R3B-DT, AC006042.3, LUCAT1, HHLA3-AS1, and LINC02029) was used to predict the prognosis of patients. Among them, there were three high-risk lncRNAs (LUCAT1, HHLA3-AS1, and LINC02029) with HR > 1 and three protective lncRNAs (AC104088.1, PPP4R3B-DT, and AC006042.3), with an HR < 1. Data analysis demonstrated that the cuproptosis-related lncRNA signatures could well predict the prognosis of NSCLC patients after radiation. Patients in the high-risk category receive a worse prognosis than those in the low-risk group. Cuproptosis-related risk prediction demonstrated better predictive qualities than age, gender, and pathological stage factors. Conclusion: The risk proposed model can independently predict the prognosis of NSCLC patients after radiotherapy, provide a foundation for the role of cuproptosis-related lncRNAs in NSCLC after radiotherapy, and provide a clinical strategy for radiotherapy combined with cuproptosis in NSCLC patients.
Collapse
|
127
|
Glutamine Transporter SLC1A5 Regulates Ionizing Radiation-Derived Oxidative Damage and Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3403009. [PMID: 36262284 PMCID: PMC9576409 DOI: 10.1155/2022/3403009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 12/08/2022]
Abstract
Ionizing radiation-derived oxidative stress and ferroptosis are one of the most important biological effects on destroying the liver tumor, whereas radioresistance of liver tumor remains a leading cause of radiotherapy (RT) failure mainly because of the protective antiferroptosis, in which oxidative stress and subsequent lipid peroxidation are the key initiators. Thus, it is of great importance to overcome ferroptosis resistance to improve the therapeutic efficacy of RT in liver tumor patients. Irradiation-resistant HepG2 cells (HepG2-IRR) were established by long-term exposure to X-ray (2 to 8 Gy), and targeted metabolomics analysis revealed an obvious increase in intracellular amino acids in HepG2-IRR cells upon ferroptosis stress. Among these amino acids with obvious changes, N-acetylglutamine, a derivative of glutamine, is essential for the redox homeostasis and progression of tumor cells. Interestingly, the treatment of glutamine starvation could promote the ferroptosis effect significantly, whereas glutamine supplementation reversed the ferroptosis effect completely. Consistent with the changes in amino acids pattern, the glutamine transporter SLC1A5 was verified in liver tumor samples from TCGA training and validation cohorts as an independent prognostic amino acid-ferroptosis gene (AFG). A risk score for screening prognosis based on the SLC1A5, SLC7A11, ASNS, and TXNRD1 demonstrated that a high-risk score was correlated with poor survival. In vitro studies had shown that the knockdown of SLC1A5 resulted in a significant decrease in cell viability and promoted lipid peroxidation and oxidative damage introduced by irradiation (10 Gy). Collectively, our findings indicated that SLC1A5 may act as a suppressor gene against ferroptosis and can be a potential target for ionizing radiation mediated effects.
Collapse
|
128
|
Tai P, Wang Z, Chen X, Chen A, Gong L, Cheng Y, Cao K. Multi-omics analysis of the oncogenic value of copper Metabolism-Related protein COMMD2 in human cancers. Cancer Med 2022. [PMID: 36205192 DOI: 10.1002/cam4.5320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The copper metabolism MURR1 domain (COMMD) protein family is involved in tumorigenicity of malignant tumors. However, as the member of COMMD, the role of COMMD2 in human tumors remains unknown. METHODS We used The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Human Protein Atlas (HPA) database, Cancer Cell Line Encyclopedia (CCLE) platform, univariate Cox regression analysis, Kaplan-Meier curve, cBioPortal, UALCAN database, Sangerbox online platform, GSCA database gene set enrichment analysis (GSEA), and GeneMANIA to analyze the expression of COMMD2, its prognostic values, genomic alteration patterns, and the correlation with tumor stemness, tumor mutational burden (TMB), microsatellite instability (MSI), and immune infiltrates, drug sensitivity, and gene function enrichment in pan-cancer. qRT-PCR, CCK-8, EdU, wound healing, and transwell migration assays were performed to confirm the function of COMMD2. RESULTS COMMD2 was strongly expressed in most cancer types. Elevated COMMD2 expression affects the prognosis, clinicopathological stage, and molecular or immune subtypes of various tumors. Moreover, promoter hypomethylation and mutations in the COMMD2 gene may be associated with its high expression and poor survival. Additionally, we discovered that COMMD2 expression was linked to tumor stemness, TMB, MSI, immune cell infiltration, immune-checkpoint inhibitors, and drug sensitivity in pan-cancer. Furthermore, the COMMD2 gene co-expression network is constructed with GSEA analysis, displaying significant interaction of COMMD2 with E2F targets, G2-M checkpoint, and mitotic spindle in bladder cancer (BLCA). Finally, RNA interference data showed suppression of COMMD2 prevented proliferation and migration of BLCA and uterine corpus endometrial carcinoma (UCEC) cells. CONCLUSION Our findings shed light on the COMMD2 functions in human cancers and demonstrate that it is a promising prognostic biomarker and therapeutic target in pan-cancer.
Collapse
Affiliation(s)
- Panpan Tai
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xinyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Aiyan Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Lian Gong
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
129
|
Liu X, Sun B, Yao Y, Lai L, Wang X, Xiong J, Zhang X, Jiang J. Identification of copper metabolism and cuproptosis-related subtypes for predicting prognosis tumor microenvironment and drug candidates in hepatocellular carcinoma. Front Immunol 2022; 13:996308. [PMID: 36275743 PMCID: PMC9582144 DOI: 10.3389/fimmu.2022.996308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Copper (Cu) is an essential element of organisms, which can affect the survival of cells. However, the role of copper metabolism and cuproptosis on hepatic carcinoma is still unclear. In this study, the TCGA database was used as the test set, and the ICGC database and self-built database were used as the validation set. We screened out a class of copper metabolism and cuproptosis-related genes (CMCRGs) that could influence hepatic carcinoma prognosis by survival analysis and differential comparison. Based on CMCRGs, patients were divided into two subtypes by cluster analysis. The C2 subtype was defined as the high copper related subtype, while the C1 subtype was defied as the low copper related subtype. At the clinical level, compared with the C1 subtype, the C2 subtype had higher grade pathological features, risk scores, and worse survival. In addition, the immune response and metabolic status also differed between C1 and C2. Specifically, C2 subtype had a higher proportion of immune cell composition and highly expressed immune checkpoint genes. C2 subtype had a higher TIDE score with a higher proportion of tumor immune dysfunction and exclusion. At the molecular level, the C2 subtype had a higher frequency of driver gene mutations (TP53 and OBSCN). Mechanistically, the single nucleotide polymorphisms of C2 subtype had a very strong transcriptional strand bias for C>A mutations. Copy number variations in the C2 subtype were characterized by LOXL3 CNV gain, which also showed high association with PDCD1/CTLA4. Finally, drug sensitivity responsiveness was assessed in both subtypes. C2 subtype had lower IC50 values for targeted and chemotherapeutic agents (sorafenib, imatinib and methotrexate, etc.). Thus, CMCRGs related subtypes showed poor response to immunotherapy and better responsiveness to targeted agents, and the results might provide a reference for precision treatment of hepatic carcinoma.
Collapse
Affiliation(s)
- Xianglong Liu
- Department of Radiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Bo Sun
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiyang Yao
- Department of Gastroenterology, Qidong People’s Hospital, Nantong, China
| | - Linying Lai
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xueyuan Wang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Xiong
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Jie Jiang, ; Xiaoan Zhang, ; Jie Xiong,
| | - Xiaoan Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,School of Clinical Medicine, Henan University of Science and Technology, Luoyang, China,*Correspondence: Jie Jiang, ; Xiaoan Zhang, ; Jie Xiong,
| | - Jie Jiang
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China,*Correspondence: Jie Jiang, ; Xiaoan Zhang, ; Jie Xiong,
| |
Collapse
|
130
|
Chen J, Wang G, Luo X, Zhang J, Zhang Y. Cuproptosis patterns and tumor microenvironment in endometrial cancer. Front Genet 2022; 13:1001374. [PMID: 36226180 PMCID: PMC9549213 DOI: 10.3389/fgene.2022.1001374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022] Open
Abstract
Cuproptosis is the most recently discovered mode of cell death. It could affect the metabolism of cancer cells and surrounding infiltrating immune cells. In recent years, many studies have also shown that the tumor microenvironment (TME) plays a critical role in tumor growth and development. Mounting evidence suggests that Cuproptosis would bring unique insights into the development of pharmacological and nonpharmacological therapeutic techniques for cancer prevention and therapy. However, no study has been done on the combination of cuproptosis and TME in any cancer. Herein, we investigated the relationship between cuproptosis-related genes (CRGs), TME, and the prognosis of patients with Uterine Corpus Endometrial Carcinoma (UCEC). We identified three CRGs clusters based on 10 CRGs and three CRGs gene clusters based on 600 differentially expressed genes (DEGs) with significant prognostic differences. Following that, the CRGs score based on DEGs with significant prognostic differences was established to evaluate the prognosis and immunotherapeutic efficacy of UCEC patients. The CRGs score was shown to be useful in predicting clinical outcomes. Patients with a low CRGs score seemed to have a better prognosis, a better immunotherapeutic response, and a higher tumor mutation burden (TMB). In conclusion, our study explored the influence of cuproptosis patterns and TME on the prognosis of cancer patients, thereby improving their prognosis.
Collapse
|
131
|
Chen S, Liu P, Zhao L, Han P, Liu J, Yang H, Li J. A novel cuproptosis-related prognostic lncRNA signature for predicting immune and drug therapy response in hepatocellular carcinoma. Front Immunol 2022; 13:954653. [PMID: 36189204 PMCID: PMC9521313 DOI: 10.3389/fimmu.2022.954653] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Intratumoral copper levels are closely associated with immune escape from diverse cancers. Cuproptosis-related lncRNAs (CRLs), however, have an unclear relationship with hepatocellular carcinoma (HCC). Gene expression data from 51 normal tissues and 373 liver cancer tissues from the Cancer Genome Atlas (TCGA) database were collected and analyzed. To identify CRLs, we employed differentially expressed protein-coding genes (DE-PCGs)/lncRNAs (DE-lncRNAs) analysis, Kaplan-Meier (K-M) analysis, and univariate regression. By univariate and Lasso Cox regression analyses, we screened 10 prognosis-related lncRNAs. Subsequently, five CRLs were identified by multivariable Cox regression analysis to construct the prognosis model. This feature is an independent prognostic indicator to forecast overall survival. According to Gene Set Variation Analysis (GSVA) and Gene Ontology (GO), both immune-related biological processes (BPS) and pathways have CRL participation. In addition, we found that the characteristics of CRLs were associated with the expression of the tumor microenvironment (TME) and crucial immune checkpoints. CRLs could predict the clinical response to immunotherapy based on the studies of tumor immune dysfunction and rejection (TIDE) analysis. Additionally, it was verified that tumor mutational burden survival and prognosis were greatly different between high-risk and low-risk groups. Finally, we screened potential sensitive drugs for HCC. In conclusion, this study provides insight into the TME status in patients with HCC and lays a basis for immunotherapy and the selection of sensitive drugs.
Collapse
Affiliation(s)
- Shujia Chen
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Peiyan Liu
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Lili Zhao
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Ping Han
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Jie Liu
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Hang Yang
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Li
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China,*Correspondence: Jia Li,
| |
Collapse
|
132
|
Wang J, Liu C, Sun H, Wang S, Liao X, Zhang L. Membrane disruption boosts iron overload and endogenous oxidative stress to inactivate Escherichia coli by nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128951. [PMID: 35472538 DOI: 10.1016/j.jhazmat.2022.128951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The inactivation of microorganisms by nanoscale zero-valent iron (nZVI) was extensively reported, but what happens inside the cells is rarely explored. Herein, we revealed that nZVI caused the drastic increase of intracellular iron concentrations, which subsequently catalyzed the Haber-Weiss reaction to produce high levels of endogenous reactive oxygen species (ROSs) and inactivated E. coli cells by oxidative damage of DNA, evidenced by the significantly higher inactivation efficiencies of E. coli mutant strains deficient in iron uptake regulation and DNA repair than the parental strain. The intracellular iron levels, endogenous ROSs levels and the inactivation efficiencies of E. coli were positively correlated. The permeabilized cytomembrane due to the close contact between nZVI and E. coli was responsible for the iron overload. This work demonstrates experimentally for the first time that nZVI causes iron overload and endogenous oxidative stress to inactivate E. coli, thus deepening our knowledge of the nZVI antimicrobial mechanism.
Collapse
Affiliation(s)
- Jian Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Congcong Liu
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Shaohui Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Xiaomei Liao
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
133
|
Zhang B, Zhao J, Liu B, Shang Y, Chen F, Zhang S, He J, Fan Y, Tan K. Development and Validation of a Novel Ferroptosis-Related Gene Signature for Prognosis and Immunotherapy in Hepatocellular Carcinoma. Front Mol Biosci 2022; 9:940575. [PMID: 35847985 PMCID: PMC9280137 DOI: 10.3389/fmolb.2022.940575] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a cancer that is sensitive to ferroptosis, and immunotherapy has emerged as a promising treatment for HCC patients. However, the prognostic potential of ferroptosis-related genes (FRGs) and the effect of ferroptosis on the tumor immune microenvironment in HCC remain largely obscure. Here, we analyzed the expression pattern of FRGs using the TCGA, ICGC and GEO databases. The expression of most FRGs was upregulated in HCC tissues compared with normal liver tissues. Three independent clusters were determined by consensus clustering analysis based on FRG expression in HCC. Cluster 3 exhibited higher expression, unfavorable prognosis, and higher histological tumor stage and grade than clusters 1 and 2. CIBERSORT analysis indicated different infiltrating levels of various immune cells among the three clusters. Moreover, most immune checkpoint genes were highly expressed in cluster 3. Univariate Cox regression and LASSO regression analyses were performed to develop a five FRG-based prognostic risk model using the TCGA and ICGC datasets. Kaplan–Meier analysis and ROC curves were performed to verify the prognostic potential of the risk model. A nomogram containing independent prognostic factors was further developed. Compared with low-risk patients, high-risk HCC patients exhibited worse overall survival (OS). In addition, this risk model was significantly correlated with the infiltrating levels of six major types of immune cells in HCC. Finally, the relationships between the five FRGs and drug sensitivity were investigated. The present study suggests that the five FRGs could elucidate the molecular mechanisms of HCC and lead to a new direction for the improvement of predictive, preventive, and personalized medicine for HCC.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jilong Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Bing Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanan Shang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Fei Chen
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Sidi Zhang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiayao He
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Department of Neurosurgery, Handan Central Hospital, Hebei Medical University, Shijiazhuang, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Yumei Fan, ; Ke Tan,
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Yumei Fan, ; Ke Tan,
| |
Collapse
|
134
|
The Role of SLC7A11 in Cancer: Friend or Foe? Cancers (Basel) 2022; 14:cancers14133059. [PMID: 35804831 PMCID: PMC9264807 DOI: 10.3390/cancers14133059] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
SLC7A11 controls the uptake of extracellular cystine in exchange for glutamate at a ratio of 1:1, and it is overexpressed in a variety of tumours. Accumulating evidence has shown that the expression of SLC7A11 is fine-tuned at multiple levels, and plays diverse functional and pharmacological roles in tumours, such as cellular redox homeostasis, cell growth and death, and cell metabolism. Many reports have suggested that the inhibition of SLC7A11 expression and activity is favourable for tumour therapy; thus, SLC7A11 is regarded as a potential therapeutic target. However, emerging evidence also suggests that on some occasions, the inhibition of SLC7A11 is beneficial to the survival of cancer cells, and confers the development of drug resistance. In this review, we first briefly introduce the biological properties of SLC7A11, including its structure and physiological functions, and further summarise its regulatory network and potential regulators. Then, focusing on its role in cancer, we describe the relationships of SLC7A11 with tumourigenesis, survival, proliferation, metastasis, and therapeutic resistance in more detail. Finally, since SLC7A11 has been linked to cancer through multiple approaches, we propose that its contribution and regulatory mechanism require further elucidation. Thus, more personalised therapeutic strategies should be adapted when targeting SLC7A11.
Collapse
|
135
|
Ferroptosis as a mechanism of non-ferrous metal toxicity. Arch Toxicol 2022; 96:2391-2417. [PMID: 35727353 DOI: 10.1007/s00204-022-03317-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Collapse
|
136
|
Zhao YY, Wang MM, Cui JF. New progress in the mechanism of microenvironment-driven chemoradiotherapy resistance in digestive system tumors. Shijie Huaren Xiaohua Zazhi 2022; 30:341-348. [DOI: 10.11569/wcjd.v30.i8.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironment (TME) is the cornerstone of the survival of tumor cells. It generally presents unique physical and chemical characteristics such as hypoxia, immunosuppression, metabolic reprogramming, and matrix stiffening, which not only offer suitable soil to support tumorigenesis and progression, but also resist the effects of radiotherapy and chemotherapy. Here, we summarize new progress in the mechanism of hypoxia, immunosuppression, metabolic reprogramming, and matrix stiffness-driven chemoradiotherapy resistance in digestive system tumors, and discuss the new intervention strategy against matrix stiffness-driven chemoradiotherapy resistance, which underlines the contribution of physical and chemical characteristics of tumor microenvironment in drug resistance.
Collapse
Affiliation(s)
- Ying-Ying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mi-Mi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
137
|
Du H, Ren X, Bai J, Yang W, Gao Y, Yan S. Research Progress of Ferroptosis in Adiposity-Based Chronic Disease (ABCD). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1052699. [PMID: 35502211 PMCID: PMC9056228 DOI: 10.1155/2022/1052699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Ferroptosis is a multistep regulated cell death process induced by iron accumulation and lipid peroxidation. Classical GPX4-dependent pathway and GPX4-independent pathways can independently and synergistically inhibit ferroptosis and jointly maintain the oxidative balance of the body. WHO defines obesity as "a condition of abnormal or excessive fat accumulation in adipose tissue, to the extent that health may be impaired," and obesity is also defined as an adiposity-based chronic disease (ABCD). Obesity is a systemic disease that leads to metabolic abnormalities in various systems, resulting in a series of complications including obesity cardiomyopathy, atherosclerosis, nonalcoholic fatty liver disease, and diabetes mellitus. Emerging evidence shows that ferroptosis is closely associated with the occurrence and progression of various diseases. In recent years, ferroptosis has been found to play critical roles in obesity and its complications. This review discusses the mechanisms of how ferroptosis is initiated and controlled and discusses the research progress of ferroptosis in obesity and its complications.
Collapse
Affiliation(s)
- Huijun Du
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Xiaoying Ren
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Juncai Bai
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Wei Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Yunan Gao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Shuang Yan
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| |
Collapse
|
138
|
Rocchi P, Brichart-Vernos D, Lux F, Morfin I, David L, Rodriguez-Lafrasse C, Tillement O. A New Generation of Ultrasmall Nanoparticles Inducing Sensitization to Irradiation and Copper Depletion to Overcome Radioresistant and Invasive Cancers. Pharmaceutics 2022; 14:pharmaceutics14040814. [PMID: 35456648 PMCID: PMC9024746 DOI: 10.3390/pharmaceutics14040814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
An emerging target to overcome cancer resistance to treatments is copper, which is upregulated in a wide variety of tumors and may be associated with cancer progression and metastases. The aim of this study was to develop a multimodal ultrasmall nanoparticle, CuPRiX, based on the clinical AGuIX nanoparticle made of the polysiloxane matrix on which gadolinium chelates are grafted. Such hybrid nanoparticles allow: (i) a localized depletion of copper in tumors to prevent tumor cell dissemination and metastasis formation and (ii) an increased sensitivity of the tumor to radiotherapy (RT) due to the presence of high Z gadolinium (Gd) atoms. CuPRiX nanoparticles are obtained by controlled acidification of AGuIX nanoparticles. They were evaluated in vitro on two cancer cell lines (lung and head and neck) using the scratch-wound assay and clonogenic cell survival assay. They were able to reduce cell migration and invasion and displayed radiosensitizing properties.
Collapse
Affiliation(s)
- Paul Rocchi
- Institut Lumière Matière, Université Claude Bernard Lyon 1CNRS UMR 5306, 69622 Villeurbanne, France; (P.R.); (D.B.-V.); (O.T.)
- NH TherAguix SA, 38240 Meylan, France
| | - Delphine Brichart-Vernos
- Institut Lumière Matière, Université Claude Bernard Lyon 1CNRS UMR 5306, 69622 Villeurbanne, France; (P.R.); (D.B.-V.); (O.T.)
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS 5822/IP2I, Univ. Lyon, Lyon 1 University, 69921 Oullins, France;
| | - François Lux
- Institut Lumière Matière, Université Claude Bernard Lyon 1CNRS UMR 5306, 69622 Villeurbanne, France; (P.R.); (D.B.-V.); (O.T.)
- Institut Universitaire de France (IUF), 75000 Paris, France
- Correspondence: ; Tel.: +33-4-72-43-12-00
| | - Isabelle Morfin
- LiPhy, Université Grenoble Alpes, CNRS, UMR UMR5588, 38401 Grenoble, France;
| | - Laurent David
- Ingénierie des Matériaux Polymères, Université de Lyon, Université Claude Bernard Lyon 1, Université Jean Monet, Institut National des Sciences Appliquées de Lyon, CNRS, UMR 5223, 15, bd A. Latarjet, 69622 Villeurbanne, France;
| | - Claire Rodriguez-Lafrasse
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS 5822/IP2I, Univ. Lyon, Lyon 1 University, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils of Lyon, 69310 Pierre-Bénite, France
| | - Olivier Tillement
- Institut Lumière Matière, Université Claude Bernard Lyon 1CNRS UMR 5306, 69622 Villeurbanne, France; (P.R.); (D.B.-V.); (O.T.)
| |
Collapse
|