101
|
Bjørklund G, Dadar M, Mutter J, Aaseth J. The toxicology of mercury: Current research and emerging trends. ENVIRONMENTAL RESEARCH 2017; 159:545-554. [PMID: 28889024 DOI: 10.1016/j.envres.2017.08.051] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 05/16/2023]
Abstract
Mercury (Hg) is a persistent bio-accumulative toxic metal with unique physicochemical properties of public health concern since their natural and anthropogenic diffusions still induce high risk to human and environmental health. The goal of this review was to analyze scientific literature evaluating the role of global concerns over Hg exposure due to human exposure to ingestion of contaminated seafood (methyl-Hg) as well as elemental Hg levels of dental amalgam fillings (metallic Hg), vaccines (ethyl-Hg) and contaminated water and air (Hg chloride). Mercury has been recognized as a neurotoxicant as well as immunotoxic and designated by the World Health Organization as one of the ten most dangerous chemicals to public health. It has been shown that the half-life of inorganic Hg in human brains is several years to several decades. Mercury occurs in the environment under different chemical forms as elemental Hg (metallic), inorganic and organic Hg. Despite the raising understanding of the Hg toxicokinetics, there is still fully justified to further explore the emerging theories about its bioavailability and adverse effects in humans. In this review, we describe current research and emerging trends in Hg toxicity with the purpose of providing up-to-date information for a better understanding of the kinetics of this metal, presenting comprehensive knowledge on published data analyzing its metabolism, interaction with other metals, distribution, internal doses and targets, and reservoir organs.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
102
|
Shimshoni JA, Barel S. Recent trends in common chemical feed and food contaminants in Israel. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:189-212. [PMID: 29040049 DOI: 10.1080/10590501.2017.1391507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In February 2014 a new law was approved by the Israeli parliament, namely the Control of Animal Feed Law. The law intends to regulate the production and marketing of animal feed. In preparation for the law's implementation in 2017, we have assessed the current feed and food safety challenges in Israel in recent years in association with the presence of common undesirable contaminants in various common feed and food commodities. Tight collaboration between regulatory authorities and feed/food industry, enhanced feed and food quality monitoring, transparency of survey results and readily accessible and reliable information for the public about health hazards of chemical contaminants, will guarantee the safety and quality of food and feed.
Collapse
Affiliation(s)
- J A Shimshoni
- a Department of Food Quality & Safety, Institute for Postharvest and Food Sciences , Agricultural Research Organization , Volcani Center, Rishon Letzion , Israel
| | - S Barel
- b Kimron Veterinary Institute , Department of Toxicology , Bet Dagan , Israel
| |
Collapse
|
103
|
Nicklisch SCT, Bonito LT, Sandin S, Hamdoun A. Mercury levels of yellowfin tuna (Thunnus albacares) are associated with capture location. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:87-93. [PMID: 28577385 PMCID: PMC6544047 DOI: 10.1016/j.envpol.2017.05.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/24/2017] [Indexed: 05/13/2023]
Abstract
Mercury is a toxic compound to which humans are exposed by consumption of fish. Current fish consumption advisories focus on minimizing the risk posed by the species that are most likely to have high levels of mercury. Less accounted for is the variation within species, and the potential role of the geographic origin of a fish in determining its mercury level. Here we surveyed the mercury levels in 117 yellowfin tuna caught from 12 different locations worldwide. Our results indicated significant variation in yellowfin tuna methylmercury load, with levels that ranged from 0.03 to 0.82 μg/g wet weight across individual fish. Mean mercury levels were only weakly associated with fish size (R2 < 0.1461) or lipid content (R2 < 0.00007) but varied significantly, by a factor of 8, between sites. The results indicate that the geographic origin of fish can govern mercury load, and argue for better traceability of fish to improve the accuracy of exposure risk predictions.
Collapse
Affiliation(s)
- Sascha C T Nicklisch
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, United States
| | - Lindsay T Bonito
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, United States
| | - Stuart Sandin
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, United States
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, United States.
| |
Collapse
|
104
|
Kalia V, Perera F, Tang D. Environmental Pollutants and Neurodevelopment: Review of Benefits From Closure of a Coal-Burning Power Plant in Tongliang, China. Glob Pediatr Health 2017; 4:2333794X17721609. [PMID: 28812058 PMCID: PMC5542072 DOI: 10.1177/2333794x17721609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
Background. Understanding preventable causes of neurodevelopmental disorders is a public health priority. Polycyclic aromatic hydrocarbons (PAH) from combustion of fossil fuel, lead, and mercury are among known neurodevelopmental toxicants. Method. For the first time, we comprehensively review the findings from a study by the Columbia Center for Children's Environmental Health and Chinese partners that followed 2 groups of mother-child pairs, one from 2002 and another from 2005, in Tongliang County, China. Pregnant mothers in the 2 cohorts experienced different exposure to PAH because a local coal-burning power plant was shut down in 2004. Investigators assessed change in prenatal PAH exposure, measured using a biomarker (benzo[a]pyrene [BaP]-DNA adducts in cord blood). Developmental quotients were measured using the Gesell Developmental Scales at age 2 and IQ was assessed using the Wechsler Intelligence Scale for Children at age 5. Biologic markers of preclinical response were measured in cord blood: methylation status of long interspersed nuclear elements (LINE1), an indicator of genomic stability, and brain-derived neurotrophic factor (BDNF), a neuronal growth promoter. Analyses accounted for co-exposure to lead and mercury. Results. BaP-DNA adducts were significantly inversely associated with Gesell Developmental Scales scores in the first cohort but not in the second cohort; and levels of BDNF and LINE1 methylation were higher in the second cohort. Conclusion. In this study, reduced exposure to PAH was associated with beneficial effects on neurodevelopment as well as molecular changes related to improved brain development and health. These benefits should encourage further efforts to limit exposure to these toxic pollutants.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Columbia Center for Children’s Environemental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica Perera
- Department of Environmental Health Sciences, Columbia Center for Children’s Environemental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Deliang Tang
- Department of Environmental Health Sciences, Columbia Center for Children’s Environemental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
105
|
Almeida Lopes ACB, Urbano MR, Souza-Nogueira AD, Oliveira-Paula GH, Michelin AP, Carvalho MDFH, Camargo AEI, Peixe TS, Cabrera MAS, Paoliello MMB. Association of lead, cadmium and mercury with paraoxonase 1 activity and malondialdehyde in a general population in Southern Brazil. ENVIRONMENTAL RESEARCH 2017; 156:674-682. [PMID: 28477577 DOI: 10.1016/j.envres.2017.04.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/22/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
Metal exposure is associated with increased oxidative stress (OS), which is considered an underlying mechanism of metal-induced toxicity. Malondialdehyde (MDA) is a final product of lipid peroxidation, and it has been extensively used to evaluate metal-induced OS. Pro-oxidant effects produced by metals can be mitigated by paraoxonase 1 (PON1), an antioxidant enzyme known to prevent cardiovascular disease and atherosclerosis. Among other factors, the Q192R polymorphism and the exposure to heavy metals have been known to alter PON1 activity. Here, we evaluated the association of blood lead (Pb), cadmium (Cd) and mercury (Hg) levels with PON1 activity, and with MDA concentrations in a randomly selected sample of Brazilian adults aged 40 years or older, living in an urban area in Southern Brazil. A total of 889 subjects were evaluated for blood Pb and Cd levels, and 832 were tested for Hg. Geometric mean of blood Pb, Cd and Hg was 1.93μg/dL, 0.06μg/L and 1.40μg/L, respectively. PON1 activity was significantly different among various genotypes: QQ (PON1=121.4U/mL), QR (PON1=87.5U/mL), and RR (PON1=55.2U/mL), p<0.001. PON1 genotypes were associated only with Cd blood levels. Those with QR genotype had Cd concentrations higher (0.07μg/L) than those with the RR genotype (0.04μg/L) with p=0.034. However, PON1 activity was not significantly associated with metal concentrations. Cluster analysis showed that men who reported to be current smokers and drinkers with higher blood Pb and Cd levels, had significantly lower PON1 activity than non-smokers or -drinkers, and women with lower Pb and Cd levels. RR genotype carriers had lower PON1 activity than those with the QR genotype, and had higher levels of Pb and Cd compared with other genotype carriers. For blood Hg, no association with PON1 activity or genotype was noted. We found low levels of Pb, Cd and Hg in environmentally exposed Brazilian adults. Cd concentrations were increased in subjects with QR genotype. Those with RR genotype had lower PON1 activity and higher levels of Pb and Cd than other genotype carriers. The results of cluster analysis suggested that smoking status exerts a significant influence on PON1 activity. Other studies with environmentally exposed populations are required to further clarify whether low blood levels of metals influence OS biomarkers.
Collapse
Affiliation(s)
| | | | - André de Souza-Nogueira
- Graduate Program in Health Sciences, State University of Londrina, Londrina, PR 86038-350, Brazil.
| | - Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| | - Ana Paula Michelin
- Graduate Program in Health Sciences, State University of Londrina, Londrina, PR 86038-350, Brazil.
| | | | - Alissana Ester Iakmiu Camargo
- Graduate Program in Health Sciences, Center of Health Sciences, State University of Londrina, Londrina, PR 86038-350, Brazil.
| | - Tiago Severo Peixe
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, State University of Londrina, Londrina, PR 86038-350, Brazil.
| | | | - Monica Maria Bastos Paoliello
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, PR 86038-350, Brazil; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
106
|
Piersma AH, Hessel EV, Staal YC. Retinoic acid in developmental toxicology: Teratogen, morphogen and biomarker. Reprod Toxicol 2017; 72:53-61. [PMID: 28591664 DOI: 10.1016/j.reprotox.2017.05.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
Abstract
This review explores the usefulness retinoic acid (RA) related physiological factors as possible biomarkers of embryotoxicity. RA is involved in the morphogenesis of the early embryo as well as in the development and maturation of a wide variety of organ anlagen. The region-specific homeostasis of RA in the embryo is in many ways the driving force determining developmental cell proliferation versus differentiation. As a consequence, RA concentrations are carefully controlled in time and space in the developing embryo. RA deficiency and overdosing both result in characteristic patterns of malformations that may involve many different organ systems. The central role of RA in embryo development provides us with a set of sensitive biomarkers that may be employed in developmental toxicity testing. This includes the synthesizing and metabolizing enzymes of RA, but also a myriad of related morphogenetic factors and their genes, of which the expression may be affected by changes in RA balance. Several examples of embryotoxicants interfering with the homeostasis of RA and related parameters have been described. A preliminary adverse outcome pathway framework for RA mediated malformations has been published. Expansion of this framework and its application in developmental toxicity testing may allow the detection of a large variety of embryotoxicants with diverse modes of action. RA homeostasis therefore provides a promising set of molecular tools that may be employed in the advancement of mode of action driven animal-free developmental toxicity testing.
Collapse
Affiliation(s)
- Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Ellen V Hessel
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Yvonne C Staal
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
107
|
Gustin K, Tofail F, Mehrin F, Levi M, Vahter M, Kippler M. Methylmercury exposure and cognitive abilities and behavior at 10years of age. ENVIRONMENT INTERNATIONAL 2017; 102:97-105. [PMID: 28216013 DOI: 10.1016/j.envint.2017.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Methylmercury (MeHg) is a known developmental neurotoxicant present in fish, yet the impact of childhood exposure is uncertain, especially in children with poor nutrition. OBJECTIVES To evaluate associations of MeHg exposure with cognitive abilities and behavior in children from a poor rural area in Bangladesh. METHODS The MeHg exposure was assessed in 1434 ten-year-old children by measuring mercury concentrations in hair (hair-Hg), using inductively coupled plasma mass spectrometry. Cognitive abilities were assessed with the Wechsler Intelligence Scale for Children (4th edition), and behavior by the parent-report Strengths and Difficulties Questionnaire. RESULTS Children's median hair-Hg was 674μg/kg (range 70-17,561μg/kg). Concentrations did not differ by distance from scalp, indicating a similar exposure over time. No multivariable-adjusted associations were observed between the children's hair-Hg and their cognitive abilities. However, children in the highest tertile of hair-Hg had a lower prevalence of hyperactivity (OR: 0.61, 95% CI: 0.45-0.83) and peer relationship problems (OR: 0.58, 95% CI: 0.44-0.76), compared to children in the lowest tertile. The corresponding ORs were slightly stronger in children from families with lower socioeconomic status (OR: 0.56, 95% CI: 0.34-0.90 and OR: 0.48, 95% CI: 0.30-0.74) than in children from families with higher socioeconomic status (OR: 0.73, 95% CI: 0.49-1.08 and OR: 0.72, 95% CI: 0.51-1.02). Similar stronger ORs were observed in underweight children. CONCLUSION MeHg exposure was not associated with cognitive function, but inversely associated with certain adverse behavior. More studies are needed concerning the risk-benefit of different fish consumption in rural Bangladesh.
Collapse
Affiliation(s)
- Klara Gustin
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Fahmida Tofail
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fardina Mehrin
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Michael Levi
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
108
|
Rasinger JD, Lundebye AK, Penglase SJ, Ellingsen S, Amlund H. Methylmercury Induced Neurotoxicity and the Influence of Selenium in the Brains of Adult Zebrafish (Danio rerio). Int J Mol Sci 2017; 18:ijms18040725. [PMID: 28353644 PMCID: PMC5412311 DOI: 10.3390/ijms18040725] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022] Open
Abstract
The neurotoxicity of methylmercury (MeHg) is well characterised, and the ameliorating effects of selenium have been described. However, little is known about the molecular mechanisms behind this contaminant-nutrient interaction. We investigated the influence of selenium (as selenomethionine, SeMet) and MeHg on mercury accumulation and protein expression in the brain of adult zebrafish (Danio rerio). Fish were fed diets containing elevated levels of MeHg and/or SeMet in a 2 × 2 full factorial design for eight weeks. Mercury concentrations were highest in the brain tissue of MeHg-exposed fish compared to the controls, whereas lower levels of mercury were found in the brain of zebrafish fed both MeHg and SeMet compared with the fish fed MeHg alone. The expression levels of proteins associated with gap junction signalling, oxidative phosphorylation, and mitochondrial dysfunction were significantly (p < 0.05) altered in the brain of zebrafish after exposure to MeHg and SeMet alone or in combination. Analysis of upstream regulators indicated that these changes were linked to the mammalian target of rapamycin (mTOR) pathways, which were activated by MeHg and inhibited by SeMet, possibly through a reactive oxygen species mediated differential activation of RICTOR, the rapamycin-insensitive binding partner of mTOR.
Collapse
Affiliation(s)
- Josef Daniel Rasinger
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
| | - Anne-Katrine Lundebye
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
| | - Samuel James Penglase
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
- Present address: Aquaculture Research Solutions (ARS), Mundingburra, 4812 QLD, Australia..
| | - Ståle Ellingsen
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
- Present address: Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway..
| | - Heidi Amlund
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
| |
Collapse
|
109
|
Oliveira C, Joshee L, George H, Nijhara S, Bridges C. Oral exposure of pregnant rats to toxic doses of methylmercury alters fetal accumulation. Reprod Toxicol 2017; 69:265-275. [PMID: 28341569 DOI: 10.1016/j.reprotox.2017.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/30/2017] [Accepted: 03/20/2017] [Indexed: 12/23/2022]
Abstract
Methylmercury (CH3Hg+) is an environmental toxicant that may lead to significant pathologies in exposed individuals. The current study assessed the disposition and toxicological effects of 2.5 or 7.5mgkg-1 CH3Hg+, conjugated to cysteine (Cys; Cys-S-CH3Hg) and administered orally to pregnant and non-pregnant Wistar and TR- rats. Rats were euthanized on gestational day 20 and the content of mercury in each fetus, amniotic sac, and placenta was determined. The brain, liver, and kidneys were removed from each fetus for estimation of mercury content. From the dams, a sample of blood, kidneys, liver, and brain were removed at the time of euthanasia. The findings from this study indicate that pregnancy leads to significant changes in the handling of mercuric ions, particularly in the liver. Furthermore, there are significant differences in the handling of non-nephrotoxic and nephrotoxic doses of Cys-S-CH3Hg by maternal and fetal organs.
Collapse
Affiliation(s)
- Cláudia Oliveira
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Lucy Joshee
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Hannah George
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Sanya Nijhara
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Christy Bridges
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
110
|
Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells. Int J Mol Sci 2016; 17:ijms17122058. [PMID: 27941687 PMCID: PMC5187858 DOI: 10.3390/ijms17122058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 01/25/2023] Open
Abstract
Mitochondria are essential organelles and important targets for environmental pollutants. The detection of mitochondrial biogenesis and generation of reactive oxygen species (ROS) and p53 levels following low-dose methylmercury (MeHg) exposure could expand our understanding of underlying mechanisms. Here, the sensitivity of immortalized human neural progenitor cells (ihNPCs) upon exposure to MeHg was investigated. We found that MeHg altered cell viability and the number of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells. We also observed that low-dose MeHg exposure increased the mRNA expression of cell cycle regulators. We observed that MeHg induced ROS production in a dose-dependent manner. In addition, mRNA levels of peroxisome-proliferator-activated receptor gammacoactivator-1α (PGC-1α), mitochondrial transcription factor A (TFAM) and p53-controlled ribonucleotide reductase (p53R2) were significantly elevated, which were correlated with the increase of mitochondrial DNA (mtDNA) copy number at a concentration as low as 10 nM. Moreover, we examined the expression of microRNAs (miRNAs) known as regulatory miRNAs of p53 (i.e., miR-30d, miR-1285, miR-25). We found that the expression of these miRNAs was significantly downregulated upon MeHg treatment. Furthermore, the overexpression of miR-25 resulted in significantly reducted p53 protein levels and decreased mRNA expression of genes involved in mitochondrial biogenesis regulation. Taken together, these results demonstrated that MeHg could induce developmental neurotoxicity in ihNPCs through altering mitochondrial functions and the expression of miRNA.
Collapse
|
111
|
Rebelo FM, Caldas ED. Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants. ENVIRONMENTAL RESEARCH 2016; 151:671-688. [PMID: 27619212 DOI: 10.1016/j.envres.2016.08.027] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 05/18/2023]
Abstract
Metals are ubiquitous in nature, being found in all environmental compartments, and have a variety of applications in human activities. Metals are transferred by maternal blood to the fetus via the placenta, and exposure continues throughout life. For the general population, exposure comes mainly from water and food consumption, including breast milk. In this paper, we reviewed studies on the toxicity of arsenic, lead, mercury and cadmium, the toxic metals of most concern to human health, focusing on the potential risks to newborns and infants. A total of 75 studies published since 2000 reporting the levels of these metals in breast milk were reviewed. Lead was the metal most investigated in breast milk (43 studies), and for which the highest levels were reported (up to 1515µg/L). Arsenic was the least investigated (18 studies), with higher levels reported for breast milk (up to 149µg/L) collected in regions with high arsenic concentrations in water (>10µg/L). Data from 34 studies on mercury showed that levels in breast milk were generally higher in populations with high fish consumption, where it may be present mainly as MeHg. Cadmium levels in breast milk were the lowest, with means <2µg/L in most of the 29 studies reviewed. Results of risk assessments indicated that the intake of arsenic, lead and mercury by infants through breastfeeding can be considered a health concern in most regions of the world. Although the potential risks to infants are mostly outweighed by the benefits of breast milk consumption, it is essential that contaminants be continuously monitored, especially in the most critical regions, and that measures be implemented by health authorities to reduce exposure of newborns and infants to these metals, and thus avoid unnecessary health risks.
Collapse
Affiliation(s)
- Fernanda Maciel Rebelo
- Brazilian Health Surveillance Agency, University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Eloisa Dutra Caldas
- Laboratory of Toxicology, Department of Pharmacy, University of Brasilia, 70910-900 Brasilia, DF, Brazil.
| |
Collapse
|
112
|
Pierozan P, Biasibetti H, Schmitz F, Ávila H, Fernandes CG, Pessoa-Pureur R, Wyse ATS. Neurotoxicity of Methylmercury in Isolated Astrocytes and Neurons: the Cytoskeleton as a Main Target. Mol Neurobiol 2016; 54:5752-5767. [DOI: 10.1007/s12035-016-0101-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/05/2016] [Indexed: 01/16/2023]
|
113
|
de Oliveira Souza VC, de Marco KC, Laure HJ, Rosa JC, Barbosa F. A brain proteome profile in rats exposed to methylmercury or thimerosal (ethylmercury). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:502-512. [PMID: 27294299 DOI: 10.1080/15287394.2016.1182003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exposure to organomercurials has been associated with harmful effects on the central nervous system (CNS). However, the mechanisms underlying organomercurial-mediated neurotoxic effects need to be elucidated. Exposure to toxic elements may promote cellular modifications such as alterations in protein synthesis in an attempt to protect tissues and organs from damage. In this context, the use of a "proteomic profile" is an important tool to identify potential early biomarkers or targets indicative of neurotoxicity. The aim of this study was to investigate potential modifications in rat cerebral cell proteome following exposure to methylmercury (MeHg) or ethylmercury (EtHg). For MeHg exposure, animals were administered by gavage daily 140 µg/kg/d of Hg (as MeHg) for 60 d and sacrificed 24 h after the last treatment. For EtHg exposure, 800 µg/kg/d of Hg (as EtHg) was given intramuscularly (im) in a single dose and rats were sacrificed after 4 h. Control groups received saline either by gavage or im. After extraction of proteins from whole brain samples and separation by two-dimensional electrophoresis (2-DE), 26 differentially expressed proteins were identified from exposed animals by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF). Both MeHg and EtHg exposure induced an overexpression of calbindin, a protein that acts as a neuroprotective agent by (1) adjusting the concentration of Ca(2+) within cells and preventing neurodegenerative diseases and (2) decreasing expression of glutamine synthetase, a crucial protein involved in regulation of glutamate concentration in synaptic cleft. In contrast, expression of superoxide dismutase (SOD), a protein involved in antioxidant defense, was elevated in brain of MeHg-exposed animals. Taken together, our data provide new valuable information on the possible molecular mechanisms associated with MeHg- and EtHg-mediated toxicity in cerebral tissue. These observed protein alterations may be considered as biomarkers candidates for biological monitoring of organomercurial poisoning.
Collapse
Affiliation(s)
- Vanessa Cristina de Oliveira Souza
- a Department of Clinical, Bromatological and Toxicological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , São Paulo , Brazil
| | - Kátia Cristina de Marco
- a Department of Clinical, Bromatological and Toxicological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , São Paulo , Brazil
| | - Hélen Julie Laure
- b Department of Molecular and Cellular Biology, Faculty of Medicine of Ribeirão Preto , University of São Paulo , São Paulo , Brazil
| | - José Cesar Rosa
- b Department of Molecular and Cellular Biology, Faculty of Medicine of Ribeirão Preto , University of São Paulo , São Paulo , Brazil
| | - Fernando Barbosa
- a Department of Clinical, Bromatological and Toxicological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , São Paulo , Brazil
| |
Collapse
|