101
|
Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. EUKARYOTIC CELL 2011; 11:183-93. [PMID: 22158713 DOI: 10.1128/ec.05282-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The presence of mitochondrial respiratory complex I in the pathogenic bloodstream stages of Trypanosoma brucei has been vigorously debated: increased expression of mitochondrially encoded functional complex I mRNAs is countered by low levels of enzymatic activity that show marginal inhibition by the specific inhibitor rotenone. We now show that epitope-tagged versions of multiple complex I subunits assemble into α and β subcomplexes in the bloodstream stage and that these subcomplexes require the mitochondrial genome for their assembly. Despite the presence of these large (740- and 855-kDa) multisubunit complexes, the electron transport activity of complex I is not essential under experimental conditions since null mutants of two core genes (NUBM and NUKM) showed no growth defect in vitro or in mouse infection. Furthermore, the null mutants showed no decrease in NADH:ubiquinone oxidoreductase activity, suggesting that the observed activity is not contributed by complex I. This work conclusively shows that despite the synthesis and assembly of subunit proteins, the enzymatic function of the largest respiratory complex is neither significant nor important in the bloodstream stage. This situation appears to be in striking contrast to that for the other respiratory complexes in this parasite, where physical presence in a life-cycle stage always indicates functional significance.
Collapse
|
102
|
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) in eukaryotes: A highly conserved subunit composition highlighted by mining of protein databases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1390-7. [DOI: 10.1016/j.bbabio.2011.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/18/2011] [Accepted: 06/22/2011] [Indexed: 11/22/2022]
|
103
|
Bar-Yaacov D, Blumberg A, Mishmar D. Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1107-11. [PMID: 22044624 DOI: 10.1016/j.bbagrm.2011.10.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/09/2011] [Accepted: 10/11/2011] [Indexed: 11/28/2022]
Abstract
Factors required for mitochondrial function are encoded both by the nuclear and mitochondrial genomes. The order of magnitude higher mutation rate of animal mitochondrial DNA (mtDNA) enforces tight co-evolution of mtDNA and nuclear DNA encoded factors. In this essay we argue that such co evolution exists at the population and inter-specific levels and affect disease susceptibility. We also argue for the existence of three modes of co-evolution in the mitochondrial genetic system, which include the interaction of mtDNA and nuclear DNA encoded proteins, nuclear protein - mtDNA-encoded RNA interaction within the mitochondrial translation machinery and nuclear DNA encoded proteins-mtDNA binging sites interaction in the frame of the mtDNA replication and transcription machineries. These modes of co evolution require co-regulation of the interacting factors encoded by the two genomes. Thus co evolution plays an important role in modulating mitochondrial activity. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Dan Bar-Yaacov
- Department of Life Sciences, Ben-Gurion Unniversity of the Negev, Beer Sheva 84105, Israel
| | | | | |
Collapse
|
104
|
Liu Z, Li X, Zhao P, Gui J, Zheng W, Zhang Y. Tracing the evolution of the mitochondrial protein import machinery. Comput Biol Chem 2011; 35:336-40. [PMID: 22099629 DOI: 10.1016/j.compbiolchem.2011.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/01/2011] [Indexed: 10/16/2022]
Abstract
Mitochondria are eukaryotic organelles originated from a single bacterial endosymbiosis about 2 billion years ago. One of the earliest events in the evolution of mitochondria was the acquisition of a mechanism that facilitated the import of proteins from cytosol. The mitochondrial protein import machinery consists of dozens of subunits, and they are of modular design. However, to date, it is not clear when certain component was added to the machinery. Using extensive homology searches, the evolutionary history of the mitochondrial protein import machinery was reconstructed. The results indicated that 6 of the 35 subunits have homologs in prokaryote, suggesting that they were prokaryotic origin; the major subunit gains were occurred in the earliest stage of eukaryotic evolution; subsequent to the gain of these conserved set of subunits, the mitochondrial protein import machinery components diversified along the eukaryotic lineages and a number of lineage-specific subunits can be observed. Furthermore, protein import systems of mitochondria-like organelles (hydrogenosomes and mitosomes) have dramatically reduced their subunit contents, however, they share most of the prokaryotic origin components with mitochondrion.
Collapse
Affiliation(s)
- Zhen Liu
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, 610064 Chengdu, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
105
|
Dieteren CEJ, Willems PHGM, Swarts HG, Fransen J, Smeitink JAM, Koopman WJH, Nijtmans LGJ. Defective mitochondrial translation differently affects the live cell dynamics of complex I subunits. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1624-33. [PMID: 21978538 DOI: 10.1016/j.bbabio.2011.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/16/2011] [Accepted: 09/18/2011] [Indexed: 10/17/2022]
Abstract
Complex I (CI) of the oxidative phosphorylation system is assembled from 45 subunits encoded by both the mitochondrial and nuclear DNA. Defective mitochondrial translation is a major cause of mitochondrial disorders and proper understanding of its mechanisms and consequences is fundamental to rational treatment design. Here, we used a live cell approach to assess its consequences on CI assembly. The approach consisted of fluorescence recovery after photobleaching (FRAP) imaging of the effect of mitochondrial translation inhibition by chloramphenicol (CAP) on the dynamics of AcGFP1-tagged CI subunits NDUFV1, NDUFS3, NDUFA2 and NDUFB6 and assembly factor NDUFAF4. CAP increased the mobile fraction of the subunits, but not NDUFAF4, and decreased the amount of CI, demonstrating that CI is relatively immobile and does not associate with NDUFAF4. CAP increased the recovery kinetics of NDUFV1-AcGFP1 to the same value as obtained with AcGFP1 alone, indicative of the removal of unbound NDUFV1 from the mitochondrial matrix. Conversely, CAP decreased the mobility of NDUFS3-AcGFP1 and, to a lesser extent, NDUFB6-AcGFP1, suggestive of their enrichment in less mobile subassemblies. Little, if any, change in mobility of NDUFA2-AcGFP1 could be detected, suggesting that the dynamics of this accessory subunit of the matrix arm remains unaltered. Finally, CAP increased the mobility of NDUFAF4-AcGFP1, indicative of interaction with a more mobile membrane-bound subassembly. Our results show that the protein interactions of CI subunits and assembly factors are differently altered when mitochondrial translation is defective.
Collapse
Affiliation(s)
- Cindy E J Dieteren
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
The prokaryotic and eukaryotic homologues of complex I (proton-pumping NADH:quinone oxidoreductase) perform the same function in energy transduction, but the eukaryotic enzymes are twice as big as their prokaryotic cousins, and comprise three times as many subunits. Fourteen core subunits are conserved in all complexes I, and are sufficient for catalysis - so why are the eukaryotic enzymes embellished by so many supernumerary or accessory subunits? In this issue of the Biochemical Journal, Angerer et al. have provided new evidence to suggest that the supernumerary subunits are important for enzyme stability. This commentary aims to put this suggestion into context.
Collapse
|
107
|
Efremov RG, Sazanov LA. Respiratory complex I: 'steam engine' of the cell? Curr Opin Struct Biol 2011; 21:532-40. [PMID: 21831629 DOI: 10.1016/j.sbi.2011.07.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/01/2011] [Accepted: 07/07/2011] [Indexed: 12/19/2022]
Abstract
Complex I is the first enzyme of the respiratory chain and plays a central role in cellular energy production. It has been implicated in many human neurodegenerative diseases, as well as in ageing. One of the biggest membrane protein complexes, it is an L-shaped assembly consisting of hydrophilic and membrane domains. Previously, we have determined structures of the hydrophilic domain in several redox states. Last year was marked by fascinating breakthroughs in the understanding of the complete structure. We described the architecture of the membrane domain and of the entire bacterial complex I. X-ray analysis of the larger mitochondrial enzyme has also been published. The core subunits of the bacterial and mitochondrial enzymes have remarkably similar structures. The proposed mechanism of coupling between electron transfer and proton translocation involves long-range conformational changes, coordinated in part by a long α-helix, akin to the coupling rod of a steam engine.
Collapse
Affiliation(s)
- Rouslan G Efremov
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | |
Collapse
|
108
|
Opperdoes FR, De Jonckheere JF, Tielens AG. Naegleria gruberi metabolism. Int J Parasitol 2011; 41:915-24. [DOI: 10.1016/j.ijpara.2011.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/30/2011] [Accepted: 04/23/2011] [Indexed: 01/08/2023]
|
109
|
Tucker EJ, Compton AG, Calvo SE, Thorburn DR. The molecular basis of human complex I deficiency. IUBMB Life 2011; 63:669-77. [PMID: 21766414 DOI: 10.1002/iub.495] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/18/2011] [Indexed: 12/18/2022]
Abstract
Disorders of oxidative phosphorylation (OXPHOS) have a birth prevalence of ∼1/5,000 and are the most common inborn errors of metabolism. The most common OXPHOS disorder is complex I deficiency. Patients with complex I deficiency present with variable symptoms, such as muscle weakness, cardiomyopathy, developmental delay or regression, blindness, seizures, failure to thrive, liver dysfunction or ataxia. Molecular diagnosis of patients with complex I deficiency is a challenging task due to the clinical heterogeneity of patients and the large number of candidate disease genes, both nuclear-encoded and mitochondrial DNA (mtDNA)-encoded. In this review, we have thoroughly surveyed the literature to identify 149 patients described with both isolated complex I deficiency and pathogenic mutations within nuclear genes. In total, 115 different pathogenic mutations have been reported in 22 different nuclear genes encoding complex I subunits or assembly factors, highlighting the allelic and locus heterogeneity of this disorder. Missense mutations predominate in genes encoding core subunits and some assembly factors while null-type mutations are common in the genes encoding supernumerary subunits and other assembly factors. Despite developments in molecular technology, many patients do not receive molecular diagnosis and no gene has yet been identified that accounts for more than 5% of cases, suggesting that there are likely many disease genes that await discovery.
Collapse
Affiliation(s)
- Elena J Tucker
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
110
|
Martins VDP, Dinamarco TM, Curti C, Uyemura SA. Classical and alternative components of the mitochondrial respiratory chain in pathogenic fungi as potential therapeutic targets. J Bioenerg Biomembr 2011; 43:81-8. [PMID: 21271279 DOI: 10.1007/s10863-011-9331-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.
Collapse
Affiliation(s)
- Vicente de Paulo Martins
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
111
|
Doolittle WF, Lukeš J, Archibald JM, Keeling PJ, Gray MW. Comment on “Does constructive neutral evolution play an important role in the origin of cellular complexity?” DOI 10.1002/bies.201100010. Bioessays 2011; 33:427-9. [DOI: 10.1002/bies.201100039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
112
|
Enzymatic dysfunction of mitochondrial complex I of the Candida albicans goa1 mutant is associated with increased reactive oxidants and cell death. EUKARYOTIC CELL 2011; 10:672-82. [PMID: 21398508 DOI: 10.1128/ec.00303-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have previously shown that deletion of GOA1 (growth and oxidant adaptation) of Candida albicans results in a loss of mitochondrial membrane potential, ATP synthesis, increased sensitivity to oxidants and killing by human neutrophils, and avirulence in a systemic model of candidiasis. We established that translocation of Goa1p to mitochondria occurred during peroxide stress. In this report, we show that the goa1Δ (GOA31), compared to the wild type (WT) and a gene-reconstituted (GOA32) strain, exhibits sensitivity to inhibitors of the classical respiratory chain (CRC), including especially rotenone (complex I [CI]) and salicylhydroxamic acid (SHAM), an inhibitor of the alternative oxidase pathway (AOX), while potassium cyanide (KCN; CIV) causes a partial inhibition of respiration. In the presence of SHAM, however, GOA31 has an enhanced respiration, which we attribute to the parallel respiratory (PAR) pathway and alternative NADH dehydrogenases. Interestingly, deletion of GOA1 also results in a decrease in transcription of the alternative oxidase gene AOX1 in untreated cells as well as negligible AOX1 and AOX2 transcription in peroxide-treated cells. To explain the rotenone sensitivity, we measured enzyme activities of complexes I to IV (CI to CIV) and observed a major loss of CI activity in GOA31 but not in control strains. Enzymatic data of CI were supported by blue native polyacrylamide gel electrophoresis (BN-PAGE) experiments which demonstrated less CI protein and reduced enzyme activity. The consequence of a defective CI in GOA31 is an increase in reactive oxidant species (ROS), loss of chronological aging, and programmed cell death ([PCD] apoptosis) in vitro compared to control strains. The increase in PCD was indicated by an increase in caspase activity and DNA fragmentation in GOA31. Thus, GOA1 is required for a functional CI and partially for the AOX pathway; loss of GOA1 compromises cell survival. Further, the loss of chronological aging is new to studies of Candida species and may offer an insight into therapies to control these pathogens. Our observation of increased ROS production associated with a defective CI and PCD is reminiscent of mitochondrial studies of patients with some types of neurodegenerative diseases where CI and/or CIII dysfunctions lead to increased ROS and apoptosis.
Collapse
|
113
|
Speijer D. Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity. Bioessays 2011; 33:344-9. [PMID: 21381061 DOI: 10.1002/bies.201100010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently, constructive neutral evolution has been touted as an important concept for the understanding of the emergence of cellular complexity. It has been invoked to help explain the development and retention of, amongst others, RNA splicing, RNA editing and ribosomal and mitochondrial respiratory chain complexity. The theory originated as a welcome explanation of isolated small scale cellular idiosyncrasies and as a reaction to 'overselectionism'. Here I contend, that in its extended form, it has major conceptual problems, can not explain observed patterns of complex processes, is too easily dismissive of alternative selectionist models, underestimates the creative force of complexity as such, and--if seen as a major evolutionary mechanism for all organisms--could stifle further thought regarding the evolution of highly complex biological processes.
Collapse
Affiliation(s)
- Dave Speijer
- Academic Medical Center (AMC), Department of Medical Biochemistry, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
114
|
de Graaf RM, Ricard G, van Alen TA, Duarte I, Dutilh BE, Burgtorf C, Kuiper JWP, van der Staay GWM, Tielens AGM, Huynen MA, Hackstein JHP. The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Mol Biol Evol 2011; 28:2379-91. [PMID: 21378103 PMCID: PMC3144386 DOI: 10.1093/molbev/msr059] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that hydrogenosomes (hydrogen-producing organelles) evolved from a mitochondrial ancestor. However, until recently, only indirect evidence for this hypothesis was available. Here, we present the almost complete genome of the hydrogen-producing mitochondrion of the anaerobic ciliate Nyctotherus ovalis and show that, except for the notable absence of genes encoding electron transport chain components of Complexes III, IV, and V, it has a gene content similar to the mitochondrial genomes of aerobic ciliates. Analysis of the genome of the hydrogen-producing mitochondrion, in combination with that of more than 9,000 genomic DNA and cDNA sequences, allows a preliminary reconstruction of the organellar metabolism. The sequence data indicate that N. ovalis possesses hydrogen-producing mitochondria that have a truncated, two step (Complex I and II) electron transport chain that uses fumarate as electron acceptor. In addition, components of an extensive protein network for the metabolism of amino acids, defense against oxidative stress, mitochondrial protein synthesis, mitochondrial protein import and processing, and transport of metabolites across the mitochondrial membrane were identified. Genes for MPV17 and ACN9, two hypothetical proteins linked to mitochondrial disease in humans, were also found. The inferred metabolism is remarkably similar to the organellar metabolism of the phylogenetically distant anaerobic Stramenopile Blastocystis. Notably, the Blastocystis organelle and that of the related flagellate Proteromonas lacertae also lack genes encoding components of Complexes III, IV, and V. Thus, our data show that the hydrogenosomes of N. ovalis are highly specialized hydrogen-producing mitochondria.
Collapse
Affiliation(s)
- Rob M de Graaf
- Department of Evolutionary Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
NDUFB7 and NDUFA8 are located at the intermembrane surface of complex I. FEBS Lett 2011; 585:737-43. [PMID: 21310150 DOI: 10.1016/j.febslet.2011.01.046] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 01/21/2011] [Accepted: 01/31/2011] [Indexed: 01/15/2023]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the first and largest protein complex of the oxidative phosphorylation. Crystal structures have elucidated the positions of most subunits of bacterial evolutionary origin in the complex, but the positions of the eukaryotic subunits are unknown. Based on the analysis of sequence conservation we propose intra-molecular disulfide bridges and the inter-membrane space localization of three Cx(9)C-containing subunits in human: NDUFS5, NDUFB7 and NDUFA8. We experimentally confirm the localization of the latter two, while our data are consistent with disulfide bridges in NDUFA8. We propose these subunits stabilize the membrane domain of complex I.
Collapse
|
116
|
Yip CY, Harbour ME, Jayawardena K, Fearnley IM, Sazanov LA. Evolution of respiratory complex I: "supernumerary" subunits are present in the alpha-proteobacterial enzyme. J Biol Chem 2010; 286:5023-33. [PMID: 21115482 DOI: 10.1074/jbc.m110.194993] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modern α-proteobacteria are thought to be closely related to the ancient symbiont of eukaryotes, an ancestor of mitochondria. Respiratory complex I from α-proteobacteria and mitochondria is well conserved at the level of the 14 "core" subunits, consistent with that notion. Mitochondrial complex I contains the core subunits, present in all species, and up to 31 "supernumerary" subunits, generally thought to have originated only within eukaryotic lineages. However, the full protein composition of an α-proteobacterial complex I has not been established previously. Here, we report the first purification and characterization of complex I from the α-proteobacterium Paracoccus denitrificans. Single particle electron microscopy shows that the complex has a well defined L-shape. Unexpectedly, in addition to the 14 core subunits, the enzyme also contains homologues of three supernumerary mitochondrial subunits as follows: B17.2, AQDQ/18, and 13 kDa (bovine nomenclature). This finding suggests that evolution of complex I via addition of supernumerary or "accessory" subunits started before the original endosymbiotic event that led to the creation of the eukaryotic cell. It also provides further confirmation that α-proteobacteria are the closest extant relatives of mitochondria.
Collapse
Affiliation(s)
- Chui-ying Yip
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | | | | | | | | |
Collapse
|
117
|
Abstract
Homo-oligomeric protein complexes are functionally vital and highly abundant in living cells. In the present article, we review our current understanding of their geometry and evolution, including aspects of the symmetry of these complexes and their interaction interfaces. Also, we briefly discuss the pathway of their assembly in solution.
Collapse
|
118
|
Abstract
Although the origin of mitochondria from the endosymbiosis of an α-proteobacterium is well established, the nature of the host cell, the metabolic complexity of the endosymbiont and the subsequent evolution of the proto-mitochondrion into all its current appearances are still the subject of discovery and sometimes debate. Here we review what has been inferred about the original composition and subsequent evolution of the mitochondrial proteome and essential mitochondrial systems. The evolutionary mosaic that currently constitutes mitochondrial proteomes contains (i) endosymbiotic proteins (15-45%), (ii) proteins without detectable orthologs outside the eukaryotic lineage (40%), and (iii) proteins that are derived from non-proteobacterial Bacteria, Bacteriophages and Archaea (15%, specifically multiple tRNA-modification proteins). Protein complexes are of endosymbiotic origin, but have greatly expanded with novel eukaryotic proteins; in contrast to mitochondrial enzymes that are both of proteobacterial and non-proteobacterial origin. This disparity is consistent with the complexity hypothesis, which argues that proteins that are a part of large, multi-subunit complexes are unlikely to undergo horizontal gene transfer. We observe that they neither change their subcellular compartments in the course of evolution, even when their genes do.
Collapse
Affiliation(s)
- Radek Szklarczyk
- Radboud University Nijmegen Medical Centre, CMBI/NCMLS, Nijmegen, The Netherlands
| | | |
Collapse
|
119
|
Cavallaro G. Genome-wide analysis of eukaryotic twin CX9C proteins. MOLECULAR BIOSYSTEMS 2010; 6:2459-70. [PMID: 20922212 DOI: 10.1039/c0mb00058b] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Twin CX(9)C proteins are eukaryotic proteins that derive their name from their characteristic motif, consisting of two pairs of cysteines that form two disulfide bonds stabilizing a coiled coil-helix-coiled coil-helix (CHCH) fold. The best characterized of these proteins are Cox17, a copper chaperone acting in cytochrome c oxidase biogenesis, and Mia40, the central component of a system for protein import into the mitochondrial inter-membrane space (IMS). However, the range of possible functions for these proteins is unclear. Here, we performed a systematic search of twin CX(9)C proteins in eukaryotic organisms, and classified them into groups of putative homologues, by combining bioinformatics methods with literature analysis. Our results suggest that the functions of most twin CX(9)C proteins vary around the common theme of playing a scaffolding role, which can tie their observed roles in mitochondrial structure and function. This study will enhance the present annotation of eukaryotic proteomes, and will provide a rational basis for future experimental work aimed at a deeper understanding of this remarkable class of proteins.
Collapse
Affiliation(s)
- Gabriele Cavallaro
- Magnetic Resonance Center (CERM)-University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
120
|
Abstract
For nearly three decades, the sequence of the human mitochondrial genome (mtDNA) has provided a molecular framework for understanding maternally inherited diseases. However, the vast majority of human mitochondrial disorders are caused by nuclear genome defects, which is not surprising since the mtDNA encodes only 13 proteins. Advances in genomics, mass spectrometry, and computation have only recently made it possible to systematically identify the complement of over 1,000 proteins that comprise the mammalian mitochondrial proteome. Here, we review recent progress in characterizing the mitochondrial proteome and highlight insights into its complexity, tissue heterogeneity, evolutionary origins, and biochemical versatility. We then discuss how this proteome is being used to discover the genetic basis of respiratory chain disorders as well as to expand our definition of mitochondrial disease. Finally, we explore future prospects and challenges for using the mitochondrial proteome as a foundation for systems analysis of the organelle.
Collapse
Affiliation(s)
- Sarah E Calvo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
121
|
Gershoni M, Fuchs A, Shani N, Fridman Y, Corral-Debrinski M, Aharoni A, Frishman D, Mishmar D. Coevolution predicts direct interactions between mtDNA-encoded and nDNA-encoded subunits of oxidative phosphorylation complex i. J Mol Biol 2010; 404:158-71. [PMID: 20868692 DOI: 10.1016/j.jmb.2010.09.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 09/05/2010] [Accepted: 09/13/2010] [Indexed: 10/19/2022]
Abstract
Despite years of research, the structure of the largest mammalian oxidative phosphorylation (OXPHOS) complex, NADH-ubiquinone oxidoreductase (complex I), and the interactions among its 45 subunits are not fully understood. Since complex I harbors subunits encoded by mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genomes, with the former evolving ∼10 times faster than the latter, tight cytonuclear coevolution is expected and observed. Recently, we identified three nDNA-encoded complex I subunits that underwent accelerated amino acid replacement, suggesting their adjustment to the elevated mtDNA rate of change. Hence, they constitute excellent candidates for binding mtDNA-encoded subunits. Here, we further disentangle the network of physical cytonuclear interactions within complex I by analyzing subunits coevolution. Firstly, relying on the bioinformatic analysis of 10 protein complexes possessing solved structures, we show that signals of coevolution identified physically interacting subunits with nearly 90% accuracy, thus lending support to our approach. When applying this approach to cytonuclear interaction within complex I, we predict that the 'rate-accelerated' nDNA-encoded subunits of complex I, NDUFC2 and NDUFA1, likely interact with the mtDNA-encoded subunits ND5/ND4 and ND5/ND4/ND1, respectively. Furthermore, we predicted interactions among mtDNA-encoded complex I subunits. Using the yeast two-hybrid system, we experimentally confirmed the predicted interactions of human NDUFC2 with ND4, the interactions of human NDUFA1 with ND1 and ND4, and the lack of interaction of NDUFC2 with ND3 and NDUFA1, thus providing a proof of concept for our approach. Our study shows, for the first time, evidence for direct interactions between nDNA-encoded and mtDNA-encoded subunits of human OXPHOS complex I and paves the path towards deciphering subunit interactions within complexes lacking three-dimensional structures. Our subunit-interactions-predicting method, ComplexCorr, is available at http://webclu.bio.wzw.tum.de/complexcorr.
Collapse
Affiliation(s)
- Moran Gershoni
- Department of Life Sciences and the Nation Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Thivierge K, Prado A, Driscoll BT, Bonneil E, Thibault P, Bede JC. Caterpillar- and salivary-specific modification of plant proteins. J Proteome Res 2010; 9:5887-95. [PMID: 20857983 DOI: 10.1021/pr100643m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Though there is overlap, plant responses to caterpillar herbivory show distinct variations from mechanical wounding. In particular, effectors in caterpillar oral secretions modify wound-associated plant responses. Previous studies have focused on transcriptional and protein abundance differences in response to caterpillar herbivory. This study investigated Spodoptera exigua caterpillar-specific post-translational modification of Arabidopsis thaliana soluble leaf proteins by liquid chromatography/electrospray ionization/mass spectroscopy/mass spectroscopy (LC/ESI/MS/MS). Given that caterpillar labial saliva contains oxidoreductases, such as glucose oxidase, particular attention was paid to redox-associated modifications, such as the oxidation of protein cysteine residues. Caterpillar- and saliva-specific protein modifications were observed. Differential phosphorylation of the jasmonic acid biosynthetic enzyme, lipoxygenase 2, and a chaperonin protein is seen in plants fed upon by caterpillars with intact salivary secretions compared to herbivory by larvae with impaired labial salivary secretions. Often a systemic suppression of photosynthesis is associated with caterpillar herbivory. Of the five proteins modified in a caterpillar-specific manner (a transcription repressor, a DNA-repair enzyme, PS I P700, Rubisco and Rubisco activase), three are associated with photosynthesis. Oxidative modifications are observed, such as caterpillar-specific denitrosylation of Rubisco activase and chaperonin, cysteine oxidation of Rubisco, DNA-repair enzyme, and chaperonin and caterpillar-specific 4-oxo-2-nonenal modification of the DNA-repair enzyme.
Collapse
Affiliation(s)
- Karine Thivierge
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| | | | | | | | | | | |
Collapse
|
123
|
Birrell JA, Hirst J. Truncation of subunit ND2 disrupts the threefold symmetry of the antiporter-like subunits in complex I from higher metazoans. FEBS Lett 2010; 584:4247-52. [PMID: 20846527 DOI: 10.1016/j.febslet.2010.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 11/27/2022]
Abstract
Three of the conserved, membrane-bound subunits in NADH:ubiquinone oxidoreductase (complex I) are related to one another, and to Mrp sodium-proton antiporters. Recent structural analysis of two prokaryotic complexes I revealed that the three subunits each contain fourteen transmembrane helices that overlay in structural alignments: the translocation of three protons may be coordinated by a lateral helix connecting them together (Efremov, R.G., Baradaran, R. and Sazanov, L.A. (2010). The architecture of respiratory complex I. Nature 465, 441-447). Here, we show that in higher metazoans the threefold symmetry is broken by the loss of three helices from subunit ND2; possible implications for the mechanism of proton translocation are discussed.
Collapse
Affiliation(s)
- James A Birrell
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge, UK
| | | |
Collapse
|
124
|
Wang Y, Gulis G, Buckner S, Johnson PC, Sullivan D, Busenlehner L, Marcus S. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe. Biochem Biophys Res Commun 2010; 399:123-8. [PMID: 20655879 DOI: 10.1016/j.bbrc.2010.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 07/08/2010] [Indexed: 12/21/2022]
Abstract
Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, United States
| | | | | | | | | | | | | |
Collapse
|
125
|
Bridges HR, Fearnley IM, Hirst J. The subunit composition of mitochondrial NADH:ubiquinone oxidoreductase (complex I) from Pichia pastoris. Mol Cell Proteomics 2010; 9:2318-26. [PMID: 20610779 PMCID: PMC2953923 DOI: 10.1074/mcp.m110.001255] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Respiratory complex I (NADH:quinone oxidoreductase) is an entry point to the electron transport chain in the mitochondria of many eukaryotes. It is a large, multisubunit enzyme with a hydrophilic domain in the matrix and a hydrophobic domain in the mitochondrial inner membrane. Here we present a comprehensive analysis of the protein composition and post-translational modifications of complex I from Pichia pastoris, using a combination of proteomic and bioinformatic approaches. Forty-one subunits were identified in P. pastoris complex I, comprising the 14 core (conserved) subunits and 27 supernumerary subunits; seven of the core subunits are mitochondrial encoded. Three of the supernumerary subunits (named NUSM, NUTM, and NUUM) have not been observed previously in any species of complex I. However, homologues to all three of them are present in either Yarrowia lipolytica or Pichia angusta complex I. P. pastoris complex I has 39 subunits in common with Y. lipolytica complex I, 37 in common with N. crassa complex I, and 35 in common with the bovine enzyme. The mitochondrial encoded subunits (translated by the mold mitochondrial genetic code) retain their N-α-formyl methionine residues. At least eight subunits are N-α-acetylated, but the N-terminal modifications of the nuclear encoded subunits are not well-conserved. A combination of two methods of protein separation (SDS-PAGE and HPLC) and three different mass spectrometry techniques (peptide mass fingerprinting, tandem MS and molecular mass measurements) were required to define the protein complement of P. pastoris complex I. This requirement highlights the need for inclusive and comprehensive strategies for the characterization of challenging membrane-bound protein complexes containing both hydrophilic and hydrophobic components.
Collapse
Affiliation(s)
- Hannah R Bridges
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
126
|
Gawryluk RMR, Gray MW. Evidence for an early evolutionary emergence of gamma-type carbonic anhydrases as components of mitochondrial respiratory complex I. BMC Evol Biol 2010; 10:176. [PMID: 20546574 PMCID: PMC2900272 DOI: 10.1186/1471-2148-10-176] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/14/2010] [Indexed: 11/28/2022] Open
Abstract
Background The complexity of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase) has increased considerably relative to the homologous complex in bacteria. Comparative analyses of CI composition in animals, fungi and land plants/green algae suggest that novel components of mitochondrial CI include a set of 18 proteins common to all eukaryotes and a variable number of lineage-specific subunits. In plants and green algae, several purportedly plant-specific proteins homologous to γ-type carbonic anhydrases (γCA) have been identified as components of CI. However, relatively little is known about CI composition in the unicellular protists, the characterizations of which are essential to our understanding of CI evolution. Results We have performed a tandem mass spectrometric characterization of CI from the amoeboid protozoon Acanthamoeba castellanii. Among the proteins identified were two γCA homologs, AcCa1 and AcCa2, demonstrating that γCA proteins are not specific to plants/green algae. In fact, through bioinformatics searches we detected γCA homologs in diverse protist lineages, and several of these homologs are predicted to possess N-terminal mitochondrial targeting peptides. Conclusions The detection of γCAs in CI of Acanthamoeba, considered to be a closer relative of animals and fungi than plants, suggests that γCA proteins may have been an ancestral feature of mitochondrial CI, rather than a novel, plant-specific addition. This assertion is supported by the presence of genes encoding γCAs in the nuclear genomes of a wide variety of eukaryotes. Together, these findings emphasize the importance of a phylogenetically broad characterization of CI for elucidating CI evolution in eukaryotes.
Collapse
Affiliation(s)
- Ryan M R Gawryluk
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | |
Collapse
|
127
|
Gene expression patterns of oxidative phosphorylation complex I subunits are organized in clusters. PLoS One 2010; 5:e9985. [PMID: 20376309 PMCID: PMC2848612 DOI: 10.1371/journal.pone.0009985] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/11/2010] [Indexed: 11/19/2022] Open
Abstract
After the radiation of eukaryotes, the NUO operon, controlling the transcription of the NADH dehydrogenase complex of the oxidative phosphorylation system (OXPHOS complex I), was broken down and genes encoding this protein complex were dispersed across the nuclear genome. Seven genes, however, were retained in the genome of the mitochondrion, the ancient symbiote of eukaryotes. This division, in combination with the three-fold increase in subunit number from bacteria (N = ∼14) to man (N = 45), renders the transcription regulation of OXPHOS complex I a challenge. Recently bioinformatics analysis of the promoter regions of all OXPHOS genes in mammals supported patterns of co-regulation, suggesting that natural selection favored a mechanism facilitating the transcriptional regulatory control of genes encoding subunits of these large protein complexes. Here, using real time PCR of mitochondrial (mtDNA)- and nuclear DNA (nDNA)-encoded transcripts in a panel of 13 different human tissues, we show that the expression pattern of OXPHOS complex I genes is regulated in several clusters. Firstly, all mtDNA-encoded complex I subunits (N = 7) share a similar expression pattern, distinct from all tested nDNA-encoded subunits (N = 10). Secondly, two sub-clusters of nDNA-encoded transcripts with significantly different expression patterns were observed. Thirdly, the expression patterns of two nDNA-encoded genes, NDUFA4 and NDUFA5, notably diverged from the rest of the nDNA-encoded subunits, suggesting a certain degree of tissue specificity. Finally, the expression pattern of the mtDNA-encoded ND4L gene diverged from the rest of the tested mtDNA-encoded transcripts that are regulated by the same promoter, consistent with post-transcriptional regulation. These findings suggest, for the first time, that the regulation of complex I subunits expression in humans is complex rather than reflecting global co-regulation.
Collapse
|
128
|
Ahmadinejad N, Dagan T, Gruenheit N, Martin W, Gabaldón T. Evolution of spliceosomal introns following endosymbiotic gene transfer. BMC Evol Biol 2010; 10:57. [PMID: 20178587 PMCID: PMC2834692 DOI: 10.1186/1471-2148-10-57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 02/23/2010] [Indexed: 12/03/2022] Open
Abstract
Background Spliceosomal introns are an ancient, widespread hallmark of eukaryotic genomes. Despite much research, many questions regarding the origin and evolution of spliceosomal introns remain unsolved, partly due to the difficulty of inferring ancestral gene structures. We circumvent this problem by using genes originated by endosymbiotic gene transfer, in which an intron-less structure at the time of the transfer can be assumed. Results By comparing the exon-intron structures of 64 mitochondrial-derived genes that were transferred to the nucleus at different evolutionary periods, we can trace the history of intron gains in different eukaryotic lineages. Our results show that the intron density of genes transferred relatively recently to the nuclear genome is similar to that of genes originated by more ancient transfers, indicating that gene structure can be rapidly shaped by intron gain after the integration of the gene into the genome and that this process is mainly determined by forces acting specifically on each lineage. We analyze 12 cases of mitochondrial-derived genes that have been transferred to the nucleus independently in more than one lineage. Conclusions Remarkably, the proportion of shared intron positions that were gained independently in homologous genes is similar to that proportion observed in genes that were transferred prior to the speciation event and whose shared intron positions might be due to vertical inheritance. A particular case of parallel intron gain in the nad7 gene is discussed in more detail.
Collapse
Affiliation(s)
- Nahal Ahmadinejad
- Institut für Botanik III, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
129
|
Fokkens L, Botelho SMC, Boekhorst J, Snel B. Enrichment of homologs in insignificant BLAST hits by co-complex network alignment. BMC Bioinformatics 2010; 11:86. [PMID: 20152020 PMCID: PMC2836305 DOI: 10.1186/1471-2105-11-86] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 02/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homology is a crucial concept in comparative genomics. The algorithm probably most widely used for homology detection in comparative genomics, is BLAST. Usually a stringent score cutoff is applied to distinguish putative homologs from possible false positive hits. As a consequence, some BLAST hits are discarded that are in fact homologous. RESULTS Analogous to the use of the genomics context in genome alignments, we test whether conserved functional context can be used to select candidate homologs from insignificant BLAST hits. We make a co-complex network alignment between complex subunits in yeast and human and find that proteins with an insignificant BLAST hit that are part of homologous complexes, are likely to be homologous themselves. Further analysis of the distant homologs we recovered using the co-complex network alignment, shows that a large majority of these distant homologs are in fact ancient paralogs. CONCLUSIONS Our results show that, even though evolution takes place at the sequence and genome level, co-complex networks can be used as circumstantial evidence to improve confidence in the homology of distantly related sequences.
Collapse
Affiliation(s)
- Like Fokkens
- Theoretical Biology and Bioinformatics group, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht, 3584CH, Utrecht, the Netherlands.
| | | | | | | |
Collapse
|
130
|
Reid AJ, Ranea JA, Orengo CA. Comparative evolutionary analysis of protein complexes in E. coli and yeast. BMC Genomics 2010; 11:79. [PMID: 20122144 PMCID: PMC2837643 DOI: 10.1186/1471-2164-11-79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 02/01/2010] [Indexed: 11/17/2022] Open
Abstract
Background Proteins do not act in isolation; they frequently act together in protein complexes to carry out concerted cellular functions. The evolution of complexes is poorly understood, especially in organisms other than yeast, where little experimental data has been available. Results We generated accurate, high coverage datasets of protein complexes for E. coli and yeast in order to study differences in the evolution of complexes between these two species. We show that substantial differences exist in how complexes have evolved between these organisms. A previously proposed model of complex evolution identified complexes with cores of interacting homologues. We support findings of the relative importance of this mode of evolution in yeast, but find that it is much less common in E. coli. Additionally it is shown that those homologues which do cluster in complexes are involved in eukaryote-specific functions. Furthermore we identify correlated pairs of non-homologous domains which occur in multiple protein complexes. These were identified in both yeast and E. coli and we present evidence that these too may represent complex cores in yeast but not those of E. coli. Conclusions Our results suggest that there are differences in the way protein complexes have evolved in E. coli and yeast. Whereas some yeast complexes have evolved by recruiting paralogues, this is not apparent in E. coli. Furthermore, such complexes are involved in eukaryotic-specific functions. This implies that the increase in gene family sizes seen in eukaryotes in part reflects multiple family members being used within complexes. However, in general, in both E. coli and yeast, homologous domains are used in different complexes.
Collapse
Affiliation(s)
- Adam J Reid
- Research Department of Structural & Molecular Biology, University College London, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
131
|
Dobrynin K, Abdrakhmanova A, Richers S, Hunte C, Kerscher S, Brandt U. Characterization of two different acyl carrier proteins in complex I from Yarrowia lipolytica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:152-9. [DOI: 10.1016/j.bbabio.2009.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/04/2009] [Accepted: 09/10/2009] [Indexed: 11/30/2022]
|
132
|
Marcet-Houben M, Marceddu G, Gabaldón T. Phylogenomics of the oxidative phosphorylation in fungi reveals extensive gene duplication followed by functional divergence. BMC Evol Biol 2009; 9:295. [PMID: 20025735 PMCID: PMC2803194 DOI: 10.1186/1471-2148-9-295] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 12/21/2009] [Indexed: 11/10/2022] Open
Abstract
Background Oxidative phosphorylation is central to the energy metabolism of the cell. Due to adaptation to different life-styles and environments, fungal species have shaped their respiratory pathways in the course of evolution. To identify the main mechanisms behind the evolution of respiratory pathways, we conducted a phylogenomics survey of oxidative phosphorylation components in the genomes of sixty fungal species. Results Besides clarifying orthology and paralogy relationships among respiratory proteins, our results reveal three parallel losses of the entire complex I, two of which are coupled to duplications in alternative dehydrogenases. Duplications in respiratory proteins have been common, affecting 76% of the protein families surveyed. We detect several instances of paralogs of genes coding for subunits of respiratory complexes that have been recruited to other multi-protein complexes inside and outside the mitochondrion, emphasizing the role of evolutionary tinkering. Conclusions Processes of gene loss and gene duplication followed by functional divergence have been rampant in the evolution of fungal respiration. Overall, the core proteins of the respiratory pathways are conserved in most lineages, with major changes affecting the lineages of microsporidia, Schizosaccaromyces and Saccharomyces/Kluyveromyces due to adaptation to anaerobic life-styles. We did not observe specific adaptations of the respiratory metabolism common to all pathogenic species.
Collapse
|
133
|
de Graaf RM, Duarte I, van Alen TA, Kuiper JWP, Schotanus K, Rosenberg J, Huynen MA, Hackstein JHP. The hydrogenosomes of Psalteriomonas lanterna. BMC Evol Biol 2009; 9:287. [PMID: 20003182 PMCID: PMC2796672 DOI: 10.1186/1471-2148-9-287] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 12/09/2009] [Indexed: 11/10/2022] Open
Abstract
Background Hydrogenosomes are organelles that produce molecular hydrogen and ATP. The broad phylogenetic distribution of their hosts suggests that the hydrogenosomes of these organisms evolved several times independently from the mitochondria of aerobic progenitors. Morphology and 18S rRNA phylogeny suggest that the microaerophilic amoeboflagellate Psalteriomonas lanterna, which possesses hydrogenosomes and elusive "modified mitochondria", belongs to the Heterolobosea, a taxon that consists predominantly of aerobic, mitochondriate organisms. This taxon is rather unrelated to taxa with hitherto studied hydrogenosomes. Results Electron microscopy of P. lanterna flagellates reveals a large globule in the centre of the cell that is build up from stacks of some 20 individual hydrogenosomes. The individual hydrogenosomes are surrounded by a double membrane that encloses a homogeneous, dark staining matrix lacking cristae. The "modified mitochondria" are found in the cytoplasm of the cell and are surrounded by 1-2 cisterns of rough endoplasmatic reticulum, just as the mitochondria of certain related aerobic Heterolobosea. The ultrastructure of the "modified mitochondria" and hydrogenosomes is very similar, and they have the same size distribution as the hydrogenosomes that form the central stack. The phylogenetic analysis of selected EST sequences (Hsp60, Propionyl-CoA carboxylase) supports the phylogenetic position of P. lanterna close to aerobic Heterolobosea (Naegleria gruberi). Moreover, this analysis also confirms the identity of several mitochondrial or hydrogenosomal key-genes encoding proteins such as a Hsp60, a pyruvate:ferredoxin oxidoreductase, a putative ADP/ATP carrier, a mitochondrial complex I subunit (51 KDa), and a [FeFe] hydrogenase. Conclusion Comparison of the ultrastructure of the "modified mitochondria" and hydrogenosomes strongly suggests that both organelles are just two morphs of the same organelle. The EST studies suggest that the hydrogenosomes of P. lanterna are physiologically similar to the hydrogenosomes of Trichomonas vaginalis and Trimastix pyriformis. Phylogenetic analysis of the ESTs confirms the relationship of P. lanterna with its aerobic relative, the heterolobosean amoeboflagellate Naegleria gruberi, corroborating the evolution of hydrogenosomes from a common, mitochondriate ancestor.
Collapse
Affiliation(s)
- Rob M de Graaf
- Department of Evolutionary Microbiology, IWWR, Radboud University Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Huynen MA, de Hollander M, Szklarczyk R. Mitochondrial proteome evolution and genetic disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1122-9. [DOI: 10.1016/j.bbadis.2009.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/04/2009] [Accepted: 03/20/2009] [Indexed: 11/16/2022]
|
135
|
Szklarczyk R, Huynen MA. Expansion of the human mitochondrial proteome by intra- and inter-compartmental protein duplication. Genome Biol 2009; 10:R135. [PMID: 19930686 PMCID: PMC3091328 DOI: 10.1186/gb-2009-10-11-r135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 10/09/2009] [Accepted: 11/24/2009] [Indexed: 12/20/2022] Open
Abstract
The human mitochondrial proteome is shown to have expanded due to duplication of protein encoding genes and re-localization of these duplicated proteins. Background Mitochondria are highly complex, membrane-enclosed organelles that are essential to the eukaryotic cell. The experimental elucidation of organellar proteomes combined with the sequencing of complete genomes allows us to trace the evolution of the mitochondrial proteome. Results We present a systematic analysis of the evolution of mitochondria via gene duplication in the human lineage. The most common duplications are intra-mitochondrial, in which the ancestral gene and the daughter genes encode mitochondrial proteins. These duplications significantly expanded carbohydrate metabolism, the protein import machinery and the calcium regulation of mitochondrial activity. The second most prevalent duplication, inter-compartmental, extended the catalytic as well as the RNA processing repertoire by the novel mitochondrial localization of the protein encoded by one of the daughter genes. Evaluation of the phylogenetic distribution of N-terminal targeting signals suggests a prompt gain of the novel localization after inter-compartmental duplication. Relocalized duplicates are more often expressed in a tissue-specific manner relative to intra-mitochondrial duplicates and mitochondrial proteins in general. In a number of cases, inter-compartmental duplications can be observed in parallel in yeast and human lineages leading to the convergent evolution of subcellular compartments. Conclusions One-to-one human-yeast orthologs are typically restricted to their ancestral subcellular localization. Gene duplication relaxes this constraint on the cellular location, allowing nascent proteins to be relocalized to other compartments. We estimate that the mitochondrial proteome expanded at least 50% since the common ancestor of human and yeast.
Collapse
Affiliation(s)
- Radek Szklarczyk
- Centre for Molecular and Biomolecular Informatics, NCMLS, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands.
| | | |
Collapse
|
136
|
Ugalde C, Morán M, Blázquez A, Arenas J, Martín MA. Mitochondrial Disorders Due to Nuclear OXPHOS Gene Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:85-116. [DOI: 10.1007/978-90-481-2813-6_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
137
|
Abstract
NADH:ubiquinone oxidoreductase (complex I) is an entry point for electrons into the respiratory chain in many eukaryotes. It couples NADH oxidation and ubiquinone reduction to proton translocation across the mitochondrial inner membrane. Because complex I deficiencies occur in a wide range of neuromuscular diseases, including Parkinson's disease, there is a clear need for model eukaryotic systems to facilitate structural, functional and mutational studies. In the present study, we describe the purification and characterization of the complexes I from two yeast species, Pichia pastoris and Pichia angusta. They are obligate aerobes which grow to very high cell densities on simple medium, as yeast-like, spheroidal cells. Both Pichia enzymes catalyse inhibitor-sensitive NADH:ubiquinone oxidoreduction, display EPR spectra which match closely to those from other eukaryotic complexes I, and show patterns characteristic of complex I in SDS/PAGE analysis. Mass spectrometry was used to identify several canonical complex I subunits. Purified P. pastoris complex I has a particularly high specific activity, and incorporating it into liposomes demonstrates that NADH oxidation is coupled to the generation of a protonmotive force. Interestingly, the rate of NADH-induced superoxide production by the Pichia enzymes is more than twice as high as that of the Bos taurus enzyme. Our results both resolve previous disagreement about whether Pichia species encode complex I, furthering understanding of the evolution of complex I within dikarya, and they provide two new, robust and highly active model systems for study of the structure and catalytic mechanism of eukaryotic complexes I.
Collapse
|
138
|
Sharma LK, Lu J, Bai Y. Mitochondrial respiratory complex I: structure, function and implication in human diseases. Curr Med Chem 2009; 16:1266-77. [PMID: 19355884 DOI: 10.2174/092986709787846578] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria are ubiquitous organelles in eukaryotic cells whose primary function is to generate energy supplies in the form of ATP through oxidative phosphorylation. As the entry point for most electrons into the respiratory chain, NADH:ubiquinone oxidoreductase, or complex I, is the largest and least understood component of the mitochondrial oxidative phosphorylation system. Substantial progress has been made in recent years in understanding its subunit composition, its assembly, the interaction among complex I and other respiratory components, and its role in oxidative stress and apoptosis. This review provides an updated overview of the structure of complex I, as well as its cellular functions, and discusses the implication of complex I dysfunction in various human diseases.
Collapse
Affiliation(s)
- Lokendra K Sharma
- Department of Cellular and Structural Biology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
139
|
Wright AF, Murphy MP, Turnbull DM. Do organellar genomes function as long-term redox damage sensors? Trends Genet 2009; 25:253-61. [PMID: 19481287 DOI: 10.1016/j.tig.2009.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/06/2009] [Accepted: 04/08/2009] [Indexed: 12/31/2022]
Abstract
A small group of proteins that form core components of electron transfer complexes are consistently encoded by organellar genomes in multicellular organisms, suggesting functional constraint. These genomes are costly to maintain and vulnerable to mutation. We propose that they provide cell lineages with sensors of long-term redox damage, and of bioenergetic and genomic competence. This proposed adaptive function sets tonic retrograde signalling to the nucleus and anterograde responses influencing protective and cell death pathways. The nature of the proposed gain-of-function signalling mechanisms is unclear but could involve defective complex assembly. Organellar proteomes therefore provide cumulative feedback on bioenergetic and genomic status within cell lineages, selection of the energetically 'fittest' cells and a means of removing cells that compromise survival of the organism.
Collapse
Affiliation(s)
- Alan F Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK.
| | | | | |
Collapse
|
140
|
Abstract
One set of evolutionary features that has received less attention than the evolution of genes or species is the evolution of cellular machines, the self-contained structures in cells with dedicated functions. Here I suggest that domain expansion through shuffling, duplication, and changes in protein expression level are critical drivers in the evolution of cellular machines. Once established, evolutionary change in these cellular machines tends to occur by paralogy or expansion and modification of the existing core genes. A comparative genomics approach to one cellular machine—the post-synaptic complex—provided preliminary validation of these views. A comparative genomics approach to the entire cellulome may reveal the diversity of cellular machines and their inter-relationships.
Collapse
Affiliation(s)
- Kenneth S Kosik
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA.
| |
Collapse
|
141
|
Fokkens L, Snel B. Cohesive versus flexible evolution of functional modules in eukaryotes. PLoS Comput Biol 2009; 5:e1000276. [PMID: 19180181 PMCID: PMC2615111 DOI: 10.1371/journal.pcbi.1000276] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 12/16/2008] [Indexed: 12/02/2022] Open
Abstract
Although functionally related proteins can be reliably predicted from phylogenetic profiles, many functional modules do not seem to evolve cohesively according to case studies and systematic analyses in prokaryotes. In this study we quantify the extent of evolutionary cohesiveness of functional modules in eukaryotes and probe the biological and methodological factors influencing our estimates. We have collected various datasets of protein complexes and pathways in Saccheromyces cerevisiae. We define orthologous groups on 34 eukaryotic genomes and measure the extent of cohesive evolution of sets of orthologous groups of which members constitute a known complex or pathway. Within this framework it appears that most functional modules evolve flexibly rather than cohesively. Even after correcting for uncertain module definitions and potentially problematic orthologous groups, only 46% of pathways and complexes evolve more cohesively than random modules. This flexibility seems partly coupled to the nature of the functional module because biochemical pathways are generally more cohesively evolving than complexes. Components of a protein complex or a metabolic pathway strongly cooperate to perform a specific function. Because of this functional interdependence, proteins that form a complex or pathway are expected to be present and absent together in different species. Phylogenetic profiling methods, in which proteins with similar presence and absence patterns are inferred to be functionally linked, are based on this assumption. In this report, we quantify to what extent proteins that together constitute a complex or pathway (a functional module) in yeast are present and absent together (evolve cohesively) in other eukaryotic species. We find that more than half of all complexes and pathways are only partially present in a number of species. It appears that evolution of functional modules is very flexible; components are not indispensable; they can be replaced or reused in a different functional context. This places a limit on how well phylogenetic profiling methods can detect functionally related proteins. Functional modules that evolve cohesively are typically involved in biological processes such as translation and amino acid metabolism.
Collapse
Affiliation(s)
- Like Fokkens
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
142
|
Pineau B, Layoune O, Danon A, De Paepe R. L-galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I. J Biol Chem 2008; 283:32500-5. [PMID: 18799460 DOI: 10.1074/jbc.m805320200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Mitochondrial NADH-ubiquinone oxidoreductase (complex I) is the largest enzyme of the oxidative phosphorylation system, with subunits located at the matrix and membrane domains. In plants, holocomplex I is composed of more than 40 subunits, 9 of which are encoded by the mitochondrial genome (NAD subunits). In Nicotiana sylvestris, a minor 800-kDa subcomplex containing subunits of both domains and displaying NADH dehydrogenase activity is detectable. The NMS1 mutant lacking the membrane arm NAD4 subunit and the CMSII mutant lacking the peripheral NAD7 subunit are both devoid of the holoenzyme. In contrast to CMSII, the 800-kDa subcomplex is present in NMS1 mitochondria, indicating that it could represent an assembly intermediate lacking the distal part of the membrane arm. L-galactono-1,4-lactone dehydrogenase (GLDH), the last enzyme in the plant ascorbate biosynthesis pathway, is associated with the 800-kDa subcomplex but not with the holocomplex. To investigate possible relationships between GLDH and complex I assembly, we characterized an Arabidopsis thaliana gldh insertion mutant. Homozygous gldh mutant plants were not viable in the absence of ascorbate supplementation. Analysis of crude membrane extracts by blue native and two-dimensional SDS-PAGE showed that complex I accumulation was strongly prevented in leaves and roots of Atgldh plants, whereas other respiratory complexes were found in normal amounts. Our results demonstrate the role of plant GLDH in both ascorbate biosynthesis and complex I accumulation.
Collapse
Affiliation(s)
- Bernard Pineau
- Université de Paris-Sud, Institut de Biotechnologie des Plantes, CNRS, UMR 8618, 91405 Orsay Cedex, France.
| | | | | | | |
Collapse
|
143
|
Sugiana C, Pagliarini DJ, McKenzie M, Kirby DM, Salemi R, Abu-Amero KK, Dahl HHM, Hutchison WM, Vascotto KA, Smith SM, Newbold RF, Christodoulou J, Calvo S, Mootha VK, Ryan MT, Thorburn DR. Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet 2008; 83:468-78. [PMID: 18940309 DOI: 10.1016/j.ajhg.2008.09.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/16/2008] [Accepted: 09/16/2008] [Indexed: 12/12/2022] Open
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially understood. To date, mutations causing complex I deficiency have been described in all 14 core subunits, five supernumerary subunits, and four assembly factors. We describe complex I deficiency caused by mutation of the putative complex I assembly factor C20orf7. A candidate region for a lethal neonatal form of complex I deficiency was identified by homozygosity mapping of an Egyptian family with one affected child and two affected pregnancies predicted by enzyme-based prenatal diagnosis. The region was confirmed by microcell-mediated chromosome transfer, and 11 candidate genes encoding potential mitochondrial proteins were sequenced. A homozygous missense mutation in C20orf7 segregated with disease in the family. We show that C20orf7 is peripherally associated with the matrix face of the mitochondrial inner membrane and that silencing its expression with RNAi decreases complex I activity. C20orf7 patient fibroblasts showed an almost complete absence of complex I holoenzyme and were defective at an early stage of complex I assembly, but in a manner distinct from the assembly defects caused by mutations in the assembly factor NDUFAF1. Our results indicate that C20orf7 is crucial in the assembly of complex I and that mutations in C20orf7 cause mitochondrial disease.
Collapse
|
144
|
Comparative genomics of the oxidative phosphorylation system in fungi. Fungal Genet Biol 2008; 45:1248-56. [DOI: 10.1016/j.fgb.2008.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/29/2008] [Accepted: 06/18/2008] [Indexed: 11/22/2022]
|
145
|
Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008; 134:112-23. [PMID: 18614015 DOI: 10.1016/j.cell.2008.06.016] [Citation(s) in RCA: 1590] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 03/06/2008] [Accepted: 06/02/2008] [Indexed: 01/04/2023]
Abstract
Mitochondria are complex organelles whose dysfunction underlies a broad spectrum of human diseases. Identifying all of the proteins resident in this organelle and understanding how they integrate into pathways represent major challenges in cell biology. Toward this goal, we performed mass spectrometry, GFP tagging, and machine learning to create a mitochondrial compendium of 1098 genes and their protein expression across 14 mouse tissues. We link poorly characterized proteins in this inventory to known mitochondrial pathways by virtue of shared evolutionary history. Using this approach, we predict 19 proteins to be important for the function of complex I (CI) of the electron transport chain. We validate a subset of these predictions using RNAi, including C8orf38, which we further show harbors an inherited mutation in a lethal, infantile CI deficiency. Our results have important implications for understanding CI function and pathogenesis and, more generally, illustrate how our compendium can serve as a foundation for systematic investigations of mitochondria.
Collapse
Affiliation(s)
- David J Pagliarini
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:200-11. [PMID: 18620006 DOI: 10.1016/j.bbamcr.2008.05.028] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/12/2008] [Accepted: 05/17/2008] [Indexed: 02/07/2023]
Abstract
Assembly of the oxidative phosphorylation (OXPHOS) system in the mitochondrial inner membrane is an intricate process in which many factors must interact. The OXPHOS system is composed of four respiratory chain complexes, which are responsible for electron transport and generation of the proton gradient in the mitochondrial intermembrane space, and of the ATP synthase that uses this proton gradient to produce ATP. Mitochondrial human disorders are caused by dysfunction of the OXPHOS system, and many of them are associated with altered assembly of one or more components of the OXPHOS system. The study of assembly defects in patients has been useful in unraveling and/or gaining a complete understanding of the processes by which these large multimeric complexes are formed. We review here current knowledge of the biogenesis of OXPHOS complexes based on investigation of the corresponding disorders.
Collapse
|
147
|
Eukaryotic complex I: functional diversity and experimental systems to unravel the assembly process. Mol Genet Genomics 2008; 280:93-110. [DOI: 10.1007/s00438-008-0350-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 05/01/2008] [Indexed: 10/21/2022]
|
148
|
Vonck J, Schäfer E. Supramolecular organization of protein complexes in the mitochondrial inner membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:117-24. [PMID: 18573282 DOI: 10.1016/j.bbamcr.2008.05.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/21/2008] [Accepted: 05/23/2008] [Indexed: 12/29/2022]
Abstract
The liquid state model that envisions respiratory chain complexes diffusing freely in the membrane is increasingly challenged by reports of supramolecular organization of the complexes in the mitochondrial inner membrane. Supercomplexes of complex III with complex I and/or IV can be isolated after solubilisation with mild detergents like digitonin. Electron microscopic studies have shown that these have a distinct architecture and are not random aggregates. A 3D reconstruction of a I1III2IV1 supercomplex shows that the ubiquinone and cytochrome c binding sites of the individual complexes are facing each other, suggesting a role in substrate channelling. Formation of supercomplexes plays a role in the assembly and stability of the complexes, suggesting that the supercomplexes are the functional state of the respiratory chain. Furthermore, a supramolecular organisation of ATP synthases has been observed in mitochondria, where ATP synthase is organised in dimer rows. Dimers can be isolated by mild detergent extraction and recent electron microscopic studies have shown that the membrane domains of the two partners in the dimer are at an angle to each other, indicating that in vivo the dimers would cause the membrane to bend. The suggested role in crista formation is supported by the observation of rows of ATP synthase dimers in the most curved parts of the cristae. Together these observations show that the mitochondrial inner membrane is highly organised and that the molecular events leading to ATP synthesis are carefully coordinated.
Collapse
Affiliation(s)
- Janet Vonck
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main, Germany.
| | | |
Collapse
|
149
|
Complex I of Trypanosomatidae: does it exist? Trends Parasitol 2008; 24:310-7. [PMID: 18534909 DOI: 10.1016/j.pt.2008.03.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/11/2008] [Accepted: 03/11/2008] [Indexed: 12/31/2022]
Abstract
The presence of complex I, or NADH dehydrogenase, in Trypanosomatidae is debated. Several subunits of complex I have been identified by biochemical studies, but the overall composition of the complex has remained elusive. Here, the authors review the present literature related to this mitochondrial activity and carry out a bioinformatic analysis to allow the prediction of the composition of a putative trypanosomatid complex I. The complex comprises at least 19 subunits and has a minimum mass of 660 kDa. It is larger than the corresponding bacterial enzyme but smaller than the typical mitochondrial enzyme of eukaryotes. All subunits known to be involved in electron transport are present, but the complex does not seem to be involved in energy transduction because four membrane subunits, normally encoded by the mitochondrial genome and supposed to be involved in proton extrusion, are missing.
Collapse
|
150
|
Hoefs SJG, Dieteren CEJ, Distelmaier F, Janssen RJRJ, Epplen A, Swarts HGP, Forkink M, Rodenburg RJ, Nijtmans LG, Willems PH, Smeitink JAM, van den Heuvel LP. NDUFA2 complex I mutation leads to Leigh disease. Am J Hum Genet 2008; 82:1306-15. [PMID: 18513682 DOI: 10.1016/j.ajhg.2008.05.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/29/2008] [Accepted: 05/13/2008] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial isolated complex I deficiency is the most frequently encountered OXPHOS defect. We report a patient with an isolated complex I deficiency expressed in skin fibroblasts as well as muscle tissue. Because the parents were consanguineous, we performed homozygosity mapping to identify homozygous regions containing candidate genes such as NDUFA2 on chromosome 5. Screening of this gene on genomic DNA revealed a mutation that interferes with correct splicing and results in the skipping of exon 2. Exon skipping was confirmed on the mRNA level. The mutation in this accessory subunit causes reduced activity and disturbed assembly of complex I. Furthermore, the mutation is associated with a mitochondrial depolarization. The expression and activity of complex I and the depolarization was (partially) rescued with a baculovirus system expressing the NDUFA2 gene.
Collapse
Affiliation(s)
- Saskia J G Hoefs
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Nijmegen Medical Center, Nijmegen 6500 HB, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|