101
|
Mahoney SJ, Dempsey JM, Blenis J. Cell signaling in protein synthesis ribosome biogenesis and translation initiation and elongation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:53-107. [PMID: 20374739 DOI: 10.1016/s1877-1173(09)90002-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein synthesis is a highly energy-consuming process that must be tightly regulated. Signal transduction cascades respond to extracellular and intracellular cues to phosphorylate proteins involved in ribosomal biogenesis and translation initiation and elongation. These phosphorylation events regulate the timing and rate of translation of both specific and total mRNAs. Alterations in this regulation can result in dysfunction and disease. While many signaling pathways intersect to control protein synthesis, the mTOR and MAPK pathways appear to be key players. This chapter briefly reviews the mTOR and MAPK pathways and then focuses on individual phosphorylation events that directly control ribosome biogenesis and translation.
Collapse
Affiliation(s)
- Sarah J Mahoney
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
102
|
Boisnard S, Lagniel G, Garmendia-Torres C, Molin M, Boy-Marcotte E, Jacquet M, Toledano MB, Labarre J, Chédin S. H2O2 activates the nuclear localization of Msn2 and Maf1 through thioredoxins in Saccharomyces cerevisiae. EUKARYOTIC CELL 2009; 8:1429-38. [PMID: 19581440 PMCID: PMC2747830 DOI: 10.1128/ec.00106-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/26/2009] [Indexed: 11/20/2022]
Abstract
The cellular response to hydrogen peroxide (H(2)O(2)) is characterized by a repression of growth-related processes and an enhanced expression of genes important for cell defense. In budding yeast, this response requires the activation of a set of transcriptional effectors. Some of them, such as the transcriptional activator Yap1, are specific to oxidative stress, and others, such as the transcriptional activators Msn2/4 and the negative regulator Maf1, are activated by a wide spectrum of stress conditions. How these general effectors are activated in response to oxidative stress remains an open question. In this study, we demonstrate that the two cytoplasmic thioredoxins, Trx1 and Trx2, are essential to trigger the nuclear accumulation of Msn2/4 and Maf1, specifically under H(2)O(2) treatment. Contrary to the case with many stress conditions previously described for yeast, the H(2)O(2)-induced nuclear accumulation of Msn2 and Maf1 does not correlate with the downregulation of PKA kinase activity. Nevertheless, we show that PP2A phosphatase activity is essential for driving Maf1 dephosphorylation and its subsequent nuclear accumulation in response to H(2)O(2) treatment. Interestingly, under this condition, the lack of PP2A activity has no impact on the subcellular localization of Msn2, demonstrating that the H(2)O(2) signaling pathways share a common route through the thioredoxin system and then diverge to activate Msn2 and Maf1, the final integrators of these pathways.
Collapse
|
103
|
Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B, Aebersold R, Loewith R. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev 2009; 23:1929-43. [PMID: 19684113 PMCID: PMC2725941 DOI: 10.1101/gad.532109] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/19/2009] [Indexed: 12/12/2022]
Abstract
The target of rapamycin complex 1 (TORC1) is an essential multiprotein complex conserved from yeast to humans. Under favorable growth conditions, and in the absence of the macrolide rapamycin, TORC1 is active, and influences virtually all aspects of cell growth. Although two direct effectors of yeast TORC1 have been reported (Tap42, a regulator of PP2A phosphatases and Sch9, an AGC family kinase), the signaling pathways that couple TORC1 to its distal effectors were not well understood. To elucidate these pathways we developed and employed a quantitative, label-free mass spectrometry approach. Analyses of the rapamycin-sensitive phosphoproteomes in various genetic backgrounds revealed both documented and novel TORC1 effectors and allowed us to partition phosphorylation events between Tap42 and Sch9. Follow-up detailed characterization shows that Sch9 regulates RNA polymerases I and III, the latter via Maf1, in addition to translation initiation and the expression of ribosomal protein and ribosome biogenesis genes. This demonstrates that Sch9 is a master regulator of protein synthesis.
Collapse
Affiliation(s)
- Alexandre Huber
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Systems Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Aino Uotila
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Michael Stahl
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| | - Stefanie Wanka
- Institute of Molecular Biology, University of Zurich, Zürich 8057, Switzerland
| | - Bertran Gerrits
- Functional Genomics Center Zurich, University of Zürich, Zürich 8057, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zürich, Zürich 8093, Switzerland
- Institute for Systems Biology, Seattle, Washington 98103, USA
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zürich, Zürich 8093, Switzerland
- Faculty of Science, University of Zürich, Zürich 8057, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
104
|
Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription. Proc Natl Acad Sci U S A 2009; 106:14265-70. [PMID: 19706510 DOI: 10.1073/pnas.0900162106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human PC4 and the yeast ortholog Sub1 have multiple functions in RNA polymerase II transcription. Genome-wide mapping revealed that Sub1 is present on Pol III-transcribed genes. Sub1 was found to interact with components of the Pol III transcription system and to stimulate the initiation and reinitiation steps in a system reconstituted with all recombinant factors. Sub1 was required for optimal Pol III gene transcription in exponentially growing cells.
Collapse
|
105
|
Wei Y, Tsang CK, Zheng XFS. Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1. EMBO J 2009; 28:2220-30. [PMID: 19574957 DOI: 10.1038/emboj.2009.179] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 05/29/2009] [Indexed: 12/27/2022] Open
Abstract
We have found earlier that Tor1 binds to 5S rDNA chromatin but the functional significance has not been established. Here, we show that association with 5S rDNA chromatin is necessary for TOR complex 1 (TORC1) to regulate the synthesis of 5S ribosomal RNA and transfer RNAs (tRNAs) by RNA polymerase (Pol) III, as well as the phosphorylation and binding to Pol III-transcribed genes of the Pol III repressor Maf1. Interestingly, TORC1 does not bind to tRNA genes, suggesting that TORC1 modulates tRNA synthesis indirectly through Maf1 phosphorylation at the rDNA loci. We also find that Maf1 cytoplasmic localization is dependent on the SSD1-v allele. In W303 cells that carry the SSD1-d allele, Maf1 is constitutively nuclear but its nucleolar localization is inhibited by TORC1, indicating that TORC1 regulates nucleoplasm-to-nucleolus transport of Maf1. Finally, we show that TORC1 interacts with Maf1 in vivo and phosphorylates Maf1 in vitro, and regulates Maf1 nucleoplasm-to-nucleolus translocation. Together, these observations provide new insights into the chromatin-dependent mechanism by which TORC1 controls transcription by Pol III.
Collapse
Affiliation(s)
- Yuehua Wei
- Graduate Program in Cellular and Molecular Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | | |
Collapse
|
106
|
Lee J, Moir RD, Willis IM. Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway. J Biol Chem 2009; 284:12604-8. [PMID: 19299514 PMCID: PMC2675989 DOI: 10.1074/jbc.c900020200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/12/2009] [Indexed: 11/06/2022] Open
Abstract
Maf1 is a conserved repressor of transcription that functions at the downstream end of multiple nutrient and stress signaling pathways. How these different signaling pathways converge on Maf1 is not known. Previous work in yeast indicates that protein kinase A (PKA) regulates RNA polymerase (pol) III transcription, in part, by phosphorylating multiple sites in Maf1. Here we present additional evidence for this view and show that a parallel nutrient and stress-sensing pathway involving Sch9, an homologous kinase to metazoan S6 kinase, targets Maf1 at a subset of PKA sites. Using ATP analog-sensitive alleles of PKA and Sch9, we find that these two kinases account for the bulk of the phosphorylation on consensus PKA sites in Maf1. Deletion of Sch9 reduces RNA pol III transcription in a Maf1-dependent manner, yet the cells remain susceptible to further repression by rapamycin and other treatments. Because the rapamycin-sensitive kinase activity of the TORC1 complex is necessary for Sch9 function in vivo and in vitro, our results show that transcriptional regulation of RNA pol III and the coordinate control of ribosomal protein genes can be achieved by Sch9-dependent and -independent branches of the target of rapamycin (TOR) signaling pathway.
Collapse
Affiliation(s)
- Jaehoon Lee
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
107
|
Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, Kemmeren P, Holstege FCP, Weissman JS, Keogh MC, Koller D, Shokat KM, Krogan NJ. Functional organization of the S. cerevisiae phosphorylation network. Cell 2009; 136:952-63. [PMID: 19269370 DOI: 10.1016/j.cell.2008.12.039] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 10/14/2008] [Accepted: 12/18/2008] [Indexed: 01/08/2023]
Abstract
Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working in compensatory pathways (negative genetic interactions) or those operating in linear pathways (positive genetic interactions). We found an enrichment of positive genetic interactions between kinases, phosphatases, and their substrates. In addition, we assembled a higher-order map from sets of three genes that display strong interactions with one another: triplets enriched for functional connectivity. The resulting network view provides insights into signaling pathway regulation and reveals a link between the cell-cycle kinase, Cak1, the Fus3 MAP kinase, and a pathway that regulates chromatin integrity during transcription by RNA polymerase II.
Collapse
Affiliation(s)
- Dorothea Fiedler
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
Yeast cells sense the amount and quality of external nutrients through multiple interconnected signaling networks, which allow them to adjust their metabolism, transcriptional profile and developmental program to adapt readily and appropriately to changing nutritional states. We present our current understanding of the nutritional sensing networks yeast cells rely on for perceiving the nutritional landscape, with particular emphasis on those sensitive to carbon and nitrogen sources. We describe the means by which these networks inform the cell's decision among the different developmental programs available to them-growth, quiescence, filamentous development, or meiosis/sporulation. We conclude that the highly interconnected signaling networks provide the cell with a highly nuanced view of the environment and that the cell can interpret that information through a sophisticated calculus to achieve optimum responses to any nutritional condition.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
109
|
Cabart P, Lee J, Willis IM. Facilitated recycling protects human RNA polymerase III from repression by Maf1 in vitro. J Biol Chem 2008; 283:36108-17. [PMID: 18974046 DOI: 10.1074/jbc.m807538200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Yeast cells synthesize approximately 3-6 million molecules of tRNA every cell cycle at a rate of approximately 2-4 transcripts/gene/s. This high rate of transcription is achieved through many rounds of reinitiation by RNA polymerase (pol) III on stable DNA-bound complexes of the initiation factor TFIIIB. Studies in yeast have shown that the rate of reinitiation is increased by facilitated recycling, a process that involves the repeated reloading of the polymerase on the same transcription unit. However, when nutrients become limiting or stress conditions are encountered, RNA pol III transcription is rapidly repressed through the action of the conserved Maf1 protein. Here we examine the relationship between Maf1-mediated repression and facilitated recycling in a human RNA pol III in vitro system. Using an immobilized template transcription assay, we demonstrate that facilitated recycling is conserved from yeast to humans. We assessed the ability of recombinant human Maf1 to inhibit different steps in transcription before and after preinitiation complex assembly. We show that recombinant Maf1 can inhibit the recruitment of TFIIIB and RNA pol III to immobilized templates. However, RNA pol III bound to preinitiation complexes or in elongation complexes is protected from repression by Maf1 and can undergo several rounds of initiation. This indicates that recombinant Maf1 is unable to inhibit facilitated recycling. The data suggest that additional biochemical steps may be necessary for rapid Maf1-dependent repression of RNA pol III transcription.
Collapse
Affiliation(s)
- Pavel Cabart
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
110
|
Soragni E, Kassavetis GA. Absolute gene occupancies by RNA polymerase III, TFIIIB, and TFIIIC in Saccharomyces cerevisiae. J Biol Chem 2008; 283:26568-76. [PMID: 18667429 PMCID: PMC2546553 DOI: 10.1074/jbc.m803769200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/16/2008] [Indexed: 11/06/2022] Open
Abstract
A major limitation of chromatin immunoprecipitation lies in the challenge of measuring the immunoprecipitation effectiveness of different proteins and antibodies and the resultant inability to compare the occupancies of different DNA-binding proteins. Here we present the implementation of a quantitative chromatin immunoprecipitation assay in the RNA polymerase III (pol III) system that allowed us to measure the absolute in vivo occupancy of pol III and its two transcription factors, TFIIIC and TFIIIB, on a subset of pol III genes. The crucial point of our analysis was devising a method that allows the accurate determination of the immunoprecipitation efficiency for each protein. We achieved this by spiking every immunoprecipitation reaction with the formaldehyde cross-linked in vitro counterparts of TFIIIB-, TFIIIC-, and pol III-DNA complexes, measuring the in vitro occupancies of the corresponding factors on a DNA probe and determining probe recovery by quantitative PCR. Analysis of nine pol III-transcribed genes with diverse sequence characteristics showed a very high occupancy by TFIIIB and pol III (pol III occupancy being generally approximately 70% of TFIIIB occupancy) and a TFIIIC occupancy that ranged between approximately 5 and 25%. Current data suggest that TFIIIC is released during transcription in vitro, and it has been proposed that TFIIIB suffices for pol III recruitment in vivo. Our findings point to the transient nature of the TFIIIC-DNA interaction in vivo, with no significant counter-correlation between pol III and TFIIIC occupancy and instead to a dependence of TFIIIB-DNA and TFIIIC-DNA complex maintenance in vivo on pol III function.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Division of Biological Sciences and Center for Molecular Genetics,
University of California, San Diego, La Jolla, California 92093-0634
| | - George A. Kassavetis
- Division of Biological Sciences and Center for Molecular Genetics,
University of California, San Diego, La Jolla, California 92093-0634
| |
Collapse
|
111
|
Acker J, Ozanne C, Kachouri-Lafond R, Gaillardin C, Neuvéglise C, Marck C. Dicistronic tRNA-5S rRNA genes in Yarrowia lipolytica: an alternative TFIIIA-independent way for expression of 5S rRNA genes. Nucleic Acids Res 2008; 36:5832-44. [PMID: 18790808 PMCID: PMC2566860 DOI: 10.1093/nar/gkn549] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In eukaryotes, genes transcribed by RNA polymerase III (Pol III) carry their own internal promoters and as such, are transcribed as individual units. Indeed, a very few cases of dicistronic Pol III genes are yet known. In contrast to other hemiascomycetes, 5S rRNA genes of Yarrowia lipolytica are not embedded into the tandemly repeated rDNA units, but appear scattered throughout the genome. We report here an unprecedented genomic organization: 48 over the 108 copies of the 5S rRNA genes are located 3' of tRNA genes. We show that these peculiar tRNA-5S rRNA dicistronic genes are expressed in vitro and in vivo as Pol III transcriptional fusions without the need of the 5S rRNA gene-specific factor TFIIIA, the deletion of which displays a viable phenotype. We also report the existence of a novel putative non-coding Pol III RNA of unknown function about 70 nucleotide-long (RUF70), the 13 genes of which are devoid of internal Pol III promoters and located 3' of the 13 copies of the tDNA-Trp (CCA). All genes embedded in the various dicistronic genes, fused 5S rRNA genes, RUF70 genes and their leader tRNA genes appear to be efficiently transcribed and their products correctly processed in vivo.
Collapse
Affiliation(s)
- Joël Acker
- Saclay Biology and Technologies Institute (iBiTec-S), CEA, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
112
|
Willis IM, Chua G, Tong AH, Brost RL, Hughes TR, Boone C, Moir RD. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes. PLoS Genet 2008; 4:e1000112. [PMID: 18604275 PMCID: PMC2435279 DOI: 10.1371/journal.pgen.1000112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 05/28/2008] [Indexed: 11/19/2022] Open
Abstract
Transcriptional repression of ribosomal components and tRNAs is coordinately regulated in response to a wide variety of environmental stresses. Part of this response involves the convergence of different nutritional and stress signaling pathways on Maf1, a protein that is essential for repressing transcription by RNA polymerase (pol) III in Saccharomyces cerevisiae. Here we identify the functions buffering yeast cells that are unable to down-regulate transcription by RNA pol III. MAF1 genetic interactions identified in screens of non-essential gene-deletions and conditionally expressed essential genes reveal a highly interconnected network of 64 genes involved in ribosome biogenesis, RNA pol II transcription, tRNA modification, ubiquitin-dependent proteolysis and other processes. A survey of non-essential MAF1 synthetic sick/lethal (SSL) genes identified six gene-deletions that are defective in transcriptional repression of ribosomal protein (RP) genes following rapamycin treatment. This subset of MAF1 SSL genes included MED20 which encodes a head module subunit of the RNA pol II Mediator complex. Genetic interactions between MAF1 and subunits in each structural module of Mediator were investigated to examine the functional relationship between these transcriptional regulators. Gene expression profiling identified a prominent and highly selective role for Med20 in the repression of RP gene transcription under multiple conditions. In addition, attenuated repression of RP genes by rapamycin was observed in a strain deleted for the Mediator tail module subunit Med16. The data suggest that Mediator and Maf1 function in parallel pathways to negatively regulate RP mRNA and tRNA synthesis. The Maf1 protein is an essential negative regulator of transcription by RNA polymerase III in S. cerevisiae and functions to integrate responses from diverse nutritional and stress signaling pathways that coordinately regulate ribosome and tRNA synthesis. These signaling pathways are not well-defined, and efforts to understand the role of Maf1 in this process have been complicated by a lack of known functional motifs in the protein and by a paucity of direct physical interactions with Maf1. To understand the biological importance of down-regulating RNA polymerase III transcription and to identify functional relationships with Maf1, we employed synthetic genetic array (SGA) analysis. We show that the genetic neighborhood around Maf1 is highly interconnected and enriched for a small number of functional categories, most of which are logically linked to the function of Maf1 as the regulator of RNA polymerase III transcription. We found that deletions in a subset of MAF1 SSL genes, including subunits of the RNA polymerase II Mediator complex, lead to defects in transcriptional repression of ribosomal protein (RP) genes. Since Mediator subunits are not efficiently cross-linked to RP genes in chromatin, our results suggest that Mediator interactions with these highly expressed genes are fundamentally different from many other genes.
Collapse
Affiliation(s)
- Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America.
| | | | | | | | | | | | | |
Collapse
|
113
|
French SL, Osheim YN, Schneider DA, Sikes ML, Fernandez CF, Copela LA, Misra VA, Nomura M, Wolin SL, Beyer AL. Visual analysis of the yeast 5S rRNA gene transcriptome: regulation and role of La protein. Mol Cell Biol 2008; 28:4576-87. [PMID: 18474615 PMCID: PMC2447126 DOI: 10.1128/mcb.00127-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/04/2008] [Accepted: 05/02/2008] [Indexed: 01/15/2023] Open
Abstract
5S rRNA genes from Saccharomyces cerevisiae were examined by Miller chromatin spreading, representing the first quantitative analysis of RNA polymerase III genes in situ by electron microscopy. These very short genes, approximately 132 nucleotides (nt), were engaged by one to three RNA polymerases. Analysis in different growth conditions and in strains with a fourfold range in gene copy number revealed regulation at two levels: number of active genes and polymerase loading per gene. Repressive growth conditions (presence of rapamycin or postexponential growth) led first to fewer active genes, followed by lower polymerase loading per active gene. The polymerase III elongation rate was estimated to be in the range of 60 to 75 nt/s, with a reinitiation interval of approximately 1.2 s. The yeast La protein, Lhp1, was associated with 5S genes. Its absence had no discernible effect on the amount or size of 5S RNA produced yet resulted in more polymerases per gene on average, consistent with a non-rate-limiting role for Lhp1 in a process such as polymerase release/recycling upon transcription termination.
Collapse
Affiliation(s)
- Sarah L French
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia 22908-0734, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Towpik J, Graczyk D, Gajda A, Lefebvre O, Boguta M. Derepression of RNA polymerase III transcription by phosphorylation and nuclear export of its negative regulator, Maf1. J Biol Chem 2008; 283:17168-74. [PMID: 18445601 DOI: 10.1074/jbc.m709157200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maf1 is the global repressor of RNA polymerase III (Pol III) in yeast Saccharomyces cerevisiae. Transcription regulation by Maf1 is important under stress conditions and during the switch between fermentation and respiration. Under repressive conditions on nonfermentable carbon sources, Maf1 is dephosphorylated and located predominantly in the nucleus. When cells were shifted to glucose medium, Maf1 became phosphorylated and concomitantly relocated to the cytoplasm. This relocation was dependent on Msn5, a carrier responsible for export of several other phosphoproteins out of the nucleus. Using coimmunoprecipitation, Maf1 was found to interact with Msn5. When msn5-Delta cells were transferred to glucose, Maf1 remained in the nucleus. Remarkably, despite constitutive presence in the nucleus, Maf1 was dephosphorylated and phosphorylated normally in the msn5-Delta mutant, and Pol III was under proper regulation. That phosphorylation of Maf1 and Pol III derepression are tightly linked was shown by studying tRNA transcription in Maf1 mutants with an altered pattern of phosphorylation. In summary, we conclude that phosphorylation of Maf1 inside the nucleus acts both directly by decreasing of Maf1-mediated repression of Pol III and indirectly by stimulation of Msn5 binding and export of nuclear Maf1 to the cytoplasm.
Collapse
Affiliation(s)
- Joanna Towpik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawiñskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
115
|
Rohde JR, Bastidas R, Puria R, Cardenas ME. Nutritional control via Tor signaling in Saccharomyces cerevisiae. Curr Opin Microbiol 2008; 11:153-60. [PMID: 18396450 DOI: 10.1016/j.mib.2008.02.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/05/2008] [Accepted: 02/08/2008] [Indexed: 01/15/2023]
Abstract
The yeast Saccharomyces cerevisiae senses and responds to nutrients by adapting its growth rate and undergoing morphogenic transitions to ensure survival. The Tor pathway is a major integrator of nutrient-derived signals that in coordination with other signaling pathways orchestrates cell growth. Recent advances have identified novel Tor kinase substrates and established the protein trafficking membranous network and the nucleus as platforms for Tor signaling. These and other recent findings delineate distinct signaling branches emanating from membrane-associated Tor complexes to control cell growth.
Collapse
Affiliation(s)
- John R Rohde
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Room 1078, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | | | | | | |
Collapse
|
116
|
Arimbasseri AG, Bhargava P. Chromatin structure and expression of a gene transcribed by RNA polymerase III are independent of H2A.Z deposition. Mol Cell Biol 2008; 28:2598-607. [PMID: 18268003 PMCID: PMC2293117 DOI: 10.1128/mcb.01953-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/04/2007] [Accepted: 02/04/2008] [Indexed: 01/09/2023] Open
Abstract
The genes transcribed by RNA polymerase III (Pol III) generally have intragenic promoter elements. One of them, the yeast U6 snRNA (SNR6) gene is activated in vitro by a positioned nucleosome between its intragenic box A and extragenic, downstream box B separated by approximately 200 bp. We demonstrate here that the in vivo chromatin structure of the gene region is characterized by the presence of an array of positioned nucleosomes, with only one of them in the 5' end of the gene having a regulatory role. A positioned nucleosome present between boxes A and B in vivo does not move when the gene is repressed due to nutritional deprivation. In contrast, the upstream nucleosome which covers the TATA box under repressed conditions is shifted approximately 50 bp further upstream by the ATP-dependent chromatin remodeler RSC upon activation. It is marked with the histone variant H2A.Z and H4K16 acetylation in active state. In the absence of H2A.Z, the chromatin structure of the gene does not change, suggesting that H2A.Z is not required for establishing the active chromatin structure. These results show that the chromatin structure directly participates in regulation of a Pol III-transcribed gene under different states of its activity in vivo.
Collapse
|
117
|
Goodfellow SJ, Graham EL, Kantidakis T, Marshall L, Coppins BA, Oficjalska-Pham D, Gérard M, Lefebvre O, White RJ. Regulation of RNA polymerase III transcription by Maf1 in mammalian cells. J Mol Biol 2008; 378:481-91. [PMID: 18377933 DOI: 10.1016/j.jmb.2008.02.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 11/28/2022]
Abstract
RNA polymerase (pol) III produces essential components of the biosynthetic machinery; therefore, its output is tightly coupled with the rate of cell growth and proliferation. In Saccharomyces cerevisiae, Maf1 is an essential mediator of pol III repression in response to starvation. We demonstrate that a Maf1 ortholog is also used to restrain pol III activity in mouse and human cells. Mammalian Maf1 represses pol III transcription in vitro and in transfected fibroblasts. Furthermore, genetic deletion of Maf1 elevates pol III transcript expression, thus confirming the role of endogenous Maf1 as an inhibitor of mammalian pol III output. Maf1 is detected at chromosomal pol III templates in rodent and human cells. It interacts with pol III as well as its associated initiation factor TFIIIB and is phosphorylated in a serum-sensitive manner in vivo. These aspects of Maf1 function have been conserved between yeast and mammals and are therefore likely to be of fundamental importance in controlling pol III transcriptional activity.
Collapse
Affiliation(s)
- Sarah J Goodfellow
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Cieśla M, Towpik J, Graczyk D, Oficjalska-Pham D, Harismendy O, Suleau A, Balicki K, Conesa C, Lefebvre O, Boguta M. Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription. Mol Cell Biol 2007; 27:7693-702. [PMID: 17785443 PMCID: PMC2169064 DOI: 10.1128/mcb.01051-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 07/04/2007] [Accepted: 08/23/2007] [Indexed: 12/29/2022] Open
Abstract
RNA polymerase III (Pol III) produces essential components of the biosynthetic machinery, and therefore its activity is tightly coupled with cell growth and metabolism. In the yeast Saccharomyces cerevisiae, Maf1 is the only known global and direct Pol III transcription repressor which mediates numerous stress signals. Here we demonstrate that transcription regulation by Maf1 is not limited to stress but is important for the switch between fermentation and respiration. Under respiratory conditions, Maf1 is activated by dephosphorylation and imported into the nucleus. The transition from a nonfermentable carbon source to that of glucose induces Maf1 phosphorylation and its relocation to the cytoplasm. The absence of Maf1-mediated control of tRNA synthesis impairs cell viability in nonfermentable carbon sources. The respiratory phenotype of maf1-Delta allowed genetic suppression studies to dissect the mechanism of Maf1 action on the Pol III transcription apparatus. Moreover, in cells grown in a nonfermentable carbon source, Maf1 regulates the levels of different tRNAs to various extents. The differences in regulation may contribute to the physiological role of Maf1.
Collapse
Affiliation(s)
- Małgorzata Cieśla
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Johnson SS, Zhang C, Fromm J, Willis IM, Johnson DL. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases. Mol Cell 2007; 26:367-79. [PMID: 17499043 DOI: 10.1016/j.molcel.2007.03.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/22/2007] [Accepted: 03/28/2007] [Indexed: 11/23/2022]
Abstract
Most eukaryotic transcriptional regulators act in an RNA polymerase (Pol)-selective manner. Here we show that the human Maf1 protein negatively regulates transcription by all three nuclear Pols. Changes in Maf1 expression affect Pol I- and Pol III-dependent transcription in human glioblastoma lines. These effects are mediated, in part, through the ability of Maf1 to repress transcription of the TATA binding protein, TBP. Maf1 targets an Elk-1-binding site in the TBP promoter, and its occupancy of this region is reciprocal with that of Elk-1. Similarly, Maf1 occupancy of Pol III genes is inversely correlated with that of the initiation factor TFIIIB and Pol III. The phenotypic consequences of reducing Maf1 expression include changes in cell morphology and the accumulation of actin stress fibers, whereas Maf1 overexpression suppresses anchorage-independent growth. Together with the ability of Maf1 to reduce biosynthetic capacity, these findings support the idea that Maf1 regulates the transformation state of cells.
Collapse
Affiliation(s)
- Sandra S Johnson
- Department of Biochemistry and Molecular Biology, Keck School of Medicine and the Norris Comprehensive Cancer Center, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
120
|
Rollins J, Veras I, Cabarcas S, Willis I, Schramm L. Human Maf1 negatively regulates RNA polymerase III transcription via the TFIIB family members Brf1 and Brf2. Int J Biol Sci 2007; 3:292-302. [PMID: 17505538 PMCID: PMC1865091 DOI: 10.7150/ijbs.3.292] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/24/2007] [Indexed: 11/05/2022] Open
Abstract
RNA polymerase III (RNA pol III) transcribes many of the small structural RNA molecules involved in processing and translation, thereby regulating the growth rate of a cell. Initiation of pol III transcription requires the evolutionarily conserved pol III initiation factor TFIIIB. TFIIIB is the molecular target of regulation by tumor suppressors, including p53, RB and the RB-related pocket proteins. However, our understanding of negative regulation of human TFIIIB-mediated transcription by other proteins is limited. In this study we characterize a RNA pol III luciferase assay and further demonstrate in vivo that a human homolog of yeast Maf1 represses RNA pol III transcription. Additionally, we show that Maf1 repression of RNA pol III transcription occurs via TFIIIB, specifically through the TFIIB family members Brf1 and Brf2.
Collapse
Affiliation(s)
- Janet Rollins
- 1. Department of Biological Sciences, St. John's University, Queens NY, USA
| | - Ingrid Veras
- 1. Department of Biological Sciences, St. John's University, Queens NY, USA
| | - Stephanie Cabarcas
- 1. Department of Biological Sciences, St. John's University, Queens NY, USA
| | - Ian Willis
- 2. Department of Biochemistry, Albert Einstein College of Medicine, Bronx NY, USA
| | - Laura Schramm
- 1. Department of Biological Sciences, St. John's University, Queens NY, USA
| |
Collapse
|
121
|
Kassavetis GA, Geiduschek EP. Transcription factor TFIIIB and transcription by RNA polymerase III. Biochem Soc Trans 2007; 34:1082-7. [PMID: 17073756 DOI: 10.1042/bst0341082] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
pol (RNA polymerase) III is charged with the task of transcribing nuclear genes encoding diverse small structural and catalytic RNAs. We present a brief review of the current understanding of several aspects of the pol III transcription apparatus. The focus is on yeast and, more specifically, on Saccharomyces cerevisiae; preponderant attention is given to the TFs (transcription initiation factors) and especially to TFIIIB, which is the core pol III initiation factor by virtue of its role in recruiting pol III to the transcriptional start site and its essential roles in forming the transcription-ready open promoter complex. Certain relatively recent developments are also selected for brief comment: (i) the genome-wide analysis of occupancy of pol III-transcribed genes (and other loci) by the transcription apparatus and the location of pol III transcription in the cell; (ii) progress toward a mechanistic and molecular understanding of the regulation of transcription by pol III in yeast; and (iii) recent experiments identifying a high mobility group protein as a fidelity factor that assures selection of the precise transcriptional start site at certain pol III promoters.
Collapse
Affiliation(s)
- G A Kassavetis
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
122
|
Reina JH, Azzouz TN, Hernandez N. Maf1, a new player in the regulation of human RNA polymerase III transcription. PLoS One 2006; 1:e134. [PMID: 17205138 PMCID: PMC1762419 DOI: 10.1371/journal.pone.0000134] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 12/05/2006] [Indexed: 11/18/2022] Open
Abstract
Background Human RNA polymerase III (pol III) transcription is regulated by several factors, including the tumor suppressors P53 and Rb, and the proto-oncogene c-Myc. In yeast, which lacks these proteins, a central regulator of pol III transcription, called Maf1, has been described. Maf1 is required for repression of pol III transcription in response to several signal transduction pathways and is broadly conserved in eukaryotes. Methodology/Principal Findings We show that human endogenous Maf1 can be co-immunoprecipitated with pol III and associates in vitro with two pol III subunits, the largest subunit RPC1 and the α-like subunit RPAC2. Maf1 represses pol III transcription in vitro and in vivo and is required for maximal pol III repression after exposure to MMS or rapamycin, treatments that both lead to Maf1 dephosphorylation. Conclusions/Significance These data suggest that Maf1 is a major regulator of pol III transcription in human cells.
Collapse
|
123
|
Abstract
Under growth-limiting conditions, budding yeast shut down transcription of genes of the translation apparatus. Recent studies have shown that this response is signaled, in part, by multiple pathways that converge on Maf1, leading to a change of this protein's phosphorylation state and its relocation to the nucleus, where it represses RNA polymerase III.
Collapse
Affiliation(s)
- E Peter Geiduschek
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0634, USA.
| | | |
Collapse
|
124
|
Moir RD, Lee J, Haeusler RA, Desai N, Engelke DR, Willis IM. Protein kinase A regulates RNA polymerase III transcription through the nuclear localization of Maf1. Proc Natl Acad Sci U S A 2006; 103:15044-9. [PMID: 17005718 PMCID: PMC1622776 DOI: 10.1073/pnas.0607129103] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maf1 is an essential and specific mediator of transcriptional repression in the RNA polymerase (pol) III system. Maf1-dependent repression occurs in response to a wide range of conditions, suggesting that the protein itself is targeted by the major nutritional and stress-signaling pathways. We show that Maf1 is a substrate for cAMP-dependent PKA in vitro and is differentially phosphorylated on PKA sites in vivo under normal versus repressing conditions. PKA activity negatively regulates Maf1 function because strains with unregulated high PKA activity block repression of pol III transcription in vivo, and strains lacking all PKA activity are hyperrepressible. Nuclear accumulation of Maf1 is required for transcriptional repression and is regulated by two nuclear localization sequences in the protein. An analysis of PKA phosphosite mutants shows that the localization of Maf1 is affected via the N-terminal nuclear localization sequence. In particular, mutations that prevent phosphorylation at PKA consensus sites promote nuclear accumulation of Maf1 without inducing repression. These results indicate that negative regulation of Maf1 by PKA is achieved by inhibiting its nuclear import and suggest that a PKA-independent activation step is required for nuclear Maf1 to function in the repression of pol III transcription. Finally, we report a previously undescribed phenotype for Maf1 in tRNA gene-mediated silencing of nearby RNA pol II transcription.
Collapse
Affiliation(s)
- Robyn D. Moir
- *Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
| | - JaeHoon Lee
- *Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
| | - Rebecca A. Haeusler
- Department of Biological Chemistry, University of Michigan Medical School, 3200 MSRB III, Ann Arbor, MI 48109-0606
| | - Neelam Desai
- *Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan Medical School, 3200 MSRB III, Ann Arbor, MI 48109-0606
| | - Ian M. Willis
- *Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
125
|
Laferté A, Favry E, Sentenac A, Riva M, Carles C, Chédin S. The transcriptional activity of RNA polymerase I is a key determinant for the level of all ribosome components. Genes Dev 2006; 20:2030-40. [PMID: 16882981 PMCID: PMC1536055 DOI: 10.1101/gad.386106] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Regulation of ribosome biogenesis is a key element of cell biology, not only because ribosomes are directly required for growth, but also because ribosome production monopolizes nearly 80% of the global transcriptional activity in rapidly growing yeast cells. These observations underscore the need for a tight regulation of ribosome synthesis in response to environmental conditions. In eukaryotic cells, ribosome synthesis involves the activities of the three nuclear RNA polymerases (Pol). Although postulated, there is no clear evidence indicating whether the maintenance of an equimolar supply of ribosomal components reflects communication between the nuclear transcriptional machineries. Here, by constructing a yeast strain expressing a Pol I that remains constitutively competent for the initiation of transcription under stress conditions, we demonstrate that derepression of Pol I transcription leads to a derepression of Pol II transcription that is restricted to the genes encoding ribosomal proteins. Furthermore, we show that the level of 5S rRNA, synthesized by Pol III, is deregulated concomitantly with Pol I transcription. Altogether, these results indicate that a partial derepression of Pol I activity drives an abnormal accumulation of all ribosomal components, highlighting the critical role of the regulation of Pol I activity within the control of ribosome biogenesis.
Collapse
Affiliation(s)
- Arnaud Laferté
- Laboratoire de Transcription des Gènes, Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
126
|
Roberts DN, Wilson B, Huff JT, Stewart AJ, Cairns BR. Dephosphorylation and genome-wide association of Maf1 with Pol III-transcribed genes during repression. Mol Cell 2006; 22:633-44. [PMID: 16762836 PMCID: PMC2788557 DOI: 10.1016/j.molcel.2006.04.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/30/2006] [Accepted: 04/05/2006] [Indexed: 11/23/2022]
Abstract
Nutrient deprivation and various stress conditions repress RNA polymerase III (Pol III) transcription in S. cerevisiae. The signaling pathways that relay stress and nutrient conditions converge on the conserved protein Maf1, but how Maf1 integrates environmental conditions and couples them to transcriptional repression is largely unknown. Here, we demonstrate that Maf1 is phosphorylated in favorable conditions, whereas diverse unfavorable conditions lead to rapid Maf1 dephosphorylation, nuclear localization, physical association of dephosphorylated Maf1 with Pol III, and Maf1 targeting to Pol III-transcribed genes genome wide. Furthermore, Maf1 mutants defective in full dephosphorylation display maf1Delta phenotypes and are compromised for both nuclear localization and Pol III association. Repression conditions also promote TFIIIB-TFIIIC interactions in crosslinked chromatin. Taken together, Maf1 appears to integrate environmental conditions and signaling pathways through its phosphorylation state, with stress leading to dephosphorylation, association with Pol III at target loci, alterations in basal factor interactions, and transcriptional repression.
Collapse
Affiliation(s)
- Douglas N. Roberts
- Howard Hughes Medical Institute
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Boris Wilson
- Howard Hughes Medical Institute
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Jason T. Huff
- Howard Hughes Medical Institute
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Allen J. Stewart
- Howard Hughes Medical Institute
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Bradley R. Cairns
- Howard Hughes Medical Institute
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Correspondence:
| |
Collapse
|
127
|
Michels AA, Hernandez N. Does Pol I talk to Pol II? Coordination of RNA polymerases in ribosome biogenesis. Genes Dev 2006; 20:1982-5. [PMID: 16882974 DOI: 10.1101/gad.1460706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|