101
|
Solid-phase extraction of aflatoxins using a nanosorbent consisting of a magnetized nanoporous carbon core coated with a molecularly imprinted polymer. Mikrochim Acta 2018; 185:515. [DOI: 10.1007/s00604-018-3051-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/07/2018] [Indexed: 12/18/2022]
|
102
|
Xu Z, Liu G, Ye H, Jin W, Cui Z. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.044] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
103
|
Poly(1-trimethylsilyl-1-propyne)-Based Hybrid Membranes: Effects of Various Nanofillers and Feed Gas Humidity on CO₂ Permeation. MEMBRANES 2018; 8:membranes8030076. [PMID: 30189678 PMCID: PMC6160974 DOI: 10.3390/membranes8030076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 11/16/2022]
Abstract
Poly(1-trimethylsilyl-1-propyne) (PTMSP) is a high free volume polymer with exceptionally high gas permeation rate but the serious aging problem and low selectivity have limited its application as CO2 separation membrane material. Incorporating inorganic nanoparticles in polymeric membranes has been a common approach to improve the separation performance of membranes, which has also been used in PTMSP based membrane but mostly with respect to tackling the aging issues. Aiming at increasing the CO2 selectivity, in this work, hybrid membranes containing four types of selected nanofillers (from 0 to 3D) were fabricated using PTMSP as the polymer matrix. The effects of the various types of nanofillers on the CO2 separation performance of the resultant membranes were systematically investigated in humid conditions. The thermal, chemical and morphologic properties of the hybrid membranes were characterized using TGA, FTIR and SEM. The gas permeation properties of the hybrid membranes were evaluated using mixed gas permeation test with the presence of water vapour to simulate the flue gas conditions. Experiments show that the addition of different fillers results in significantly different separation performances; The addition of ZIF-L porous 2D filler improves the CO2/N2 selectivity at the expenses of CO2 permeability, while the addition of TiO2, ZIF-7 and ZIF-8 increases the CO2 permeability but the CO2/N2 selectivity decreases.
Collapse
|
104
|
Embedding hydrophobic MoS 2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.03.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
105
|
Unlu D, Hilmioglu ND. Pervaporation catalytic membrane reactor application over functional chitosan membrane. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
106
|
Ahmadi M, Janakiram S, Dai Z, Ansaloni L, Deng L. Performance of Mixed Matrix Membranes Containing Porous Two-Dimensional (2D) and Three-Dimensional (3D) Fillers for CO₂ Separation: A Review. MEMBRANES 2018; 8:membranes8030050. [PMID: 30060592 PMCID: PMC6161244 DOI: 10.3390/membranes8030050] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 11/29/2022]
Abstract
Application of conventional polymeric membranes in CO2 separation processes are limited by the existing trade-off between permeability and selectivity represented by the renowned upper bound. Addition of porous nanofillers in polymeric membranes is a promising approach to transcend the upper bound, owing to their superior separation capabilities. Porous nanofillers entice increased attention over nonporous counterparts due to their inherent CO2 uptake capacities and secondary transport pathways when added to polymer matrices. Infinite possibilities of tuning the porous architecture of these nanofillers also facilitate simultaneous enhancement of permeability, selectivity and stability features of the membrane conveniently heading in the direction towards industrial realization. This review focuses on presenting a complete synopsis of inherent capacities of several porous nanofillers, like metal organic frameworks (MOFs), Zeolites, and porous organic frameworks (POFs) and the effects on their addition to polymeric membranes. Gas permeation performances of select hybrids with these three-dimensional (3D) fillers and porous nanosheets have been summarized and discussed with respect to each type. Consequently, the benefits and shortcomings of each class of materials have been outlined and future research directions concerning the hybrids with 3D fillers have been suggested.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Saravanan Janakiram
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Zhongde Dai
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Luca Ansaloni
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| |
Collapse
|
107
|
Lan Y, Peng P, Chen P. Preparation of polymers of intrinsic microporosity composite membranes incorporated with modified nano-fumed silica for butanol separation. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yongqiang Lan
- Laboratory of Membrane Science and Technology; School of Resource and Chemical Engineering; Sanming University; Sanming Fujian China
- Science and Technology on Sanming Institute of Fluorochemical Industry; Sanming Fujian China
| | - Ping Peng
- Laboratory of Membrane Science and Technology; School of Resource and Chemical Engineering; Sanming University; Sanming Fujian China
| | - Ping Chen
- Laboratory of Membrane Science and Technology; School of Resource and Chemical Engineering; Sanming University; Sanming Fujian China
| |
Collapse
|
108
|
High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.090] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
109
|
Cheng X, Jiang Z, Cheng X, Yang H, Tang L, Liu G, Wang M, Wu H, Pan F, Cao X. Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
110
|
Enhanced dehydration performance of hybrid membranes by incorporating fillers with hydrophilic-hydrophobic regions. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
111
|
The enhanced hydrogen separation performance of mixed matrix membranes by incorporation of two-dimensional ZIF-L into polyimide containing hydroxyl group. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
112
|
Yeang QW, Sulong AB, Tan SH. Asymmetric membrane containing electrospun Cu-BTC/poly(vinyl alcohol) for pervaporation dehydration of 1,4-dioxane. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
113
|
Wang Y, Wang B, Shi H, Zhang C, Tao C, Li J. Carbon nanodots in ZIF-8: synthesis, tunable luminescence and temperature sensing. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00637g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A new hybrid material CNDs@ZIF-8 with tunable luminescence and temperature-responsive photoluminescence has been synthesized by a low temperature-calcination method. An approximate white light has been achieved by combining the blue emission of ZIF-8 framework and the high yellow emission of CNDs.
Collapse
Affiliation(s)
- Yufei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Huaizhong Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Chenghui Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Chunyao Tao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
114
|
Gao B, Jiang Z, Zhao M, Wu H, Pan F, Mayta JQ, Chang Z, Bu X. Enhanced dehydration performance of hybrid membranes by incorporating lanthanide-based MOFs. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
115
|
Cheng X, Jiang Z, Cheng X, Guo S, Tang L, Yang H, Wu H, Pan F, Zhang P, Cao X, Wang B. Bimetallic metal-organic frameworks nanocages as multi-functional fillers for water-selective membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.09.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
116
|
Wu F, Lin L, Liu H, Wang H, Qiu J, Zhang X. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.09.047] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
117
|
Cheng X, Pan F, Wang M, Li W, Song Y, Liu G, Yang H, Gao B, Wu H, Jiang Z. Hybrid membranes for pervaporation separations. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.07.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
118
|
Li W, Pan F, Song Y, Wang M, Wang H, Walker S, Wu H, Jiang Z. Construction of molecule-selective mixed matrix membranes with confined mass transfer structure. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
119
|
Roy S, Singha NR. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects. MEMBRANES 2017; 7:membranes7030053. [PMID: 28885591 PMCID: PMC5618138 DOI: 10.3390/membranes7030053] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022]
Abstract
Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.
Collapse
Affiliation(s)
- Sagar Roy
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Kolkata-700106, West Bengal, India.
| |
Collapse
|
120
|
Li X, Liu Y, Wang J, Gascon J, Li J, Van der Bruggen B. Metal–organic frameworks based membranes for liquid separation. Chem Soc Rev 2017; 46:7124-7144. [DOI: 10.1039/c7cs00575j] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This Tutorial Review highlights the achievements in the rational design and the latest applications of MOF-based membranes in liquid separation.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Yuxin Liu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Jing Wang
- Department of Chemical Engineering
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Jorge Gascon
- King Abdullah University of Science and Technology
- KAUST Catalysis Center
- Advanced Catalytic Materials
- Thuwal 23955
- Saudi Arabia
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Bart Van der Bruggen
- Department of Chemical Engineering
- KU Leuven
- B-3001 Leuven
- Belgium
- Faculty of Engineering and the Built Environment
| |
Collapse
|