101
|
Ismail RA, Kumar M, Thomas N, An AK, Arafat HA. Multifunctional hybrid UF membrane from poly(ether sulfone) and quaternized polydopamine anchored reduced graphene oxide nanohybrid for water treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
102
|
Tuning the nano-porosity and nano-morphology of nano-filtration (NF) membranes: Divalent metal nitrates modulated inter-facial polymerization. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
103
|
Kamtsikakis A, Weder C. Asymmetric Mass Transport through Dense Heterogeneous Polymer Membranes: Fundamental Principles, Lessons from Nature, and Artificial Systems. Macromol Rapid Commun 2021; 43:e2100654. [PMID: 34792266 DOI: 10.1002/marc.202100654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Indexed: 11/08/2022]
Abstract
Many organisms rely on directional water transport schemes for the purpose of water retention and collection. Directional transport of water and other fluids is also technologically relevant, for example to harvest water, in separation processes, packaging solutions, functional clothing, and many other applications. One strategy to promote mass transport along a preferential direction is to create compositionally asymmetric, multi-layered, or compositionally graded architectures. In recent years, the investigation of natural and artificial membranes based on this design has attracted growing interest and allowed researchers to develop a good understanding of how the properties of such membranes can be tailored to meet the demands of particular applications. Here a summary of theoretical works on mass transport through dense asymmetric membranes, comprehensive reviews of biological and artificial membranes featuring this design, and a discussion of applications, remaining questions, and opportunities are provided.
Collapse
Affiliation(s)
- Aristotelis Kamtsikakis
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| |
Collapse
|
104
|
Sun F, Yang J, Shen Q, Li M, Du H, Xing DY. Conductive polyethersulfone membrane facilely prepared by simultaneous phase inversion method for enhanced anti-fouling and separation under low driven-pressure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113363. [PMID: 34314960 DOI: 10.1016/j.jenvman.2021.113363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Electrically conductive membranes have been regarded as a new alternative to overcome the crucial drawbacks of membranes, including permeability-selectivity trade-off and fouling. It is still challenging to prepare conductive membranes with good mechanical strength, high conductivity and stable separation performance by reliable materials and methods. This work developed a facile method of simultaneous phase inversion to prepare electrically conductive polyethersulfone (PES) membranes with carboxylic multiwalled carbon nanotubes (MWCNT) and graphene (Gr). The resultant MWCNT/Gr/PES nanocomposite membranes are composed of the upper MWCNT/Gr layer with good conductivity and the base PES layer providing mechanical support. MWCNT as nanofillers effectively turns the insulting PES layers to be electrically conductive. With the dispersing and bridging functions of Gr, the MWCNT/Gr layer shows an enhanced electric conductivity of 0.10 S/cm. This MWCNT/Gr/PES membrane in an electro-filtration cell achieves excellent retention of Cu(II) ions up to 98 % and a high flux of 94.5 L m-2∙h-1∙bar-1 under a low driven-pressure of 0.1 MPa. The conductive membrane also shows improved anti-fouling capability during protein filtration, due mainly to the electrostatic repulsion and hydrogen evolution reaction on the electrode. This facile strategy has excellent potential in electro-assistant membrane filtration for fouling control and effective separation.
Collapse
Affiliation(s)
- Feiyun Sun
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China
| | - Jingyi Yang
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China
| | - Qi Shen
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China
| | - Mu Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Hong Du
- Shenzhen Water Group, Shenzhen, China
| | - Ding Yu Xing
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, China.
| |
Collapse
|
105
|
Li X, Huang G, Chen X, Huang J, Li M, Yin J, Liang Y, Yao Y, Li Y. A review on graphitic carbon nitride (g-C 3N 4) based hybrid membranes for water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148462. [PMID: 34465053 DOI: 10.1016/j.scitotenv.2021.148462] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 05/15/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has gained enormous attention for water and wastewater treatment. Compared with g-C3N4 nanopowders, g-C3N4 based hybrid membranes have demonstrated great potential for its superior practicability. This review outlines the preparation and characterization of g-C3N4 based hybrid membranes and presents their representative applications in water and wastewater treatment (e.g., removal of organic dyes, phenolic compounds, pharmaceuticals, salt ions, heavy metals, and oils). Meanwhile, g-C3N4 based films for the removal of contaminants through photocatalytic degradation is also summarized. In addition, the corresponding mechanisms and relevant findings are discussed. Finally, the challenges and research needs in the future and application of g-C3N4 based hybrid membranes are highlighted.
Collapse
Affiliation(s)
- Xiang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Guohe Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, China-Canada Center for Energy, Environment and Ecology Research, UR-BNU, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jing Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mengna Li
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jianan Yin
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ying Liang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yao Yao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Yongping Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, China-Canada Center for Energy, Environment and Ecology Research, UR-BNU, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
106
|
Nguyen HT, Pham MT, Nguyen TMT, Bui HM, Wang YF, You SJ. Modifications of conventional organic membranes with photocatalysts for antifouling and self-cleaning properties applied in wastewater filtration and separation processes: A review. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1982981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hieu Trung Nguyen
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
- Institute of Applied Technology, Thu Dau Mot University, Thu Dau Mot City, Binh Duong Province, Vietnam
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Minh-Thuan Pham
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Truc-Mai Thi Nguyen
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan, ROC
| | - Ha Manh Bui
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, Vietnam
| | - Ya-Fen Wang
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Sheng-Jie You
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
107
|
Flexible nanoporous antireflection coatings prepared from controllable latex aggregation and their efficient color deepening function. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
108
|
Accelerating water wet-dry phase transitions in a one-dimensional carbon nanotube. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
109
|
Khoo YS, Lau WJ, Liang YY, Yusof N, Fauzi Ismail A. Surface modification of PA layer of TFC membranes: Does it effective for performance Improvement? J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
110
|
Zhang S, Wu X, Huang Z, Tang X, Zheng H, Xie Z. The selective sieving role of nanosheets in the development of advanced membranes for water treatment: Comparison and performance enhancement of different nanosheets. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
111
|
Bandehali S, Parvizian F, Ruan H, Moghadassi A, Shen J, Figoli A, Adeleye AS, Hilal N, Matsuura T, Drioli E, Hosseini SM. A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
112
|
Safikhani A, Vatanpour V, Habibzadeh S, Saeb MR. Application of graphitic carbon nitrides in developing polymeric membranes: A review. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
113
|
Jiao S, Deng L, Zhang X, Zhang Y, Liu K, Li S, Wang L, Ma D. Evaluation of an Ionic Porous Organic Polymer for Water Remediation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39404-39413. [PMID: 34387083 DOI: 10.1021/acsami.1c10464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The targeted synthesis of a novel ionic porous organic polymer (iPOP) was reported. The compound (denoted as QUST-iPOP-1) was built up through a quaternization reaction of tris(4-imidazolylphenyl)amine and cyanuric chloride, and then benzyl bromide was added to complete the quaternization of the total imidazolyl units. It featured a special exchangeable Cl-/Br--rich structure with high permanent porosity and wide pore size distribution, enabling it to rapidly and effectively remove environmentally toxic oxo-anions including Cr2O72-, MnO4-, and ReO4- and anionic organic dyes with different sizes including methyl blue, Congo red, and methyl orange from water. Notably, QUST-iPOP-1 showed ultra-high capacity values for radioactive TcO4- surrogate anions (MnO4- and ReO4-), Cr2O72-, methyl blue, and Congo red, and these were comparable to some reported compounds of exhaustive research. Furthermore, the relative removal rate was high even when other concurrent anions existed.
Collapse
Affiliation(s)
- Shaoshao Jiao
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Liming Deng
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xinghao Zhang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yaowen Zhang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kang Liu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shaoxiang Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Dingxuan Ma
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
114
|
Udayakumar GP, Muthusamy S, Selvaganesh B, Sivarajasekar N, Rambabu K, Sivamani S, Sivakumar N, Maran JP, Hosseini-Bandegharaei A. Ecofriendly biopolymers and composites: Preparation and their applications in water-treatment. Biotechnol Adv 2021; 52:107815. [PMID: 34400260 DOI: 10.1016/j.biotechadv.2021.107815] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/16/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023]
Abstract
Over the past few decades, the term polymer has been repeatedly used in several industries for their immense characteristics in different applications. Polymers and their composites which were prepared from chemical monomer sources turned out to be potentially harmful to the environment due to their tedious degradation process. Biopolymers are natural substitutes for synthetic polymers which can be efficiently extricated from natural sources. They are predominantly available as polymeric units as well as monomeric units that are linked covalently. These environment-friendly biopolymers and their composites can be categorized based on their numerous sources, different methods of preparation and their potential form of usage. They were found to be biocompatible and biodegradable which make them exceptionally useful in environment based applications, mainly in the process of water treatment, both potable and wastewater. Further, the biopolymer and biopolymer composites easily fit into different parts of the treatment process by acting as filtration media, adsorbents, coagulants and as flocculants. The primary focus of this review is to provide a comprehensive information of biopolymers and biopolymer composites from synthesis to their usefulness for their productive application in water treatment processes. On the whole, it can be substantiated that the biopolymers were identified to play a notable adversary to the synthetic polymers in treating waters with an indispensable need for an elaborative study in the production of the biopolymers.
Collapse
Affiliation(s)
- Gowthama Prabu Udayakumar
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Subbulakshmi Muthusamy
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Bharathi Selvaganesh
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - N Sivarajasekar
- Laboratory for Bioremediation Research, Unit Operations Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India.
| | | | - Selvaraju Sivamani
- Chemical Engineering Section, Engineering Department, Salalah College of Technology, Salalah, Oman.
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - J Prakash Maran
- Department of Food Science and Nutrition, Periyar University, Salem. India.
| | | |
Collapse
|
115
|
Etemadi H, Afsharkia S, Zinatloo‐Ajabshir S, Shokri E. Effect of alumina nanoparticles on the antifouling properties of polycarbonate‐polyurethane blend ultrafiltration membrane for water treatment. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25764] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Habib Etemadi
- Department of Polymer Science and Engineering University of Bonab Bonab Iran
| | - Soheyla Afsharkia
- Department of Polymer Science and Engineering University of Bonab Bonab Iran
| | | | - Elham Shokri
- Department of Chemical Engineering University of Bonab Bonab Iran
| |
Collapse
|
116
|
Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
117
|
Saeedi-Jurkuyeh A, Jonidi Jafari A, Kalantary RR, Esrafili A. Preparation of a thin-film nanocomposite forward osmosis membrane for the removal of organic micro-pollutants from aqueous solutions. ENVIRONMENTAL TECHNOLOGY 2021; 42:3011-3024. [PMID: 31971078 DOI: 10.1080/09593330.2020.1720307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
In this study, a thin-film nanocomposite forward osmosis (TFN FO) membrane was synthesized. The properties and structures of membranes were evaluated for the removal of three organic micro-pollutants from synthetic and real industrial wastewater samples. Laboratory scale fabrication thin-film nanocomposite forward osmosis (FO) membranes composed of a support layer and an active layer. The former was constructed by adding different weight ratios of polyethylene glycol 400 (PEG-400) (0-8 wt.%), polysulfone (PSf), and 1-methyl, 2-pyrrolidone via the phase inversion process, while the latter was synthesized by the incorporation of different weight ratios of graphene oxide (GO) (0-0.012 wt.%), M-phenylenediamine, and 1, 3, 5-benzene trichloride into polyamide layer through the interfacial polymerization reaction. In comparison with thin-film composite (TFC) membranes, the TFN membranes revealed higher hydrophilicity, porosity, water permeability, water flux and salt rejection and lower internal concentration polarization (ICP), reverse salt flux and specific reverse salt flux. The TFN membrane containing 0.008% GO in the active layer and 4% PEG 400 in the support layer exhibited maximum water flux (34.3 LMH) and rejection rate of benzene, phenol and toluene (97%, 84%, and 91%, respectively). The results revealed that the TFN-FO membranes possess a promising potential to improve the water flux and wastewater treatment.
Collapse
Affiliation(s)
- Alireza Saeedi-Jurkuyeh
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center Environmental Health Technology and Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Rezaei Kalantary
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
118
|
Zahid M, Akram S, Rashid A, Rehan ZA, Javed T, Shabbir R, Hessien MM, El-Sayed ME. Investigating the Antibacterial Activity of Polymeric Membranes Fabricated with Aminated Graphene Oxide. MEMBRANES 2021; 11:510. [PMID: 34357160 PMCID: PMC8306018 DOI: 10.3390/membranes11070510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022]
Abstract
A novel, functionalized graphene oxide-based cellulose acetate membrane was fabricated using the phase inversion method to improve the membrane characteristics and performance. We studied the effect of aminated graphene oxide (NH2-GO) composite on the CA membrane characteristics and performance in terms of membrane chemistry, hydrophilicity, thermal and mechanical stability, permeation flux, and antibacterial activity. The results of contact angle and water flux indicate the improved hydrophilic behavior of composite membranes in comparison to that of the pure CA membrane. The AGO-3 membrane showed the highest water flux of about 153 Lm-2h-1. The addition of hydrophilic AGO additive in CA membranes enhanced the antibacterial activity of AGO-CA membranes, and the thermal stability of the resulting membrane also improved since it increases the Tg value in comparison to that of a pristine CA membrane. The aminated graphene oxide (NH2-GO) was, therefore, found to be a promising additive for the fabrication of composite membranes with potent applications in wastewater treatment.
Collapse
Affiliation(s)
- Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Saba Akram
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan; (S.A.); (A.R.)
| | - Anum Rashid
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan; (S.A.); (A.R.)
| | - Zulfiqar Ahmad Rehan
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan; (S.A.); (A.R.)
| | - Talha Javed
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan;
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mahmoud M. Hessien
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21974, Saudi Arabia;
| | - Mahmoud E. El-Sayed
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta 21527, Egypt;
| |
Collapse
|
119
|
Mehrnia MR, Hashemi T, Marandi A. Magnetic MBR technology: from the fabrication of membrane to application in wastewater treatment. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1015-1023. [PMID: 34150289 PMCID: PMC8172685 DOI: 10.1007/s40201-021-00666-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study is to synthesize a magnetic nanocomposite membrane using iron oxide and alumina nanoparticles and employing it in magnetic membrane bioreactors (MBRs) for oily wastewater treatment. Al2O3 and Fe3O4 nanoparticles with approximate sizes of 20 and 30 nm respectively, were settled into a polysulfone (PSf) membrane matrix via magnetic casting method. The concentration of alumina and iron oxide nanoparticles were 0-0.25 wt% and 0.03 wt%, respectively. Compared with the blank membrane, an increase in the concentration of Fe3O4 up to 0.2 wt%, led to the flux as much as 70% and mitigated total resistance by 70%. The presence of the magnetic field around the bioreactor increased the flux significantly and reduced the cake resistance by 93%. Moreover, by applying the static magnetic field to MBR, the Chemical Oxygen Demand (COD) removal rate was increased to 93%, while in the MBR without the magnetic field the COD removal rate was 80%. Our investigation illustrated that the magnetic casting is an effective method to improve the flux and mitigate the fouling of the magnetic nanocomposite membrane. The output of this research indicates that the magnetic casting method enhance the magnetic MBRs performance for wastewater treatment.
Collapse
Affiliation(s)
- Mohammad Reza Mehrnia
- School of Chemical Engineering, University College of Engineering, University of Tehran, P.O. Box 11155-45, Tehran, Iran
| | - Targol Hashemi
- School of Chemical Engineering, University College of Engineering, University of Tehran, P.O. Box 11155-45, Tehran, Iran
| | - Aydin Marandi
- School of Chemical Engineering, University College of Engineering, University of Tehran, P.O. Box 11155-45, Tehran, Iran
| |
Collapse
|
120
|
S E, G A, A F I, P S G, Y LT. Review on characteristics of biomaterial and nanomaterials based polymeric nanocomposite membranes for seawater treatment application. ENVIRONMENTAL RESEARCH 2021; 197:111177. [PMID: 33864792 DOI: 10.1016/j.envres.2021.111177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Membrane technology, especially nanofiltration (NF) has great attention to provide an imperative solution for water issues. The membrane is considered to be the heart in the separation plant. Understanding the membrane characteristics could allow predicting and optimizing the membrane performance namely flux, rejection and reduced fouling. The membrane development using biomaterials and nanomaterials provides a remarkable opportunity in the water application. This review focuses on the membrane characteristics of biomaterials and nanomaterials based nanofiltration. In this review, recent researches based on biomaterials and nanomaterials loaded membrane for salt rejection have been analyzed. Membrane fouling depends on the membrane characteristics and this review defined fouling as a ubiquitous bottleneck challenge that hampers the NF blooming applications. Fouling mitigation strategies via membrane modification using biomaterial (chitosan, curcumin and vanillin) and various other nanomaterials are critically reviewed. This review also highlights the membrane cleaning and focuses on concentrates disposal methods with zero liquid discharge system for resource recovery. Finally, the conclusion and future prospects of membrane technology are discussed. From this current review, it is apparent that the biomaterial and various other nanomaterials acquire exclusive properties that facilitate membrane advancement with improved capability for water treatment. Regardless of membrane material developments, still exist considerable difficulties in membrane commercialization. Thus, additional studies related to this field are needed to produce membranes with better performance for large‒scale applications.
Collapse
Affiliation(s)
- Elakkiya S
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Arthanareeswaran G
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India.
| | - Ismail A F
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Goh P S
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Lukka Thuyavan Y
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
121
|
Kotobuki M, Gu Q, Zhang L, Wang J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules 2021; 26:3331. [PMID: 34206052 PMCID: PMC8198361 DOI: 10.3390/molecules26113331] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022] Open
Abstract
Clean water supply is an essential element for the entire sustainable human society, and the economic and technology development. Membrane filtration for water and wastewater treatments is the premier choice due to its high energy efficiency and effectiveness, where the separation is performed by passing water molecules through purposely tuned pores of membranes selectively without phase change and additional chemicals. Ceramics and polymers are two main candidate materials for membranes, where the majority has been made of polymeric materials, due to the low cost, easy processing, and tunability in pore configurations. In contrast, ceramic membranes have much better performance, extra-long service life, mechanical robustness, and high thermal and chemical stabilities, and they have also been applied in gas, petrochemical, food-beverage, and pharmaceutical industries, where most of polymeric membranes cannot perform properly. However, one of the main drawbacks of ceramic membranes is the high manufacturing cost, which is about three to five times higher than that of common polymeric types. To fill the large gap between the competing ceramic and polymeric membranes, one apparent solution is to develop a ceramic-polymer composite type. Indeed, the properly engineered ceramic-polymer composite membranes are able to integrate the advantages of both ceramic and polymeric materials together, providing improvement in membrane performance for efficient separation, raised life span and additional functionalities. In this overview, we first thoroughly examine three types of ceramic-polymer composite membranes, (i) ceramics in polymer membranes (nanocomposite membranes), (ii) thin film nanocomposite (TFN) membranes, and (iii) ceramic-supported polymer membranes. In the past decade, great progress has been made in improving the compatibility between ceramics and polymers, while the synergy between them has been among the main pursuits, especially in the development of the high performing nanocomposite membranes for water and wastewater treatment at lowered manufacturing cost. By looking into strategies to improve the compatibility among ceramic and polymeric components, we will conclude with briefing on the perspectives and challenges for the future development of the composite membranes.
Collapse
Affiliation(s)
| | | | | | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore; (M.K.); (Q.G.); (L.Z.)
| |
Collapse
|
122
|
Babaei E, Hashemifard SA. Polycarbonate/copper oxide mixed matrix membrane for separation of lead and cadmium from industrial effluents. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1922446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- E. Babaei
- Sustainable Membrane Technology Research Group (SMTRG), Faculty of Petroleum, Gas and Petrochemical Engineering (FPGPE), Persian Gulf University (PGU), Bushehr, Iran
| | - S. A. Hashemifard
- Sustainable Membrane Technology Research Group (SMTRG), Faculty of Petroleum, Gas and Petrochemical Engineering (FPGPE), Persian Gulf University (PGU), Bushehr, Iran
| |
Collapse
|
123
|
Xu C, Chen Y. Understanding water and solute transport in thin film nanocomposite membranes by resistance-in-series theory combined with Monte Carlo simulation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
124
|
Zhao Q, Zhao DL, Chung TS. Thin-film nanocomposite membranes incorporated with defective ZIF-8 nanoparticles for brackish water and seawater desalination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119158] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
125
|
Wang F, Zheng T, Wang P, Chen M, Wang Z, Jiang H, Ma J. Enhanced Water Permeability and Antifouling Property of Coffee-Ring-Textured Polyamide Membranes by In Situ Incorporation of a Zwitterionic Metal-Organic Framework. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5324-5334. [PMID: 33728905 DOI: 10.1021/acs.est.0c07122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modulation of the polyamide structure is critically important for the reverse-osmosis performance of thin-film composite (TFC) membranes in the field of water reuse and desalination. Herein, zwitterionic nanoparticles of zeolitic imidazolate framework-8 (PZ@ZIF-8) were fabricated and incorporated into the polyamide active layer through the interfacial polymerization method. A hydrophilic, zwitterionic coffee-ring structure was formed on the surface of polyamide thin-film nanocomposite (TFN) membranes due to the adjusted diffusion rate of m-phenylenediamine (MPD) from the aqueous phase into the organic phase during the interfacial polymerization process. Surface characterization demonstrated that the coffee-ring structure increased the amounts of water transport channels on the membrane surface and the intrinsic pores of PZ@ZIF-8 maintained the salt rejection. Antifouling and bactericidal activities of TFN membranes were enhanced remarkably owing to the bacterial-"defending" and bacterial-"attacking" behaviors of hydrophilic and zwitterionic groups from PZ@ZIF-8 nanoparticles. This work would provide a promising method for the application of MOFs to enhance the bio-/organic-fouling resistance of TFN membranes with high water permeation and salt rejection.
Collapse
Affiliation(s)
- Feihong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mansheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ziyue Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haicheng Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
126
|
Sustainable Removal of Contaminants by Biopolymers: A Novel Approach for Wastewater Treatment. Current State and Future Perspectives. Processes (Basel) 2021. [DOI: 10.3390/pr9040719] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Naturally occurring substances or polymeric biomolecules synthesized by living organisms during their entire life cycle are commonly defined as biopolymers. Different classifications of biopolymers have been proposed, focusing on their monomeric units, thus allowing them to be distinguished into three different classes with a huge diversity of secondary structures. Due to their ability to be easily manipulated and modified, their versatility, and their sustainability, biopolymers have been proposed in different fields of interest, starting from food, pharmaceutical, and biomedical industries, (i.e., as excipients, gelling agents, stabilizers, or thickeners). Furthermore, due to their sustainable and renewable features, their biodegradability, and their non-toxicity, biopolymers have also been proposed in wastewater treatment, in combination with different reinforcing materials (natural fibers, inorganic micro- or nano-sized fillers, antioxidants, and pigments) toward the development of novel composites with improved properties. On the other hand, the improper or illegal emission of untreated industrial, agricultural, and household wastewater containing a variety of organic and inorganic pollutants represents a great risk to aquatic systems, with a negative impact due to their high toxicity. Among the remediation techniques, adsorption is widely used and documented for its efficiency, intrinsic simplicity, and low cost. Biopolymers represent promising and challenging adsorbents for aquatic environments’ decontamination from organic and inorganic pollutants, allowing for protection of the environment and living organisms. This review summarizes the results obtained in recent years from the sustainable removal of contaminants by biopolymers, trying to identify open questions and future perspectives to overcome the present gaps and limitations.
Collapse
|
127
|
da Silva RI, de Souza Figueiredo KC. Incorporation of graphene oxide on thin film composite polysulfone/polyamide membranes. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
128
|
Graphene oxide incorporated cellulose triacetate/cellulose acetate nanocomposite membranes for forward osmosis desalination. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.102995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
129
|
Agboola O, Fayomi OSI, Ayodeji A, Ayeni AO, Alagbe EE, Sanni SE, Okoro EE, Moropeng L, Sadiku R, Kupolati KW, Oni BA. A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. MEMBRANES 2021; 11:139. [PMID: 33669424 PMCID: PMC7920412 DOI: 10.3390/membranes11020139] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Globally, environmental challenges have been recognised as a matter of concern. Among these challenges are the reduced availability and quality of drinking water, and greenhouse gases that give rise to change in climate by entrapping heat, which result in respirational illness from smog and air pollution. Globally, the rate of demand for the use of freshwater has outgrown the rate of population increase; as the rapid growth in town and cities place a huge pressure on neighbouring water resources. Besides, the rapid growth in anthropogenic activities, such as the generation of energy and its conveyance, release carbon dioxide and other greenhouse gases, warming the planet. Polymer nanocomposite has played a significant role in finding solutions to current environmental problems. It has found interest due to its high potential for the reduction of gas emission, and elimination of pollutants, heavy metals, dyes, and oil in wastewater. The revolution of integrating developed novel nanomaterials such as nanoparticles, carbon nanotubes, nanofibers and activated carbon, in polymers, have instigated revitalizing and favourable inventive nanotechnologies for the treatment of wastewater and gas separation. This review discusses the effective employment of polymer nanocomposites for environmental utilizations. Polymer nanocomposite membranes for wastewater treatment and gas separation were reviewed together with their mechanisms. The use of polymer nanocomposites as an adsorbent for toxic metals ions removal and an adsorbent for dye removal were also discussed, together with the mechanism of the adsorption process. Patents in the utilization of innovative polymeric nanocomposite membranes for environmental utilizations were discussed.
Collapse
Affiliation(s)
- Oluranti Agboola
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | | | - Ayoola Ayodeji
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | - Augustine Omoniyi Ayeni
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | - Edith E. Alagbe
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | - Samuel E. Sanni
- Department of Chemical Engineering, Covenant University, Ota PMB 1023, Nigeria; (A.A.); (A.O.A.); (E.E.A.); (S.E.S.)
| | - Emmanuel E. Okoro
- Department of Petroleum Engineering, Covenant University, Ota PMB 1023, Nigeria;
| | - Lucey Moropeng
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (L.M.); (R.S.)
| | - Rotimi Sadiku
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (L.M.); (R.S.)
| | - Kehinde Williams Kupolati
- Department of Civil Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa;
| | - Babalola Aisosa Oni
- Department of Chemical Engineering and Technology, China University of Petroleum, Beijing 102249, China;
| |
Collapse
|
130
|
Mofradi M, Karimi H, Dashtian K, Ghaedi M. Processing Guar Gum into polyester fabric based promising mixed matrix membrane for water treatment. Carbohydr Polym 2021; 254:116806. [PMID: 33357837 DOI: 10.1016/j.carbpol.2020.116806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
A reactive and mechano-chemically stable support was prepared from Ag-nanoparticles decorated polyester fabric which was subsequently coated by a casting solution containing polyvinylidene fluoride matrix, guar gum (GG) exo-polysaccharide hydrophilic agent, and UiO-66 filler. FE-SEM, XRD, FT-IR, water contact angle technique, and mechanical stability tests were applied to characterize the prepared membranes. The water contact angle measurements indicated the hydrophilicity of the prepared membrane which can be attributed to the nature of bio-GG and UiO-66. The prepared membrane was employed for purifying contaminated waters containing N-cetyl-N,N,N-trimethylammonium bromide (CTAB) and congo-red (CR) dye through a cross-module set-up. The central composite design was also exploited to study the effect of operational parameters such as CTAB and CR concentration, pH solution, and pressure on the removal efficiency. Particularly, the bio-based GG/UiO-66 dispersion showed excellent self-healing properties, which enabled an effective pollutant separation ability and facilitated the recyclability/sustainability of the as-prepared membrane.
Collapse
Affiliation(s)
- Marziyeh Mofradi
- Chemical Engineering Department, Yasouj University, Yasouj, Iran
| | - Hajir Karimi
- Chemical Engineering Department, Yasouj University, Yasouj, Iran.
| | | | | |
Collapse
|
131
|
Matindi CN, Hu M, Kadanyo S, Ly QV, Gumbi NN, Dlamini DS, Li J, Hu Y, Cui Z, Li J. Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118868] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
132
|
Chen T, Li B, Huang W, Lin C, Li G, Ren H, Wu Y, Chen S, Zhang W, Ma H. Highly crystalline ionic covalent organic framework membrane for nanofiltration and charge-controlled organic pollutants removal. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117787] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
133
|
Carbon nanotube membranes – Strategies and challenges towards scalable manufacturing and practical separation applications. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117929] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
134
|
Rabajczyk A, Zielecka M, Cygańczuk K, Pastuszka Ł, Jurecki L. Nanometals-Containing Polymeric Membranes for Purification Processes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:513. [PMID: 33494485 PMCID: PMC7865470 DOI: 10.3390/ma14030513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
A recent trend in the field of membrane research is the incorporation of nanoparticles into polymeric membranes, which could produce synergistic effects when using different types of materials. This paper discusses the effect of the introduction of different nanometals such as silver, iron, silica, aluminum, titanium, zinc, and copper and their oxides on the permeability, selectivity, hydrophilicity, conductivity, mechanical strength, thermal stability, and antiviral and antibacterial properties of polymeric membranes. The effects of nanoparticle physicochemical properties, type, size, and concentration on a membrane's intrinsic properties such as pore morphology, porosity, pore size, hydrophilicity/hydrophobicity, membrane surface charge, and roughness are discussed, and the performance of nanocomposite membranes in terms of flux permeation, contaminant rejection, and antifouling capability are reviewed. The wide range of nanocomposite membrane applications including desalination and removal of various contaminants in water-treatment processes are discussed.
Collapse
Affiliation(s)
- Anna Rabajczyk
- Scientific and Research Center for Fire Protection National Research Institute, Nadwiślańska 213, 05-420 Józefów, Poland; (M.Z.); (K.C.); (Ł.P.); (L.J.)
| | | | | | | | | |
Collapse
|
135
|
Chen B, Zhang C, Wang L, Yang J, Sun Y. Removal of disinfection byproducts in drinking water by flexible reverse osmosis: Efficiency comparison, fates, influencing factors, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123408. [PMID: 32763700 DOI: 10.1016/j.jhazmat.2020.123408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Flexible reverse osmosis (FLERO) is a newly proposed technology for purifying and saving water simultaneously by recycling brine to inlet water. However, it is unknown if and how much FLERO may compromise micropollutant treatment efficiency. Hence, this study examined FLERO in removing twenty disinfection byproducts (DBPs) from simulated water under a constant 80% water recovery condition. The results achieved ≥ 80.8% removals for most of DBPs while varying ionic strength, methanol content, and water matrix affected only small DBPs. From chemical structure perspective, the removals of DBPs were ranked as tetra- ≥ tri- ≥ di- ≥ mono- DBPs for compounds containing identical functional groups (FGs) and halogen types, iodinated ≥ bromated ≥ chlorinated DBPs for compounds with identical FG and halogenation degrees, and HAAs ≥ HALs ≈ HMs for compounds with identical halogenation types and degrees. From chemical property viewpoint, the rejections of DBPs were modeled well (R2 = 0.76) by a quantitative structure-activity relationship model that incorporates four parameters (i.e., molecular volume, octanol-water partitioning coefficient, steric and electronic effects). From membrane-pollutant interaction standpoint, we for the first time revealed membrane trapping/sorption as another important mechanism for DBPs removal besides previously-known mechanisms like size exclusion and electrostatic repulsion.
Collapse
Affiliation(s)
- Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Chi Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jie Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yanan Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
136
|
Barati N, Husein MM, Azaiez J. Modifying ceramic membranes with in situ grown iron oxide nanoparticles and their use for oily water treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
137
|
Mastropietro TF, Bruno R, Pardo E, Armentano D. Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: overview, challenges and future perspectives. Dalton Trans 2021; 50:5398-5410. [DOI: 10.1039/d1dt00360g] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PFASs are called “forever chemicals” because they do not fully degrade. They have become so ubiquitous in the environment that it is difficult to prevent exposure. This review aims to provide a set of improved technologies to remove PFASs from water.
Collapse
Affiliation(s)
| | - Rosaria Bruno
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Italy
| | - Emilio Pardo
- Departament de Química Inorgànica
- Instituto de Ciencia Molecular (ICMOL)
- Universitat de València
- 46980 Paterna
- Spain
| | | |
Collapse
|
138
|
Structure adjustment for enhancing the water permeability and separation selectivity of the thin film composite nanofiltration membrane based on a dendritic hyperbranched polymer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
139
|
|
140
|
Liu Y, Bai L, Zhu X, Xu D, Li G, Liang H, Wiesner MR. The role of carboxylated cellulose nanocrystals placement in the performance of thin-film composite (TFC) membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
141
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydr Polym 2021; 251:116986. [PMID: 33142558 PMCID: PMC8648070 DOI: 10.1016/j.carbpol.2020.116986] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Natural biopolymers, polymeric organic molecules produced by living organisms and/or renewable resources, are considered greener, sustainable, and eco-friendly materials. Natural polysaccharides comprising cellulose, chitin/chitosan, starch, gum, alginate, and pectin are sustainable materials owing to their outstanding structural features, abundant availability, and nontoxicity, ease of modification, biocompatibility, and promissing potentials. Plentiful polysaccharides have been utilized for making assorted (nano)catalysts in recent years; fabrication of polysaccharides-supported metal/metal oxide (nano)materials is one of the effective strategies in nanotechnology. Water is one of the world's foremost environmental stress concerns. Nanomaterial-adorned polysaccharides-based entities have functioned as novel and more efficient (nano)catalysts or sorbents in eliminating an array of aqueous pollutants and contaminants, including ionic metals and organic/inorganic pollutants from wastewater. This review encompasses recent advancements, trends and challenges for natural biopolymers assembled from renewable resources for exploitation in the production of starch, cellulose, pectin, gum, alginate, chitin and chitosan-derived (nano)materials.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
142
|
Liu T, Chen D, Cao Y, Yang F, Chen J, Kang J, Xu R, Xiang M. Construction of a composite microporous polyethylene membrane with enhanced fouling resistance for water treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
143
|
Thin film nanocomposite RO membranes: Review on fabrication techniques and impacts of nanofiller characteristics on membrane properties. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
144
|
Zhang M, Ni F, He J, Liu Y. Evaluation of the formation and antifouling properties of a novel adsorptive homogeneous mixed matrix membrane with in situ generated Zr-based nanoparticles. RSC Adv 2021; 11:8491-8504. [PMID: 35423351 PMCID: PMC8695176 DOI: 10.1039/d0ra10330f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
In situ generation is a powerful technique used to prepare homogenous adsorptive mixed matrix membranes (MMMs) containing functional nanoparticles, although the mechanism of formation of the membranes is not yet clear and there have been few published evaluations of membrane fouling. We therefore used this method to prepare a novel homogeneous adsorptive Zr-based nanoparticle–polyethersulfone (PES) MMM and systematically studied the mechanism of membrane formation at the atomic level. As the amount of ZrOCl2·8H2O in the casting solution increased, the phase inversion kinetics changed from instantaneous demixing due to the thermodynamic enhancement effect to a delayed demixing process caused by viscosity hindrance. The in situ generation of nanoparticles in these MMMs can be divided into three stages: the migration stage, the exfoliation stage and the stable stage. Our findings provide a fundamental understanding of the interface chemistry in the development of in situ generated MMMs. M2 showed a higher adsorption of As(v) than the pure PES membrane and could be reused after regeneration. The removal of As(v) from the M2 filtration system mainly took place via adsorption rather than size exclusion, as confirmed by EDS and experimental data. The presence of humic acid slightly inhibited the removal of As(v) during the filtration process as a result of the barrier effect caused by the formation of a filter cake via humic acid fouling. The filtration of a bovine serum albumin solution showed that the MMM with in situ generated nanoparticles had better antifouling properties than the PES membrane alone in multiple applications as a result of the enhanced hydrophilic surface. A homogeneous in situ generated Zr-based NPs/PES mixed matrix membrane with enhanced adsorptive and antifouling performance was developed.![]()
Collapse
Affiliation(s)
- Mei Zhang
- Institute of Ecological and Environmental Sciences
- Sichuan Agricultural University
- Chengdu
- China
| | - Fan Ni
- Department of Chemical Engineering
- Northwest University for Nationalities
- Lanzhou
- China
| | - Jinsong He
- Institute of Ecological and Environmental Sciences
- Sichuan Agricultural University
- Chengdu
- China
| | - Yan Liu
- College of Environmental Sciences
- Sichuan Agricultural University
- Chengdu
- China
| |
Collapse
|
145
|
Khalil AM, Schäfer AI. Cross-linked β-cyclodextrin nanofiber composite membrane for steroid hormone micropollutant removal from water. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118228] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
146
|
Abdul‐Majeed WS. Application of flying jet plasma for amelioration of polyvinylidene fluoride membrane properties towards enhanced membrane distillation. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
147
|
Babanzadeh S, Mehdipour‐Ataei S, Khodami S. Novel blended poly(sulfide sulfone)/poly(ether sulfone) dense membranes for water treatment. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Samal Babanzadeh
- Faculty of Polymer Science, Department of Polyurethane and Advanced Materials Iran Polymer and Petrochemical Research Institute Tehran Iran
| | - Shahram Mehdipour‐Ataei
- Faculty of Polymer Science, Department of Polyurethane and Advanced Materials Iran Polymer and Petrochemical Research Institute Tehran Iran
| | - Samaneh Khodami
- Faculty of Polymer Science, Department of Polyurethane and Advanced Materials Iran Polymer and Petrochemical Research Institute Tehran Iran
| |
Collapse
|
148
|
Yang Z, Sun PF, Li X, Gan B, Wang L, Song X, Park HD, Tang CY. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15563-15583. [PMID: 33213143 DOI: 10.1021/acs.est.0c05377] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The separation properties of polyamide reverse osmosis and nanofiltration membranes, widely applied for desalination and water reuse, are constrained by the permeability-selectivity upper bound. Although thin-film nanocomposite (TFN) membranes incorporating nanomaterials exhibit enhanced water permeance, their rejection is only moderately improved or even impaired due to agglomeration of nanomaterials and formation of defects. A novel type of TFN membranes featuring an interlayer of nanomaterials (TFNi) has emerged in recent years. These novel TFNi membranes show extraordinary improvement in water flux (e.g., up to an order of magnitude enhancement) along with better selectivity. Such enhancements can be achieved by a wide selection of nanomaterials, ranging from nanoparticles, one-/two-dimensional materials, to interfacial coatings. The use of nanostructured interlayers not only improves the formation of polyamide rejection layers but also provides an optimized water transport path, which enables TFNi membranes to potentially overcome the longstanding trade-off between membrane permeability and selectivity. Furthermore, TFNi membranes can potentially enhance the removal of heavy metals and micropollutants, which is critical for many environmental applications. This review critically examines the recent developments of TFNi membranes and discusses the underlying mechanisms and design criteria. Their potential environmental applications are also highlighted.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Peng-Fei Sun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bowen Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Li Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoxiao Song
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| |
Collapse
|
149
|
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
150
|
Karimi R, Homayoonfal M. The supplement role of iron oxide and zirconium oxide nanoparticles as an advanced composite compound for enhancing the efficiency of thin‐film nanocomposite membranes. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rezvan Karimi
- Department of Chemical Engineering College of Engineering, University of Isfahan Isfahan Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering College of Engineering, University of Isfahan Isfahan Iran
| |
Collapse
|