101
|
Gunness P, Flanagan BM, Shelat K, Gilbert RG, Gidley MJ. Kinetic analysis of bile salt passage across a dialysis membrane in the presence of cereal soluble dietary fibre polymers. Food Chem 2012; 134:2007-13. [DOI: 10.1016/j.foodchem.2012.03.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 03/16/2012] [Accepted: 03/29/2012] [Indexed: 11/30/2022]
|
102
|
Giménez-Bastida JA, Larrosa M, González-Sarrías A, Tomás-Barberán F, Espín JC, García-Conesa MT. Intestinal ellagitannin metabolites ameliorate cytokine-induced inflammation and associated molecular markers in human colon fibroblasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8866-8876. [PMID: 22463485 DOI: 10.1021/jf300290f] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Pomegranate ellagitannins (ETs) are transformed in the gut to ellagic acid (EA) and its microbiota metabolites, urolithin A (Uro-A) and urolithin B (Uro-B). These compounds exert anti-inflammatory effects in vitro and in vivo. The aim of this study was to investigate the effects of Uro-A, Uro-B, and EA on colon fibroblasts, cells that play a key role in intestinal inflammation. CCD18-Co colon fibroblasts were exposed to a mixture of Uro-A, Uro-B, and EA, at concentrations comparable to those found in the colon (40 μM Uro-A, 5 μM Uro-B, 1 μM EA), both in the presence or in the absence of IL-1β (1 ng/mL) or TNF-α (50 ng/mL), and the effects on fibroblast migration and monocyte adhesion were determined. The levels of several growth factors and adhesion cytokines were also measured. The mixture of metabolites significantly inhibited colon fibroblast migration (∼70%) and monocyte adhesion to fibroblasts (∼50%). These effects were concomitant with a significant down-regulation of the levels of PGE(2), PAI-1, and IL-8, as well as other key regulators of cell migration and adhesion. Of the three metabolites tested, Uro-A exhibited the most significant anti-inflammatory effects. The results show that a combination of the ET metabolites found in colon, urolithins and EA, at concentrations achievable in the intestine after the consumption of pomegranate, was able to moderately improve the inflammatory response of colon fibroblasts and suggest that consumption of ET-containing foods has potential beneficial effects on gut inflammatory diseases.
Collapse
Affiliation(s)
- Juan A Giménez-Bastida
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
103
|
Roger E, Kalscheuer S, Kirtane A, Guru BR, Grill AE, Whittum-Hudson J, Panyam J. Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm 2012; 9:2103-10. [PMID: 22670575 DOI: 10.1021/mp2005388] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The oral absorption of drugs that have poor bioavailability can be enhanced by encapsulation in polymeric nanoparticles. Transcellular transport of nanoparticle-encapsulated drug, possibly through transcytosis, is likely the major mechanism through which nanoparticles improve drug absorption. We hypothesized that the cellular uptake and transport of nanoparticles can be further increased by targeting the folate receptors expressed on the intestinal epithelial cells. The objective of this research was to study the effect of folic acid functionalization on transcellular transport of nanoparticle-encapsulated paclitaxel, a chemotherapeutic with poor oral bioavailability. Surface-functionalized poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles loaded with paclitaxel were prepared by the interfacial activity assisted surface functionalization technique. Transport of paclitaxel-loaded nanoparticles was investigated using Caco-2 cell monolayers as an in vitro model. Caco-2 cells were found to express folate receptor and the drug efflux protein, p-glycoprotein, to high levels. Encapsulation of paclitaxel in PLGA nanoparticles resulted in a 5-fold increase in apparent permeability (Papp) across Caco-2 cells. Functionalization of nanoparticles with folic acid further increased the transport (8-fold higher transport compared to free paclitaxel). Confocal microscopic studies showed that folic acid functionalized nanoparticles were internalized by the cells and that nanoparticles did not have any gross effects on tight junction integrity. In conclusion, our studies indicate that folic acid functionalized nanoparticles have the potential to enhance the oral absorption of drugs with poor oral bioavailability.
Collapse
Affiliation(s)
- Emilie Roger
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | | | |
Collapse
|
104
|
Ethanolamine controls expression of genes encoding components involved in interkingdom signaling and virulence in enterohemorrhagic Escherichia coli O157:H7. mBio 2012; 3:mBio.00050-12. [PMID: 22589288 PMCID: PMC3372972 DOI: 10.1128/mbio.00050-12] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacterial pathogens must be able to both recognize suitable niches within the host for colonization and successfully compete with commensal flora for nutrients in order to establish infection. Ethanolamine (EA) is a major component of mammalian and bacterial membranes and is used by pathogens as a carbon and/or nitrogen source in the gastrointestinal tract. The deadly human pathogen enterohemorrhagic Escherichia coli O157:H7 (EHEC) uses EA in the intestine as a nitrogen source as a competitive advantage for colonization over the microbial flora. Here we show that EA is not only important for nitrogen metabolism but that it is also used as a signaling molecule in cell-to-cell signaling to activate virulence gene expression in EHEC. EA in concentrations that cannot promote growth as a nitrogen source can activate expression of EHEC’s repertoire of virulence genes. The EutR transcription factor, known to be the receptor of EA, is only partially responsible for this regulation, suggesting that yet another EA receptor exists. This important link of EA with metabolism, cell-to-cell signaling, and pathogenesis, highlights the fact that a fundamental means of communication within microbial communities relies on energy production and processing of metabolites. Here we show for the first time that bacterial pathogens not only exploit EA as a metabolite but also coopt EA as a signaling molecule to recognize the gastrointestinal environment and promote virulence expression. In order to successfully cause disease, a pathogen must be able to sense a host environment and modulate expression of its virulence genes as well as compete with the indigenous microbiota for nutrients. Ethanolamine (EA) is present in the large intestine due to the turnover of intestinal cells. Here, we show that the human pathogen Escherichia coli O157:H7, which causes bloody diarrhea and hemolytic-uremic syndrome, regulates virulence gene expression through EA metabolism and by responding to EA as a signal. These findings provide the first information directly linking EA with bacterial pathogenesis.
Collapse
|
105
|
Braga M, Schiavone C, Di Gioacchino G, De Angelis I, Cavallucci E, Lazzarin F, Petrarca C, Di Gioacchino M. Environment and T regulatory cells in allergy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 423:193-201. [PMID: 20825978 DOI: 10.1016/j.scitotenv.2010.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
The central role of T regulatory cells in the responses against harmless environmental antigens has been confirmed by many studies. Impaired T regulatory cell function is implicated in many pathological conditions, particularly allergic diseases. The "hygiene hypothesis" suggests that infections and infestations may play a protective role for allergy, whereas environmental pollutants favor the development of allergic diseases. Developing countries suffer from a variety of infections and are also facing an increasing diffusion of environmental pollutants. In these countries allergies increase in relation to the spreading use of xenobiotics (pesticides, herbicides, pollution, etc.) with a rate similar to those of developed countries, overcoming the protective effects of infections. We review here the main mechanisms of non-self tolerance, with particular regard to relations between T regulatory cell activity, infections and infestations such as helminthiasis, and exposure to environmental xenobiotics with relevant diffusion in developing countries.
Collapse
Affiliation(s)
- M Braga
- Allergy Unit, Spedali Civili, Piazzale Spedali Civili, 25123 Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Fitch PM, Henderson P, Schwarze J. Respiratory and gastrointestinal epithelial modulation of the immune response during viral infection. Innate Immun 2012; 18:179-89. [PMID: 21239454 DOI: 10.1177/1753425910391826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Respiratory and enteric viral infections cause significant morbidity and mortality world-wide and represent a major socio-economic burden. Many of these viruses have received unprecedented public and media interest in recent years. A popular public misconception is that viruses are a threat to which the human body has only limited defences. However, the majority of primary and secondary exposures to virus are asymptomatic or induce only minor symptoms. The mucosal epithelial surfaces are the main portal of entry for viral pathogens and are centrally involved in the initiation, maintenance and polarisation of the innate and adaptive immune response to infection. This review describes the defences employed by the epithelium of the respiratory and gastrointestinal tracts during viral infections with focus on epithelial modulation of the immune response at the innate/adaptive interface.
Collapse
Affiliation(s)
- Paul M Fitch
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, UK.
| | | | | |
Collapse
|
107
|
Abstract
The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.
Collapse
Affiliation(s)
- Magdalena L Circu
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | |
Collapse
|
108
|
Remus DM, Kleerebezem M, Bron PA. An intimate tête-à-tête — How probiotic lactobacilli communicate with the host. Eur J Pharmacol 2011; 668 Suppl 1:S33-42. [DOI: 10.1016/j.ejphar.2011.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 12/28/2022]
|
109
|
Scott CL, Aumeunier AM, Mowat AM. Intestinal CD103+ dendritic cells: master regulators of tolerance? Trends Immunol 2011; 32:412-9. [PMID: 21816673 DOI: 10.1016/j.it.2011.06.003] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/27/2011] [Accepted: 06/06/2011] [Indexed: 01/01/2023]
Abstract
CD103(+) dendritic cells (DCs) in the intestinal mucosa play a crucial role in tolerance to commensal bacteria and food antigens. These cells originate in the lamina propria (LP) and migrate to the mesenteric lymph nodes (MLNs), where they drive the differentiation of gut-homing FoxP3(+) regulatory T cells by producing retinoic acid from dietary vitamin A. Local 'conditioning' factors in the LP might also contribute to this tolerogenic profile of CD103(+) DCs. Considerably less is understood about the generation of active immunity or inflammation in the intestinal mucosa. This might require alterations in pre-existing CD103(+) DCs, arrival of new DCs, or the action of a distinct DC population. Here, we discuss our current knowledge of this as yet incompletely understood population.
Collapse
Affiliation(s)
- Charlotte L Scott
- Institute of Infection, Immunology and Inflammation, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | | | |
Collapse
|
110
|
Henderson P, van Limbergen JE, Schwarze J, Wilson DC. Function of the intestinal epithelium and its dysregulation in inflammatory bowel disease. Inflamm Bowel Dis 2011; 17:382-95. [PMID: 20645321 DOI: 10.1002/ibd.21379] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The intestinal epithelium not only acts as a physical barrier to commensal bacteria and foreign antigens but is also actively involved in antigen processing and immune cell regulation. The inflammatory bowel diseases (IBDs) are characterized by inflammation at this mucosal surface with well-recognized defects in barrier and secretory function. In addition to this, defects in intraepithelial lymphocytes, chemokine receptors, and pattern recognition receptors promote an abnormal immune response, with increased differentiation of proinflammatory cells and a dysregulated relationship with professional antigen-presenting cells. This review focuses on recent developments in the structure of the epithelium, including a detailed account of the apical junctional complex in addition to the role of the enterocyte in antigen recognition, uptake, processing, and presentation. Recently described cytokines such as interleukin-22 and interleukin-31 are highlighted as is the dysregulation of chemokines and secretory IgA in IBD. Finally, the effect of the intestinal epithelial cell on T effector cell proliferation and differentiation are examined in the context of IBD with particular focus on T regulatory cells and the two-way interaction between the intestinal epithelial cell and certain immune cell populations.
Collapse
Affiliation(s)
- Paul Henderson
- Department of Child Life and Health, University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
111
|
Abstract
Intestinal permeability is a critical feature of the gastrointestinal epithelium as it must allow an efficient passage of nutrients and restrict the entry of larger molecules, such as protein antigen, in order to facilitate appropriate immune responses towards food antigens. The proper regulation of the epithelial barrier relies on multiple, intricate physiological and immunologic mechanisms, in terms of which recent progresses regarding the cellular and molecular components have been unravelled. In genetically predisposed individuals, breakdown of oral tolerance can occur, leading to the inadequate production of allergen-specific IgE and the recruitment of mast cells in the gastrointestinal mucosa. Under such conditions, the intestinal permeability towards allergen is altered via different mechanisms, with IgE-CD23-mediated transport across the mucosa playing an important amplification role. Additionally, during the effector phase of the allergic reaction, when mast cells degranulate, a series of inflammatory mediators, such as proteases and cytokines, are released and further affects intestinal permeability. This leads to an increase in the passage of allergens and hence contributes to perpetuate the inflammatory reaction. In this review, we describe the importance of properly balanced intestinal permeability in oral tolerance induction and address the processes involved in damaging the intestinal barrier in the sensitized epithelium and during allergic reactions. We conclude by speculating on the effect of increased intestinal permeability on the onset of sensitization towards dietary antigens.
Collapse
Affiliation(s)
- C Perrier
- Division of Gastroenterology, University Hospital, Catholic University Leuven, Leuven, Belgium
| | | |
Collapse
|
112
|
Bertin Y, Girardeau JP, Chaucheyras-Durand F, Lyan B, Pujos-Guillot E, Harel J, Martin C. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ Microbiol 2010; 13:365-77. [PMID: 20849446 DOI: 10.1111/j.1462-2920.2010.02334.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bovine gastrointestinal tract is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Characterization of nutrients that promote the carriage of these pathogens by the ruminant would help to develop ecological strategies to reduce their survival in the bovine gastrointestinal tract. In this study, we show for the first time that free ethanolamine (EA) constitutes a nitrogen source for the O157:H7 EHEC strain EDL933 in the bovine intestinal content because of induction of the eut (ethanolamine utilization) gene cluster. In contrast, the eut gene cluster is absent in the genome of most species constituting the mammalian gut microbiota. Furthermore, the eutB gene (encoding a subunit of the enzyme that catalyses the release of ammonia from EA) is poorly expressed in non-pathogenic E. coli. Accordingly, EA is consumed by EHEC but is poorly metabolized by endogenous microbiota of the bovine small intestine, including commensal E. coli. Interestingly, the capacity to utilize EA as a nitrogen source confers a growth advantage to E. coli O157:H7 when the bacteria enter the stationary growth phase. These data demonstrate that EHEC strains take advantage of a nitrogen source that is not consumed by the resident microbiota, and suggest that EA represents an ecological niche favouring EHEC persistence in the bovine intestine.
Collapse
Affiliation(s)
- Yolande Bertin
- Institut National de la Recherche Agronomique, Unité de Microbiologie UR 454, Centre de Recherche de Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France.
| | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Bacterial translocation from the gastrointestinal tract is an important pathway initiating late-onset sepsis and necrotizing enterocolitis in very low-birth-weight infants. The emerging intestinal microbiota, nascent intestinal epithelia, naive immunity, and suboptimal nutrition (lack of breast milk) have roles in facilitating bacterial translocation. Feeding lactoferrin, probiotics, or prebiotics has presented exciting possibilities to prevent bacterial translocation in preterm infants, and clinical trials will identify the most safe and efficacious prevention and treatment strategies.
Collapse
Affiliation(s)
- Michael P Sherman
- University of Missouri, Department of Child Health, Children's Hospital, 404 Keene Street, Neonatology Suite 206, Columbia, MO 65201, USA.
| |
Collapse
|
114
|
Iannuccelli V, Montanari M, Bertelli D, Pellati F, Coppi G. Microparticulate polyelectrolyte complexes for gentamicin transport across intestinal epithelia. Drug Deliv 2010; 18:26-37. [DOI: 10.3109/10717544.2010.509362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
115
|
Rasschaert K, Devriendt B, Favoreel H, Goddeeris BM, Cox E. Clathrin-mediated endocytosis and transcytosis of enterotoxigenic Escherichia coli F4 fimbriae in porcine intestinal epithelial cells. Vet Immunol Immunopathol 2010; 137:243-50. [PMID: 20580439 DOI: 10.1016/j.vetimm.2010.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/25/2010] [Accepted: 05/28/2010] [Indexed: 11/24/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause severe diarrhea in neonatal and recently weaned piglets. Previously, we demonstrated that oral immunization of F4 receptor positive piglets with purified F4 fimbriae induces a protective F4-specific intestinal immune response. However, in F4 receptor negative animals no F4-specific immune response can be elicited, indicating that the induction of an F4-specific mucosal immune response upon oral immunisation is receptor-dependent. Although F4 fimbriae undergo transcytosis across the intestinal epithelium in vivo, the endocytosis pathways used remain unknown. In the present study, we characterized the internalization of F4 fimbriae in the porcine intestinal epithelial cell line IPEC-J2. The results in the present study demonstrate that F4 fimbriae are internalized through a clathrin-dependent pathway. Furthermore, our results suggest that F4 fimbriae are transcytosed across differentiated IPEC-J2 cells. This receptor-dependent transcytosis of F4 fimbriae may explain the immunogenicity of these fimbriae upon oral administration in vivo.
Collapse
Affiliation(s)
- Kristien Rasschaert
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
116
|
Roger E, Lagarce F, Garcion E, Benoit JP. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine (Lond) 2010; 5:287-306. [PMID: 20148639 DOI: 10.2217/nnm.09.110] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oral route is the most common route for the delivery of drugs because it is simple to implement and improves patient compliance and quality of life. However, oral absorption is limited by various physiological barriers and remains a scientific challenge. Nanometric-sized drug delivery systems are being extensively studied and provide promising potential for oral drug delivery. Many different technological solutions have been proposed to enhance the bioavailability or the targeting of drug after oral administration. To reach these goals, it is important to analyze the biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. In the present review, the gastrointestinal barrier and physiological stress factors with regard to nanocarriers' performance or integrity issues are first described. Second, the different characteristics offered by the nanocarriers (size, surface composition and properties mediated by external factors such as ligands) and their effect on the optimal transport of drug into the bloodstream are discussed. Finally, the integrity issue is discussed in function of the expected role of the nanocarriers: bioavailability enhancement or pharmacological targeting.
Collapse
|
117
|
Frontela C, Canali R, Virgili F. Empleo de compuestos fenólicos en la dieta para modular la respuesta inflamatoria intestinal. GASTROENTEROLOGIA Y HEPATOLOGIA 2010; 33:307-12. [DOI: 10.1016/j.gastrohep.2009.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/07/2009] [Accepted: 09/25/2009] [Indexed: 01/26/2023]
|
118
|
Borcherding F, Nitschke M, Hundorfean G, Rupp J, von Smolinski D, Bieber K, van Kooten C, Lehnert H, Fellermann K, Büning J. The CD40-CD40L pathway contributes to the proinflammatory function of intestinal epithelial cells in inflammatory bowel disease. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1816-27. [PMID: 20133813 DOI: 10.2353/ajpath.2010.090461] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In inflammatory bowel diseases (IBD), intestinal epithelial cells (IECs) are involved in the outbalanced immune responses toward luminal antigens. However, the signals responsible for this proinflammatory capacity of IECs in IBD remain unclear. The CD40/CD40L interaction activates various pathways in immune and nonimmune cells related to inflammation and was shown to be critical for the development of IBD. Here we demonstrate CD40 expression within IECs during active IBD. Endoscopically obtained biopsies taken from Crohn's disease (n = 112) and ulcerative colitis patients (n = 67) consistently showed immunofluorescence staining for CD40 in IECs of inflamed ileal or colonic mucosa. In noninvolved mucosa during active disease, tissue obtained during Crohn's disease or ulcerative colitis in remission and biopsies from healthy controls (n = 38) IECs almost entirely lacked CD40 staining. Flow cytometry and RT-PCR analysis using different intestinal epithelial cell lines (HT29, SW480, and T84) showed IFN-gamma to effectively induce CD40 in IECs. Cells were virtually unresponsive to LPS or whole E. coli regarding CD40 expression. In addition, a moderate induction of CD40 was found in response to TNF-alpha, which exerted synergistical effects with IFN-gamma. CD40 ligation by CD40L-transfected murine fibroblasts or soluble CD40L increased the secretion of IL-8 in IFN-gamma pretreated HT29 cells. Our findings provide evidence for the epithelial expression and modulation of CD40 in IBD-affected mucosa and indicate its involvement in the proinflammatory function of IECs.
Collapse
Affiliation(s)
- Frauke Borcherding
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
BACKGROUND Enterocytes are exposed to antigens present in the intestinal lumen, like beta-glucans that are carbohydrate structures present not only in the cell wall of yeast and fungi but also in cereals. Beta-glucans are known for their immune modulating properties and we have earlier reported an increased immune response by enterocytes after addition of fecal water prepared from ileostomic contents obtained from participants consuming an oat beta-glucan diet versus a placebo diet. We hypothesized that our observation of immune stimulating effects by oat beta-glucan in enterocytes was mediated through the beta-glucan receptor dectin-1. METHODS Presence of dectin-1 in enterocytes was examined by reverse transcriptase PCR, western blot, and flow cytometry followed by an evaluation of the functional involvement of dectin-1 by using dectin-1 inhibitors during fecal water incubations. RESULTS Reverse transcriptase PCR and western blot analysis showed dectin-1 presence in the INT407 and Caco-2 NF-kappaB reporter enterocyte cell lines. Moreover, human enterocytes isolated from ileum or colon biopsies also contained dectin-1 protein. However, dectin-1 expression could not be confirmed by flow cytometry in INT407 cells, suggesting that in these cell lines dectin-1 is not expressed at the extracellular membrane. Furthermore, dectin-1 inhibitors did not suppress the beta-glucan containing fecal water-induced IL-8 production by INT407 cells and NF-kappaB transactivation by Caco-2 NF-kappaB reporter cells. CONCLUSION INT407 and Caco-2 NF-kappaB reporter cells seem to express no functional dectin-1. The absence of this pattern recognition receptor may function to protect the intestine against inflammatory damage, as the dectin-1 ligand beta-glucan is largely present in the intestinal lumen.
Collapse
|
120
|
Reinke Y, Zimmer KP, Naim HY. Toxic peptides in Frazer's fraction interact with the actin cytoskeleton and affect the targeting and function of intestinal proteins. Exp Cell Res 2009; 315:3442-52. [DOI: 10.1016/j.yexcr.2009.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 01/07/2023]
|
121
|
Pfannkuche H, Gäbel G. Glucose, epithelium, and enteric nervous system: dialogue in the dark. J Anim Physiol Anim Nutr (Berl) 2009; 93:277-86. [DOI: 10.1111/j.1439-0396.2008.00847.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
122
|
Ruemmele FM, Bier D, Marteau P, Rechkemmer G, Bourdet-Sicard R, Walker WA, Goulet O. Clinical evidence for immunomodulatory effects of probiotic bacteria. J Pediatr Gastroenterol Nutr 2009; 48:126-41. [PMID: 19179874 DOI: 10.1097/mpg.0b013e31817d80ca] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Close, tightly orchestrated interactions between the intestinal epithelium and the mucosa-associated immune system are critical for normal intestinal absorptive and immunological functions. Recent data indicate that commensal intestinal microbiota represents a major modulator of intestinal homeostasis. This review analyzes the process of intestinal colonization and the interaction of microbiota with the intestinal epithelium and mucosal immune system, with special reference to the first years of extrauterine life. Dysregulation of the symbiotic interaction between intestinal microbiota and the mucosa may result in a pathological condition with potential clinical repercussions. Based on the concept that there is a beneficial and symbiotic relation between the host and endogenous microbiota, strategies aimed at directly modulating intestinal microbiota with regard to disease prevention or treatment have been developed. One strategy involves administering viable probiotic bacteria. Clinical evidence for the beneficial effect of probiotics in the prevention and/or treatment of necrotizing enterocolitis, infectious and antibiotic-associated diarrhea, allergic diseases, and inflammatory bowel disorders is reviewed herein.
Collapse
Affiliation(s)
- F M Ruemmele
- Department of Pediatrics, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
123
|
Kolinska J, Lisa V, Clark JA, Kozakova H, Zakostelecka M, Khailova L, Sinkora M, Kitanovicova A, Dvorak B. Constitutive expression of IL-18 and IL-18R in differentiated IEC-6 cells: effect of TNF-alpha and IFN-gamma treatment. J Interferon Cytokine Res 2008; 28:287-96. [PMID: 18547159 DOI: 10.1089/jir.2006.0130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The multifunctional cytokine interleukin-18 (IL-18) is an important mediator in intestinal inflammatory processes. The aim of this study was to evaluate the constitutive expression of IL-18 and its receptors (IL-18Ralpha and IL-18Rbeta) in intestinal epithelial cells (IEC) stimulated by tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). In addition, cellular proliferation and evaluation of brush border enzymes as differentiation markers were studied. Nontransformed rat intestinal epithelial IEC-6 cells were grown on an extracellular matrix (ECM) in medium with or without TNF-alpha, IFN-gamma, or a combination of both. Gene expression of IL-18, its receptors and apoptotic markers was evaluated using real-time PCR. Expression of IL-18Ralpha protein was demonstrated by flow cytometry and Western blot. Enzymatic activities of brush border enzymes and caspase-1 were determined. The constitutive expression of IL-18, IL-18Ralpha and IL-18Rbeta mRNAs and proteins were detected in IEC-6 cells. The biologically active form of IL-18 was released in response to TNF-alpha and IFN-gamma treatment. Exogenous IL-18 had no effect on cellular proliferation, brush border enzyme activities, and gene expression of apoptotic markers. However, the addition of IL-18 stimulated production and release of the chemokine IL-8. These data suggest that IEC-6 cells may be not only a source of IL-18 but also a target for its action.
Collapse
Affiliation(s)
- Jirina Kolinska
- Institute of Physiology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Son DO, Satsu H, Kiso Y, Totsuka M, Shimizu M. Inhibitory effect of carnosine on interleukin-8 production in intestinal epithelial cells through translational regulation. Cytokine 2008; 42:265-276. [DOI: 10.1016/j.cyto.2008.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/22/2008] [Accepted: 02/19/2008] [Indexed: 10/22/2022]
|
125
|
Munakata K, Yamamoto M, Anjiki N, Nishiyama M, Imamura S, Iizuka S, Takashima K, Ishige A, Hioki K, Ohnishi Y, Watanabe K. Importance of the interferon-alpha system in murine large intestine indicated by microarray analysis of commensal bacteria-induced immunological changes. BMC Genomics 2008; 9:192. [PMID: 18439305 PMCID: PMC2408602 DOI: 10.1186/1471-2164-9-192] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 04/26/2008] [Indexed: 12/23/2022] Open
Abstract
Background Although microbiota play a critical role in the normal development and function of host immune systems, the underlying mechanisms, especially those involved in the large intestine (LI), remain unknown. In the present study, we performed transcriptome analysis of the LI of germ-free (GF) and specific pathogen-free (SPF) mice of the IQI strain, an inbred strain established from ICR mice. Results GeneChip analysis, quantitative real-time RT-PCR, and reconfirmation using bacteria-inoculated GF mice revealed differences in the expression levels of several immune-related genes, such as cryptdin-related sequences (CRS), certain subsets of type 1 interferon (IFN)-related genes, class Ib MHC molecules, and certain complements. LI expressed no authentic cryptdins but predominantly expressed CRS2, 4, and 7. The mRNA levels of IFN-related genes, including Irf7, Isgf3g, Ifit1 and Stat1, were lower in SPF- and flora-reconstituted mice. When an oral IFN-α inducer tilorone analog, R11567DA, was administered to SPF mice, IFN-α was induced rapidly in the LI at 4 h, whereas no IFN-α protein was detected in the small intestine (SI) or blood. In situ hybridization and immunohistochemistry suggested that the IFN-α production originated from Paneth cells in the SI, and portions of lamina proprial CD11b- or mPDCA1-positive cells in the LI. Conclusion The present study suggests that microbial colonization, while inducing the expression of anti-microbial peptides, results in the down-regulation of certain genes responsible for immune responses, especially for type I IFN synthesis. This may reflect the adaptation process of the immune system in the LI to prevent excessive inflammation with respect to continuous microbial exposure. Further, the repertoire of anti-microbial peptides and the extraordinary role of interferon producing cells in the LI have been found to be distinct from those in the SI.
Collapse
Affiliation(s)
- Kaori Munakata
- Center for Kampo Medicine, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Ciprandi G, Cavallucci E, Cuccurullo F, Di Gioacchino M. Helminthic infection as a factor in new-onset coffee allergy in a father and daughter. J Allergy Clin Immunol 2008; 121:773-774. [PMID: 18155281 DOI: 10.1016/j.jaci.2007.09.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
|
127
|
Johansson-Lindbom B, Agace WW. Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol Rev 2007; 215:226-42. [PMID: 17291292 DOI: 10.1111/j.1600-065x.2006.00482.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The intestinal mucosa represents the largest body surface toward the external environment and harbors numerous T lymphocytes that take up resident within the intestinal epithelium or in the underlying lamina propria (LP). The intraepithelial lymphocytes include subsets of 'unconventional' T cells with unclear ontogeny and reactivity that localize to this site independently of antigen-specific activation in secondary lymphoid organs. In contrast, the majority of the 'conventional' gut T cells are recruited into the intestinal mucosa subsequent to their activation in intestinal inductive sites, including Peyer's patches (PPs) and mesenteric lymph nodes (MLNs). T cells homing to the small intestine express a distinct pattern of homing molecules, allowing them to interact with and transmigrate across intestinal postcapillary endothelium. At least some of these homing molecules, including the integrin alpha(4)beta(7) and the chemokine receptor CCR9, are induced on T cells during their activation in PPs or MLNs. Mucosal dendritic cells (DCs) play a key role in this process, but not all intestinal DCs possess the ability to confer a gut-homing capacity to T cells. Instead, functionally specialized CD103(+) DCs derived from the small intestinal LP appear to selectively regulate T-cell homing to the small intestine.
Collapse
|