101
|
McDonald MP. Methods and Models of the Nonmotor Symptoms of Parkinson Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
102
|
Athauda D, Foltynie T. The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nat Rev Neurol 2014; 11:25-40. [PMID: 25447485 DOI: 10.1038/nrneurol.2014.226] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many agents developed for neuroprotective treatment of Parkinson disease (PD) have shown great promise in the laboratory, but none have translated to positive results in patients with PD. Potential neuroprotective drugs, such as ubiquinone, creatine and PYM50028, have failed to show any clinical benefits in recent high-profile clinical trials. This 'failure to translate' is likely to be related primarily to our incomplete understanding of the pathogenic mechanisms underlying PD, and excessive reliance on data from toxin-based animal models to judge which agents should be selected for clinical trials. Restricted resources inevitably mean that difficult compromises must be made in terms of trial design, and reliable estimation of efficacy is further hampered by the absence of validated biomarkers of disease progression. Drug development in PD dementia has been mostly unsuccessful; however, emerging biochemical, genetic and pathological evidence suggests a link between tau and amyloid-β deposition and cognitive decline in PD, potentially opening up new possibilities for therapeutic intervention. This Review discusses the most important 'druggable' disease mechanisms in PD, as well as the most-promising drugs that are being evaluated for their potential efficiency in treatment of motor and cognitive impairments in PD.
Collapse
Affiliation(s)
- Dilan Athauda
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
103
|
Hadaczek P, Wu G, Sharma N, Ciesielska A, Bankiewicz K, Davidow AL, Lu ZH, Forsayeth J, Ledeen RW. GDNF signaling implemented by GM1 ganglioside; failure in Parkinson's disease and GM1-deficient murine model. Exp Neurol 2014; 263:177-89. [PMID: 25448159 DOI: 10.1016/j.expneurol.2014.10.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/16/2014] [Accepted: 10/16/2014] [Indexed: 11/26/2022]
Abstract
GDNF is indispensible for adult catecholaminergic neuron survival, and failure of GDNF signaling has been linked to loss of dopaminergic neurons in Parkinson's disease (PD). This study demonstrates attenuated GDNF signaling in neurons deficient in ganglio-series gangliosides, and restoration of such signaling with LIGA20, a membrane permeable analog of GM1. GM1 is shown to associate in situ with GFRα1 and RET, the protein components of the GDNF receptor, this being necessary for assembly of the tripartite receptor complex. Mice wholly or partially deficient in GM1 due to disruption of the B4galnt1 gene developed PD symptoms based on behavioral and neuropathological criteria which were largely ameliorated by gene therapy with AAV2-GDNF and also with LIGA20 treatment. The nigral neurons of PD subjects that were severely deficient in GM1 showed subnormal levels of tyrosine phosphorylated RET. Also in PD brain, GM1 levels in the occipital cortex, a region of limited PD pathology, were significantly below age-matched controls, suggesting the possibility of systemic GM1 deficiency as a risk factor in PD. This would accord with our finding that mice with partial GM1 deficiency represent a faithful recapitulation of the human disease. Together with the previously demonstrated age-related decline of GM1 in human brain, this points to gradual development of subthreshold levels of GM1 in the brain of PD subjects below that required for effective GDNF signaling. This hypothesis offers a dramatically different explanation for the etiology of sporadic PD as a manifestation of acquired resistance to GDNF.
Collapse
Affiliation(s)
- Piotr Hadaczek
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103-0555, USA
| | - Gusheng Wu
- Department of Neurology and Neurosciences MSB-H506, The State University of New Jersey, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Nitasha Sharma
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103-0555, USA
| | - Agnieszka Ciesielska
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103-0555, USA
| | - Krystof Bankiewicz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103-0555, USA
| | - Amy L Davidow
- Department of Biostatistics/Epidemiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Zi-Hua Lu
- Department of Neurology and Neurosciences MSB-H506, The State University of New Jersey, 185 South Orange Ave., Newark, NJ 07103, USA
| | - John Forsayeth
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103-0555, USA.
| | - Robert W Ledeen
- Department of Neurology and Neurosciences MSB-H506, The State University of New Jersey, 185 South Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
104
|
The possible mechanism of Parkinson's disease progressive damage and the preventive effect of GM1 in the rat model induced by 6-hydroxydopamine. Brain Res 2014; 1592:73-81. [PMID: 25285892 DOI: 10.1016/j.brainres.2014.09.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 01/15/2023]
Abstract
The progressive pathogenesis and prevention of Parkinson's disease (PD) remains unknown at present. Therefore, the present study aimed to investigate the possible progressive pathogenesis and prevention of PD. Our study investigated the content of glutamate, mitochondria calcium, calmodulin, malonaldehyde and trace elements in striatum, cerebral cortex and hippocampus tissues; and the expression of bcl-2, bax and neuronal nitric oxide synthase (nNOS) in substantia nigra and striatum; and the change of apomorphine induced rotation behavior; and the treatmental effect of monosialotetrahexosylganglioside (GM1) intraperitoneal administration for 14 days in a PD rat model induced by 6-hydroxydopamine. The results revealed that the content of glutamate significantly decreased, and that of mitochondria calcium, calmodulin, malonaldehyde and ferrum significantly increased in striatum, cerebral cortex and hippocampus tissues; the content of magnesium significantly decreased, and that of cuprum and zinc significantly increased in cerebral cortex; the expression of bcl-2 significantly decreased, and that of bax and nNOS significantly increased in substantia nigra and striatum in PD rat. GM1 can partially improve the apomorphine induced rotation behavior and changes of glutamate, mitochondria calcium, calmodulin content in striatum of PD rat. Data suggested that dysfunction of excitatory amino acids neurotransmitter, calcium homeostasis disorder, abnormal metabolism of oxygen free radicals, abnormal trace elements distribution and/or deposition and excessive apoptosis participated in the progressive process of PD, and that GM1 could partially prevent the progressive damage.
Collapse
|
105
|
N-alpha-acetylation of α-synuclein increases its helical folding propensity, GM1 binding specificity and resistance to aggregation. PLoS One 2014; 9:e103727. [PMID: 25075858 PMCID: PMC4116227 DOI: 10.1371/journal.pone.0103727] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/05/2014] [Indexed: 12/02/2022] Open
Abstract
A switch in the conformational properties of α-synuclein (αS) is hypothesized to be a key step in the pathogenic mechanism of Parkinson’s disease (PD). Whereas the beta-sheet-rich state of αS has long been associated with its pathological aggregation in PD, a partially alpha-helical state was found to be related to physiological lipid binding; this suggests a potential role of the alpha-helical state in controlling synaptic vesicle cycling and resistance to β-sheet rich aggregation. N-terminal acetylation is the predominant post-translational modification of mammalian αS. Using circular dichroism, isothermal titration calorimetry, and fluorescence spectroscopy, we have analyzed the effects of N-terminal acetylation on the propensity of recombinant human αS to form the two conformational states in interaction with lipid membranes. Small unilamellar vesicles of negatively charged lipids served as model membranes. Consistent with previous NMR studies using phosphatidylserine, we found that membrane-induced α-helical folding was enhanced by N-terminal acetylation and that greater exothermic heat could be measured upon vesicle binding of the modified protein. Interestingly, the folding and lipid binding enhancements with phosphatidylserine in vitro were weak when compared to that of αS with GM1, a lipid enriched in presynaptic membranes. The resultant increase in helical folding propensity of N-acetylated αS enhanced its resistance to aggregation. Our findings demonstrate the significance of the extreme N-terminus for folding nucleation, for relative GM1 specificity of αS-membrane interaction, and for a protective function of N-terminal-acetylation against αS aggregation mediated by GM1.
Collapse
|
106
|
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518. [PMID: 24692354 DOI: 10.1152/physrev.00033.2013] [Citation(s) in RCA: 541] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.
Collapse
|
107
|
Ohmi Y, Ohkawa Y, Tajima O, Sugiura Y, Furukawa K, Furukawa K. Ganglioside deficiency causes inflammation and neurodegeneration via the activation of complement system in the spinal cord. J Neuroinflammation 2014; 11:61. [PMID: 24673754 PMCID: PMC3986855 DOI: 10.1186/1742-2094-11-61] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/17/2014] [Indexed: 01/15/2023] Open
Abstract
Background Gangliosides, sialic acid-containing glycosphingolipids, are highly expressed in nervous systems of vertebrates and have been considered to be involved in the development, differentiation, and function of nervous tissues. Recent studies with gene-engineered animals have revealed that they play roles in the maintenance and repair of nervous tissues. In particular, knockout (KO) mice of various ganglioside synthase genes have exhibited progressive neurodegeneration with aging. However, neurological disorders and pathological changes in the spinal cord of these KO mice have not been reported to date. Therefore, we examined neurodegeneration in double knockout (DKO) mice of ganglioside GM2/GD2 synthase (B4GANLT1) and GD3 synthase (ST8SIA1) genes to clarify roles of gangliosides in the spinal cord. Methods Motor neuron function was examined by gait analysis, and sensory function was analyzed by von Frey test. Pathological changes were analyzed by staining tissue sections with Klüver-Barrera staining and by immunohistochemistry with F4/80 and glial fibrillary acidic protein (GFAP). Gene expression profiles were examined by using DNA micro-array of RNAs from the spinal cord of mice. Triple knockout mice were generated by mating DKO and complement component 3 (C3)-KO mice. Gene expression of the complement system and cytokines was examined by reverse transcription-polymerase chain reaction (RT-PCR) as a function of age. Results DKO mice showed progressive deterioration with aging. Correspondingly, they exhibited shrunk spinal cord, reduced thickness of spinal lamina II and III, and reduced neuronal numbers in spinal lamina IX, spinal lamina II, and spinal lamina I. Complement-related genes were upregulated in DKO spinal cord. Moreover, complement activation and inflammatory reactions were detected by GFAP-active astrocyte, microglial accumulation, and increased inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) and interleukin-1-beta (IL-1β). Triple knockout mice showed restoration of reduced neuron numbers in the spinal cord of DKO mice, getting close to levels of wild-type mice. Conclusions Disruption in the architecture of lipid rafts in the spinal cord was not so prominent, suggesting that mechanisms distinct from those reported might be involved in the complement activation in the spinal cord of DKO mice. Gene profiling revealed that inflammation and neurodegeneration in the spinal cord of DKO mice are, at least partly, dependent on complement activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan.
| |
Collapse
|
108
|
Sybertz E, Krainc D. Development of targeted therapies for Parkinson's disease and related synucleinopathies. J Lipid Res 2014; 55:1996-2003. [PMID: 24668939 DOI: 10.1194/jlr.r047381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Therapeutic efforts in neurodegenerative diseases have been very challenging, particularly due to a lack of validated and mechanism-based therapeutic targets and biomarkers. The basic idea underlying the novel therapeutic approaches reviewed here is that by exploring the molecular basis of neurodegeneration in a rare lysosomal disease such as Gaucher's disease (GD), new molecular targets will be identified for therapeutic development in common synucleinopathies. Accumulation of α-synuclein plays a key role in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies, suggesting that improved clearance of α-synuclein may be of therapeutic benefit. To achieve this goal, it is important to identify specific mechanisms and targets involved in the clearance of α-synuclein. Recent discovery of clinical, genetic, and pathological linkage between GD and PD offers a unique opportunity to examine lysosomal glucocerebrosidase, an enzyme mutated in GD, for development of targeted therapies in synucleinopathies. While modulation of glucocerebrosidase and glycolipid metabolism offers a viable approach to treating disorders associated with synuclein accumulation, the compounds described to date either lack the ability to penetrate the CNS or have off-target effects that may counteract or limit their capabilities to mediate the desired pharmacological action. However, recent emergence of selective inhibitors of glycosphingolipid biosynthesis and noninhibitory pharmacological chaperones of glycosphingolipid processing enzymes that gain access to the CNS provide a novel approach that may overcome some of the limitations of compounds reported to date. These new strategies may allow for development of targeted treatments for synucleinopathies that affect both children and adults.
Collapse
Affiliation(s)
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
109
|
Schneider JS. Gangliosides and glycolipids in neurodegenerative disorders. ADVANCES IN NEUROBIOLOGY 2014; 9:449-61. [PMID: 25151391 DOI: 10.1007/978-1-4939-1154-7_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycolipids and gangliosides play important roles in maintaining the functional integrity of the nervous system. However, surprisingly little is known about how glycolipids and gangliosides in particular participate in various neurodegenerative processes. For example, it has been known for a long time that administration of gangliosides and in particular, GM1 ganglioside, can ameliorate damage to the central and peripheral nervous systems and can mitigate effects of a variety of neurodegenerative processes. What is not known is the extent to which dysfunctional biosynthesis or metabolism of gangliosides may be involved in various neurodegenerative disorders and if alterations observed reflect an intrinsic disease-related process or represent the response of the brain to a degenerative process. This chapter briefly reviews recent advances in the study of glycolipids and gangliosides and their potential participation in a variety of neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, Huntington's disease and the potential link between Gaucher disease and Parkinson's disease.
Collapse
Affiliation(s)
- J S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA,
| |
Collapse
|
110
|
Zamfir AD. Neurological Analyses: Focus on Gangliosides and Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:153-204. [DOI: 10.1007/978-3-319-06068-2_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
111
|
Abstract
Despite advances in the treatment of Parkinson's disease there are still many unmet needs, including neuroprotection, treatment of motor complications, treatment of dyskinesia, treatment of psychosis, and treatment of nondopaminergic symptoms. In this review, I highlight the obstacles to develop a neuroprotective drug and some of the treatment strategies recently approved or still in clinical trials designed to meet these unmet needs.
Collapse
Affiliation(s)
- Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele, Via della Pisana 235, 00163, Rome, Italy,
| |
Collapse
|
112
|
AlDakheel A, Kalia LV, Lang AE. Pathogenesis-targeted, disease-modifying therapies in Parkinson disease. Neurotherapeutics 2014; 11:6-23. [PMID: 24085420 PMCID: PMC3899477 DOI: 10.1007/s13311-013-0218-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Parkinson disease is an inexorably progressive neurodegenerative disorder. Multiple attempts have been made to establish therapies for Parkinson disease which provide neuroprotection or disease modification-two related, but not identical, concepts. However, to date, none of these attempts have succeeded. Many challenges exist in this field of research, including a complex multisystem disorder that includes dopaminergic and non-dopaminergic features; poorly understood and clearly multifaceted disease pathogenic mechanisms; a lack of reliable animal models; an absence of effective biomarkers of disease state, progression, and target engagement; and the confounding effects of potent symptomatic therapy. In this article, we will review previous, ongoing, and potential future trials designed to alter the progressive course of the disease from the perspective of the targeted underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Amaal AlDakheel
- />Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Lorraine V. Kalia
- />Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Anthony E. Lang
- />Movement Disorders Unit, Toronto Western Hospital, 399 Bathurst Street, 7 McLaughlin Wing, Toronto, M5T 2S8 ON Canada
| |
Collapse
|
113
|
Lundius EG, Vukojevic V, Hertz E, Stroth N, Cederlund A, Hiraiwa M, Terenius L, Svenningsson P. GPR37 protein trafficking to the plasma membrane regulated by prosaposin and GM1 gangliosides promotes cell viability. J Biol Chem 2013; 289:4660-73. [PMID: 24371137 DOI: 10.1074/jbc.m113.510883] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The subcellular distribution of the G protein-coupled receptor GPR37 affects cell viability and is implicated in the pathogenesis of parkinsonism. Intracellular accumulation and aggregation of GPR37 cause cell death, whereas GPR37 located in the plasma membrane provides cell protection. We define here a pathway through which the recently identified natural ligand, prosaposin, promotes plasma membrane association of GPR37. Immunoabsorption of extracellular prosaposin reduced GPR37(tGFP) surface density and decreased cell viability in catecholaminergic N2a cells. We found that GPR37(tGFP) partitioned in GM1 ganglioside-containing lipid rafts in the plasma membrane of live cells. This partitioning required extracellular prosaposin and was disrupted by lipid raft perturbation using methyl-β-cyclodextrin or cholesterol oxidase. Moreover, complex formation between GPR37(tGFP) and the GM1 marker cholera toxin was observed in the plasma membrane. These data show functional association between GPR37, prosaposin, and GM1 in the plasma membrane. These results thus tie together the three previously defined components of the cellular response to insult. Our findings identify a mechanism through which the receptor's natural ligand and GM1 may protect against toxic intracellular GPR37 aggregates observed in parkinsonism.
Collapse
|
114
|
Abstract
This article describes a procedure to prepare a raft-like intracellular membrane fraction enriched for the trans-Golgi network (TGN) and endosomal compartments. The initial step in this technique involves cell disruption by homogenization, followed by clearance of the plasma membrane, late endosomes, mitochondria and the endoplasmic reticulum by differential sedimentation. Carbonate treatment, sonication and sucrose density-gradient ultracentrifugation are subsequently used to isolate the target membranes. The isolated subcellular fraction contains less than 1% of the total cellular proteins, but it is highly enriched for syntaxin-6 and Rab11. Typically, 40-60% of the cellular pool of GM1 glycosphingolipid and 10-20% of the total cellular cholesterol cofractionate with this buoyant membrane fraction. Given the role of GM1 as a cell-surface receptor for the cholera toxin and that levels of both GM1 and cholesterol in the TGN-endosomal compartment are upregulated in some inherited diseases, this protocol can potentially be applied to the analysis of disease-associated changes to GM1-enriched intracellular membranes. The isolated membranes are very well separated from caveolin-rich domains of the plasma membrane, the TGN and recycling endosomes. The entire protocol can be completed in as little as 1 d.
Collapse
Affiliation(s)
- Mark G Waugh
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| |
Collapse
|
115
|
Alterations on Na+,K+-ATPase and Acetylcholinesterase Activities Induced by Amyloid-β Peptide in Rat Brain and GM1 Ganglioside Neuroprotective Action. Neurochem Res 2013; 38:2342-50. [DOI: 10.1007/s11064-013-1145-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/21/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
|
116
|
Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy. J Neurol 2013; 260:2802-14. [PMID: 23974642 PMCID: PMC3825212 DOI: 10.1007/s00415-013-7051-7] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 12/23/2022]
Abstract
Tafamidis, a transthyretin (TTR) kinetic stabilizer, delayed neuropathic progression in patients with Val30Met TTR familial amyloid polyneuropathy (TTR-FAP) in an 18-month randomized controlled trial (study Fx-005). This 12-month, open-label extension study evaluated the long-term safety, tolerability, and efficacy of tafamidis 20 mg once daily in 86 patients who earlier received blinded treatment with tafamidis or placebo. Efficacy measures included the Neuropathy Impairment Score in the Lower Limbs (NIS-LL), Norfolk Quality of Life-Diabetic Neuropathy total quality of life (TQOL) score, and changes in neurologic function and nutritional status. We quantified the monthly rates of change in efficacy measures, and TTR stabilization, and monitored adverse events (AEs). Patients who continued on tafamidis had stable rates of change in NIS-LL (from 0.08 to 0.11/month; p = 0.60) and TQOL (from -0.03 to 0.25; p = 0.16). In patients switched from placebo, the monthly rate of change in NIS-LL declined (from 0.34 to 0.16/month; p = 0.01), as did TQOL score (from 0.61 to -0.16; p < 0.001). Patients treated with tafamidis for 30 months had 55.9 % greater preservation of neurologic function as measured by the NIS-LL than patients in whom tafamidis was initiated later. Plasma TTR was stabilized in 94.1 % of patients treated with tafamidis for 30 months. AEs were similar between groups; no patients discontinued because of an AE. Long-term tafamidis was well tolerated, with the reduced rate of neurologic deterioration sustained over 30 months. Tafamidis also slowed neurologic impairment in patients previously given placebo, but treatment benefits were greater when tafamidis was begun earlier.
Collapse
|
117
|
Saito M, Saito M. Involvement of sphingolipids in ethanol neurotoxicity in the developing brain. Brain Sci 2013; 3:670-703. [PMID: 24961420 PMCID: PMC4061845 DOI: 10.3390/brainsci3020670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/30/2013] [Accepted: 04/12/2013] [Indexed: 12/16/2022] Open
Abstract
Ethanol-induced neuronal death during a sensitive period of brain development is considered one of the significant causes of fetal alcohol spectrum disorders (FASD). In rodent models, ethanol triggers robust apoptotic neurodegeneration during a period of active synaptogenesis that occurs around the first two postnatal weeks, equivalent to the third trimester in human fetuses. The ethanol-induced apoptosis is mitochondria-dependent, involving Bax and caspase-3 activation. Such apoptotic pathways are often mediated by sphingolipids, a class of bioactive lipids ubiquitously present in eukaryotic cellular membranes. While the central role of lipids in ethanol liver toxicity is well recognized, the involvement of sphingolipids in ethanol neurotoxicity is less explored despite mounting evidence of their importance in neuronal apoptosis. Nevertheless, recent studies indicate that ethanol-induced neuronal apoptosis in animal models of FASD is mediated or regulated by cellular sphingolipids, including via the pro-apoptotic action of ceramide and through the neuroprotective action of GM1 ganglioside. Such sphingolipid involvement in ethanol neurotoxicity in the developing brain may provide unique targets for therapeutic applications against FASD. Here we summarize findings describing the involvement of sphingolipids in ethanol-induced apoptosis and discuss the possibility that the combined action of various sphingolipids in mitochondria may control neuronal cell fate.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Mitsuo Saito
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| |
Collapse
|