101
|
Specific binding of eukaryotic ORC to DNA replication origins depends on highly conserved basic residues. Sci Rep 2015; 5:14929. [PMID: 26456755 PMCID: PMC4601075 DOI: 10.1038/srep14929] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/09/2015] [Indexed: 12/16/2022] Open
Abstract
In eukaryotes, the origin recognition complex (ORC) heterohexamer preferentially binds replication origins to trigger initiation of DNA replication. Crystallographic studies using eubacterial and archaeal ORC orthologs suggested that eukaryotic ORC may bind to origin DNA via putative winged-helix DNA-binding domains and AAA+ ATPase domains. However, the mechanisms how eukaryotic ORC recognizes origin DNA remain elusive. Here, we show in budding yeast that Lys-362 and Arg-367 residues of the largest subunit (Orc1), both outside the aforementioned domains, are crucial for specific binding of ORC to origin DNA. These basic residues, which reside in a putative disordered domain, were dispensable for interaction with ATP and non-specific DNA sequences, suggesting a specific role in recognition. Consistent with this, both residues were required for origin binding of Orc1 in vivo. A truncated Orc1 polypeptide containing these residues solely recognizes ARS sequence with low affinity and Arg-367 residue stimulates sequence specific binding mode of the polypeptide. Lys-362 and Arg-367 residues of Orc1 are highly conserved among eukaryotic ORCs, but not in eubacterial and archaeal orthologs, suggesting a eukaryote-specific mechanism underlying recognition of replication origins by ORC.
Collapse
|
102
|
Bruck I, Kaplan DL. The Replication Initiation Protein Sld3/Treslin Orchestrates the Assembly of the Replication Fork Helicase during S Phase. J Biol Chem 2015; 290:27414-27424. [PMID: 26405041 DOI: 10.1074/jbc.m115.688424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 11/06/2022] Open
Abstract
The initiation of DNA replication is a highly regulated process in eukaryotic cells, and central to the process of initiation is the assembly and activation of the replication fork helicase. The replication fork helicase is comprised of CMG (Cdc45, Mcm2-7, and GINS) in eukaryotic cells, and the mechanism underlying assembly of the CMG during S phase was studied in this article. We identified a point mutation of Sld3 that is specifically defective for Mcm3 and Mcm5 interaction (sld3-m10), and also identified a point mutation of Sld3 that is specifically defective for single-stranded DNA (ssDNA) interaction (sld3-m9). Expression of wild-type levels of sld3-m9 resulted in a severe DNA replication defect with no recruitment of GINS to Mcm2-7, whereas expression of wild-type levels of sld3-m10 resulted in a severe replication defect with no Cdc45 recruitment to Mcm2-7. We propose a model for Sld3-mediated control of replication initiation, wherein Sld3 manages the proper assembly of the CMG during S phase. We also find that the biochemical functions identified for Sld3 are conserved in human Treslin, suggesting that Treslin orchestrates assembly of the CMG in human cells.
Collapse
Affiliation(s)
- Irina Bruck
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Daniel L Kaplan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306.
| |
Collapse
|
103
|
Herrera MC, Tognetti S, Riera A, Zech J, Clarke P, Fernández-Cid A, Speck C. A reconstituted system reveals how activating and inhibitory interactions control DDK dependent assembly of the eukaryotic replicative helicase. Nucleic Acids Res 2015; 43:10238-50. [PMID: 26338774 PMCID: PMC4666391 DOI: 10.1093/nar/gkv881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/22/2015] [Indexed: 11/17/2022] Open
Abstract
During G1-phase of the cell-cycle the replicative MCM2–7 helicase becomes loaded onto DNA into pre-replicative complexes (pre-RCs), resulting in MCM2–7 double-hexamers on DNA. In S-phase, Dbf4-dependent kinase (DDK) and cyclin-dependent-kinase (CDK) direct with the help of a large number of helicase-activation factors the assembly of a Cdc45–MCM2–7–GINS (CMG) complex. However, in the absence of S-phase kinases complex assembly is inhibited, which is unexpected, as the MCM2–7 double-hexamer represents a very large interaction surface. Currently it is unclear what mechanisms restricts complex assembly and how DDK can overcome this inhibition to promote CMG-assembly. We developed an advanced reconstituted-system to study helicase activation in-solution and discovered that individual factors like Sld3 and Sld2 can bind directly to the pre-RC, while Cdc45 cannot. When Sld3 and Sld2 were incubated together with the pre-RC, we observed that competitive interactions restrict complex assembly. DDK stabilizes the Sld3/Sld2–pre-RC complex, but the complex is only short-lived, indicating an anti-cooperative mechanism. Yet, a Sld3/Cdc45–pre-RC can form in the presence of DDK and the addition of Sld2 enhances complex stability. Our results indicate that helicase activation is regulated by competitive and cooperative interactions, which restrict illegitimate complex formation and direct limiting helicase-activation factors into pre-initiation complexes.
Collapse
Affiliation(s)
- M Carmen Herrera
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Silvia Tognetti
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Alberto Riera
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Juergen Zech
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Pippa Clarke
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Alejandra Fernández-Cid
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| |
Collapse
|
104
|
Conserved mechanism for coordinating replication fork helicase assembly with phosphorylation of the helicase. Proc Natl Acad Sci U S A 2015; 112:11223-8. [PMID: 26305950 DOI: 10.1073/pnas.1509608112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dbf4-dependent kinase (DDK) phosphorylates minichromosome maintenance 2 (Mcm2) during S phase in yeast, and Sld3 recruits cell division cycle 45 (Cdc45) to minichromosome maintenance 2-7 (Mcm2-7). We show here DDK-phosphoryled Mcm2 preferentially interacts with Cdc45 in vivo, and that Sld3 stimulates DDK phosphorylation of Mcm2 by 11-fold. We identified a mutation of the replication initiation factor Sld3, Sld3-m16, that is specifically defective in stimulating DDK phosphorylation of Mcm2. Wild-type expression levels of sld3-m16 result in severe growth and DNA replication defects. Cells expressing sld3-m16 exhibit no detectable Mcm2 phosphorylation in vivo, reduced replication protein A-ChIP signal at an origin, and diminished Go, Ichi, Ni, and San association with Mcm2-7. Treslin, the human homolog of Sld3, stimulates human DDK phosphorylation of human Mcm2 by 15-fold. DDK phosphorylation of human Mcm2 decreases the affinity of Mcm5 for Mcm2, suggesting a potential mechanism for helicase ring opening. These data suggest a conserved mechanism for replication initiation: Sld3/Treslin coordinates Cdc45 recruitment to Mcm2-7 with DDK phosphorylation of Mcm2 during S phase.
Collapse
|
105
|
Itou H, Shirakihara Y, Araki H. The quaternary structure of the eukaryotic DNA replication proteins Sld7 and Sld3. ACTA ACUST UNITED AC 2015; 71:1649-56. [PMID: 26249346 DOI: 10.1107/s1399004715010457] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/31/2015] [Indexed: 11/10/2022]
Abstract
The initiation of eukaryotic chromosomal DNA replication requires the formation of an active replicative helicase at the replication origins of chromosomes. Yeast Sld3 and its metazoan counterpart treslin are the hub proteins mediating protein associations critical for formation of the helicase. The Sld7 protein interacts with Sld3, and the complex formed is thought to regulate the function of Sld3. Although Sld7 is a non-essential DNA replication protein that is found in only a limited range of yeasts, its depletion slowed the growth of cells and caused a delay in the S phase. Recently, the Mdm2-binding protein was found to bind to treslin in humans, and its depletion causes defects in cells similar to the depletion of Sld7 in yeast, suggesting their functional relatedness and importance during the initiation step of DNA replication. Here, the crystal structure of Sld7 in complex with Sld3 is presented. Sld7 comprises two structural domains. The N-terminal domain of Sld7 binds to Sld3, and the C-terminal domains connect two Sld7 molecules in an antiparallel manner. The quaternary structure of the Sld3-Sld7 complex shown from the crystal structures appears to be suitable to activate two helicase molecules loaded onto replication origins in a head-to-head manner.
Collapse
Affiliation(s)
- Hiroshi Itou
- Structural Biology Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yasuo Shirakihara
- Structural Biology Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hiroyuki Araki
- Division of Microbial Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
106
|
Drissi R, Dubois ML, Douziech M, Boisvert FM. Quantitative Proteomics Reveals Dynamic Interactions of the Minichromosome Maintenance Complex (MCM) in the Cellular Response to Etoposide Induced DNA Damage. Mol Cell Proteomics 2015; 14:2002-13. [PMID: 25963833 PMCID: PMC4587322 DOI: 10.1074/mcp.m115.048991] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 01/21/2023] Open
Abstract
The minichromosome maintenance complex (MCM) proteins are required for processive DNA replication and are a target of S-phase checkpoints. The eukaryotic MCM complex consists of six proteins (MCM2–7) that form a heterohexameric ring with DNA helicase activity, which is loaded on chromatin to form the pre-replication complex. Upon entry in S phase, the helicase is activated and opens the DNA duplex to recruit DNA polymerases at the replication fork. The MCM complex thus plays a crucial role during DNA replication, but recent work suggests that MCM proteins could also be involved in DNA repair. Here, we employed a combination of stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics with immunoprecipitation of green fluorescent protein-tagged fusion proteins to identify proteins interacting with the MCM complex, and quantify changes in interactions in response to DNA damage. Interestingly, the MCM complex showed very dynamic changes in interaction with proteins such as Importin7, the histone chaperone ASF1, and the Chromodomain helicase DNA binding protein 3 (CHD3) following DNA damage. These changes in interactions were accompanied by an increase in phosphorylation and ubiquitination on specific sites on the MCM proteins and an increase in the co-localization of the MCM complex with γ-H2AX, confirming the recruitment of these proteins to sites of DNA damage. In summary, our data indicate that the MCM proteins is involved in chromatin remodeling in response to DNA damage.
Collapse
Affiliation(s)
- Romain Drissi
- From the ‡Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Marie-Line Dubois
- From the ‡Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Mélanie Douziech
- From the ‡Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - François-Michel Boisvert
- From the ‡Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| |
Collapse
|
107
|
Chen YH, Jones MJK, Yin Y, Crist SB, Colnaghi L, Sims RJ, Rothenberg E, Jallepalli PV, Huang TT. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol Cell 2015; 58:323-38. [PMID: 25843623 DOI: 10.1016/j.molcel.2015.02.031] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/13/2015] [Accepted: 02/25/2015] [Indexed: 12/24/2022]
Abstract
Excess dormant origins bound by the minichromosome maintenance (MCM) replicative helicase complex play a critical role in preventing replication stress, chromosome instability, and tumorigenesis. In response to DNA damage, replicating cells must coordinate DNA repair and dormant origin firing to ensure complete and timely replication of the genome; how cells regulate this process remains elusive. Herein, we identify a member of the Fanconi anemia (FA) DNA repair pathway, FANCI, as a key effector of dormant origin firing in response to replication stress. Cells lacking FANCI have reduced number of origins, increased inter-origin distances, and slowed proliferation rates. Intriguingly, ATR-mediated FANCI phosphorylation inhibits dormant origin firing while promoting replication fork restart/DNA repair. Using super-resolution microscopy, we show that FANCI co-localizes with MCM-bound chromatin in response to replication stress. These data reveal a unique role for FANCI as a modulator of dormant origin firing and link timely genome replication to DNA repair.
Collapse
Affiliation(s)
- Yu-Hung Chen
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Mathew J K Jones
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA; Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yandong Yin
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Sarah B Crist
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Luca Colnaghi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Robert J Sims
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Eli Rothenberg
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Prasad V Jallepalli
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
108
|
Yeeles JTP, Deegan TD, Janska A, Early A, Diffley JFX. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 2015; 519:431-5. [PMID: 25739503 PMCID: PMC4874468 DOI: 10.1038/nature14285] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/06/2015] [Indexed: 12/20/2022]
Abstract
Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.
Collapse
Affiliation(s)
- Joseph T P Yeeles
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Tom D Deegan
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Agnieszka Janska
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Anne Early
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - John F X Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| |
Collapse
|
109
|
Dhingra N, Bruck I, Smith S, Ning B, Kaplan DL. Dpb11 protein helps control assembly of the Cdc45·Mcm2-7·GINS replication fork helicase. J Biol Chem 2015; 290:7586-601. [PMID: 25659432 DOI: 10.1074/jbc.m115.640383] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dpb11 is required for the initiation of DNA replication in budding yeast. Dpb11 binds to S-phase cyclin-dependent kinase-phosphorylated Sld2 and Sld3 to form a ternary complex during S phase. The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS. We show here, using purified proteins from budding yeast, that Dpb11 alone binds to Mcm2-7 and that Dpb11 also competes with GINS for binding to Mcm2-7. Furthermore, Dpb11 binds directly to single-stranded DNA (ssDNA), and ssDNA inhibits the Dpb11 interaction with Mcm2-7. We also found that Dpb11 can recruit Cdc45 to Mcm2-7. We identified a mutant of the BRCT4 motif of Dpb11 that remains bound to Mcm2-7 in the presence of ssDNA (dpb11-m1,m2,m3,m5), and this mutant exhibits a DNA replication defect when expressed in budding yeast cells. Expression of this mutant results in increased interaction between Dpb11 and Mcm2-7 during S phase, impaired GINS interaction with Mcm2-7 during S phase, and decreased replication protein A (RPA) interaction with origin DNA during S phase. We propose a model in which Dpb11 first recruits Cdc45 to Mcm2-7. Dpb11, although bound to Cdc45·Mcm2-7, can block the interaction between GINS and Mcm2-7. Upon extrusion of ssDNA from the central channel of Mcm2-7, Dpb11 dissociates from Mcm2-7, and Dpb11 binds to ssDNA, thereby allowing GINS to bind to Cdc45·Mcm2-7. Finally, we propose that Dpb11 functions with Sld2 and Sld3 to help control the assembly of the replication fork helicase.
Collapse
Affiliation(s)
- Nalini Dhingra
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235 and
| | - Irina Bruck
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Skye Smith
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| | - Boting Ning
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235 and
| | - Daniel L Kaplan
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300
| |
Collapse
|
110
|
Zegerman P. Evolutionary conservation of the CDK targets in eukaryotic DNA replication initiation. Chromosoma 2015; 124:309-21. [PMID: 25575982 DOI: 10.1007/s00412-014-0500-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
A fundamental requirement for all organisms is the faithful duplication and transmission of the genetic material. Failure to accurately copy and segregate the genome during cell division leads to loss of genetic information and chromosomal abnormalities. Such genome instability is the hallmark of the earliest stages of tumour formation. Cyclin-dependent kinase (CDK) plays a vital role in regulating the duplication of the genome within the eukaryotic cell cycle. Importantly, this kinase is deregulated in many cancer types and is an emerging target of chemotherapeutics. In this review, I will consider recent advances concerning the role of CDK in replication initiation across eukaryotes. The implications for strict CDK-dependent regulation of genome duplication in the context of the cell cycle will be discussed.
Collapse
Affiliation(s)
- Philip Zegerman
- Department of Biochemistry, Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK,
| |
Collapse
|
111
|
Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev 2014; 28:2291-303. [PMID: 25319829 PMCID: PMC4201289 DOI: 10.1101/gad.242313.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex (pre-RC) that contains a Mcm2–7 double hexamer. In this study, Sun et al. examined the helicase loading reaction in the presence of ATP, revealing the basic architecture of a number of pre-RC assembly reaction intermediates, including a newly identified ORC–Cdc6–Mcm2–7–Mcm2–7 complex. The detailed architecture of the Mcm2–7 double hexamer was also established. Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2–7 (minichromosome maintenance proteins 2–7) double hexamer. During S phase, each Mcm2–7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC–Cdc6 function to recruit a single Cdt1–Mcm2–7 heptamer to replication origins prior to Cdt1 release and ORC–Cdc6–Mcm2–7 complex formation, but how the second Mcm2–7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC–Cdc6–Mcm2–7 complex and an ORC–Cdc6–Mcm2–7–Mcm2–7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2–7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2–7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.
Collapse
Affiliation(s)
- Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alejandra Fernandez-Cid
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Alberto Riera
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Silvia Tognetti
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Zuanning Yuan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Christian Speck
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom;
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
112
|
Bruck I, Kaplan DL. The Dbf4-Cdc7 kinase promotes Mcm2-7 ring opening to allow for single-stranded DNA extrusion and helicase assembly. J Biol Chem 2014; 290:1210-21. [PMID: 25471369 DOI: 10.1074/jbc.m114.608232] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS (CMG). The Dbf4-Cdc7 kinase phosphorylates Mcm2 in vitro, but the in vivo role for Dbf4-Cdc7 phosphorylation of Mcm2 is unclear. We find that budding yeast Dbf4-Cdc7 phosphorylates Mcm2 in vivo under normal conditions during S phase. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 confers a dominant-negative phenotype with a severe growth defect. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 under wild-type expression conditions also results in impaired DNA replication, substantially decreased single-stranded formation at an origin, and markedly disrupted interaction between GINS and Mcm2-7 during S phase. In vitro, Dbf4-Cdc7 kinase (DDK) phosphorylation of Mcm2 substantially weakens the interaction between Mcm2 and Mcm5, and Dbf4-Cdc7 phosphorylation of Mcm2 promotes Mcm2-7 ring opening. The extrusion of ssDNA from the central channel of Mcm2-7 triggers GINS attachment to Mcm2-7. Thus, Dbf4-Cdc7 phosphorylation of Mcm2 may open the Mcm2-7 ring at the Mcm2-Mcm5 interface, allowing for single-stranded DNA extrusion and subsequent GINS assembly with Mcm2-7.
Collapse
Affiliation(s)
- Irina Bruck
- From the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Daniel L Kaplan
- From the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| |
Collapse
|
113
|
Stephenson R, Hosler MR, Gavande NS, Ghosh AK, Weake VM. Characterization of a Drosophila ortholog of the Cdc7 kinase: a role for Cdc7 in endoreplication independent of Chiffon. J Biol Chem 2014; 290:1332-47. [PMID: 25451925 DOI: 10.1074/jbc.m114.597948] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc7 is a serine-threonine kinase that phosphorylates components of the pre-replication complex during DNA replication initiation. Cdc7 is highly conserved, and Cdc7 orthologs have been characterized in organisms ranging from yeast to humans. Cdc7 is activated specifically during late G1/S phase by binding to its regulatory subunit, Dbf4. Drosophila melanogaster contains a Dbf4 ortholog, Chiffon, which is essential for chorion amplification in Drosophila egg chambers. However, no Drosophila ortholog of Cdc7 has yet been characterized. Here, we report the functional and biochemical characterization of a Drosophila ortholog of Cdc7. Co-expression of Drosophila Cdc7 and Chiffon is able to complement a growth defect in yeast containing a temperature-sensitive Cdc7 mutant. Cdc7 and Chiffon physically interact and can be co-purified from insect cells. Cdc7 phosphorylates the known Cdc7 substrates Mcm2 and histone H3 in vitro, and Cdc7 kinase activity is stimulated by Chiffon and inhibited by the Cdc7-specific inhibitor XL413. Drosophila egg chamber follicle cells deficient for Cdc7 have a defect in two types of DNA replication, endoreplication and chorion gene amplification. However, follicle cells deficient for Chiffon have a defect in chorion gene amplification but still undergo endocycling. Our results show that Cdc7 interacts with Chiffon to form a functional Dbf4-dependent kinase complex and that Cdc7 is necessary for DNA replication in Drosophila egg chamber follicle cells. Additionally, we show that Chiffon is a member of an expanding subset of DNA replication initiation factors that are not strictly required for endoreplication in Drosophila.
Collapse
Affiliation(s)
| | | | | | - Arun K Ghosh
- Chemistry and Medicinal Chemistry, and Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Vikki M Weake
- From the Departments of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
114
|
Tognetti S, Riera A, Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 2014; 124:13-26. [PMID: 25308420 DOI: 10.1007/s00412-014-0489-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/17/2022]
Abstract
A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.
Collapse
Affiliation(s)
- Silvia Tognetti
- DNA Replication Group, Institute of Clinical Science, Imperial College, London, W12 0NN, UK
| | | | | |
Collapse
|
115
|
Miller JM, Arachea BT, Epling LB, Enemark EJ. Analysis of the crystal structure of an active MCM hexamer. eLife 2014; 3:e03433. [PMID: 25262915 PMCID: PMC4359371 DOI: 10.7554/elife.03433] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/28/2014] [Indexed: 12/26/2022] Open
Abstract
In a previous Research article (Froelich et al., 2014), we suggested an MCM helicase activation mechanism, but were limited in discussing the ATPase domain because it was absent from the crystal structure. Here we present the crystal structure of a nearly full-length MCM hexamer that is helicase-active and thus has all features essential for unwinding DNA. The structure is a chimera of Sulfolobus solfataricus N-terminal domain and Pyrococcus furiosus ATPase domain. We discuss three major findings: 1) a novel conformation for the A-subdomain that could play a role in MCM regulation; 2) interaction of a universally conserved glutamine in the N-terminal Allosteric Communication Loop with the AAA+ domain helix-2-insert (h2i); and 3) a recessed binding pocket for the MCM ssDNA-binding motif influenced by the h2i. We suggest that during helicase activation, the h2i clamps down on the leading strand to facilitate strand retention and regulate ATP hydrolysis. DOI:http://dx.doi.org/10.7554/eLife.03433.001
Collapse
Affiliation(s)
- Justin M Miller
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
| | - Buenafe T Arachea
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
| | - Leslie B Epling
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
| | - Eric J Enemark
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|
116
|
MiR-630 inhibits proliferation by targeting CDC7 kinase, but maintains the apoptotic balance by targeting multiple modulators in human lung cancer A549 cells. Cell Death Dis 2014; 5:e1426. [PMID: 25255219 PMCID: PMC4225225 DOI: 10.1038/cddis.2014.386] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAome analyses have shown microRNA-630 (miR-630) to be involved in the regulation of apoptosis. However, its apoptotic role is still debated and its participation in DNA replication is unknown. Here, we demonstrate that miR-630 inhibits cell proliferation by targeting cell-cycle kinase 7 (CDC7) kinase, but maintains the apoptotic balance by targeting multiple activators of apoptosis under genotoxic stress. We identified a novel regulatory mechanism of CDC7 gene expression, in which miR-630 downregulated CDC7 expression by recognizing and binding to four binding sites in CDC7 3'-UTR. We found that miR-630 was highly expressed in A549 and NIH3T3 cells where CDC7 was downregulated, but lower in H1299, MCF7, MDA-MB-231, HeLa and 2BS cells where CDC7 was upregulated. Furthermore, the induction of miR-630 occurred commonly in a variety of human cancer and immortalized cells in response to genotoxic agents. Importantly, downregulation of CDC7 by miR-630 was associated with cisplatin (CIS)-induced inhibitory proliferation in A549 cells. Mechanistically, miR-630 exerted its inhibitory proliferation by blocking CDC7-mediated initiation of DNA synthesis and by inducing G1 arrest, but maintains apoptotic balance under CIS exposure. On the one hand, miR-630 promoted apoptosis by downregulation of CDC7; on the other hand, it reduced apoptosis by downregulating several apoptotic modulators such as PARP3, DDIT4, EP300 and EP300 downstream effector p53, thereby maintaining the apoptotic balance. Our data indicate that miR-630 has a bimodal role in the regulation of apoptosis in response to DNA damage. Our data also support the notion that a certain mRNA can be targeted by several miRNAs, and in particular an miRNA may target a set of mRNAs. These data afford a comprehensive view of microRNA-dependent control of gene expression in the regulation of apoptosis under genotoxic stress.
Collapse
|
117
|
Gao Y, Yao J, Poudel S, Romer E, Abu-Niaaj L, Leffak M. Protein phosphatase 2A and Cdc7 kinase regulate the DNA unwinding element-binding protein in replication initiation. J Biol Chem 2014; 289:35987-6000. [PMID: 25258324 DOI: 10.1074/jbc.m114.589119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The DNA unwinding element (DUE)-binding protein (DUE-B) binds to replication origins coordinately with the minichromosome maintenance (MCM) helicase and the helicase activator Cdc45 in vivo, and loads Cdc45 onto chromatin in Xenopus egg extracts. Human DUE-B also retains the aminoacyl-tRNA proofreading function of its shorter orthologs in lower organisms. Here we report that phosphorylation of the DUE-B unstructured C-terminal domain unique to higher organisms regulates DUE-B intermolecular binding. Gel filtration analyses show that unphosphorylated DUE-B forms multiple high molecular weight (HMW) complexes. Several aminoacyl-tRNA synthetases and Mcm2-7 proteins were identified by mass spectrometry of the HMW complexes. Aminoacyl-tRNA synthetase binding is RNase A sensitive, whereas interaction with Mcm2-7 is nuclease resistant. Unphosphorylated DUE-B HMW complex formation is decreased by PP2A inhibition or direct DUE-B phosphorylation, and increased by inhibition of Cdc7. These results indicate that the state of DUE-B phosphorylation is maintained by the equilibrium between Cdc7-dependent phosphorylation and PP2A-dependent dephosphorylation, each previously shown to regulate replication initiation. Alanine mutation of the DUE-B C-terminal phosphorylation target sites increases MCM binding but blocks Cdc45 loading in vivo and inhibits cell division. In egg extracts alanine mutation of the DUE-B C-terminal phosphorylation sites blocks Cdc45 loading and inhibits DNA replication. The effects of DUE-B C-terminal phosphorylation reveal a novel S phase kinase regulatory mechanism for Cdc45 loading and MCM helicase activation.
Collapse
Affiliation(s)
- Yanzhe Gao
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Jianhong Yao
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Sumeet Poudel
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Eric Romer
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Lubna Abu-Niaaj
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Michael Leffak
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
118
|
Herridge RP, Day RC, Macknight RC. The role of the MCM2-7 helicase complex during Arabidopsis seed development. PLANT MOLECULAR BIOLOGY 2014; 86:69-84. [PMID: 24947836 DOI: 10.1007/s11103-014-0213-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/08/2014] [Indexed: 05/27/2023]
Abstract
The MINICHROMOSOME MAINTENANCE 2-7 (MCM2-7) complex, a ring-shaped heterohexamer, unwinds the DNA double helix ahead of the other replication machinery. Although there is evidence that individual components might have other roles, the essential nature of the MCM2-7 complex in DNA replication has made it difficult to uncover these. Here, we present a detailed analysis of Arabidopsis thaliana mcm2-7 mutants and reveal phenotypic differences. The MCM2-7 genes are coordinately expressed during development, although MCM7 is expressed at a higher level in the egg cell. Consistent with a role in the egg cell, heterozygous mcm7 mutants resulted in frequent ovule abortion, a phenotype that does not occur in other mcm mutants. All mutants showed a maternal effect, whereby seeds inheriting a maternal mutant allele occasionally aborted later in seed development with defects in embryo patterning, endosperm nuclear size, and cellularization, a phenotype that is variable between subunit mutants. We provide evidence that this maternal effect is due to the necessity of a maternal store of MCM protein in the central cell that is sufficient for maintaining seed viability and size in the absence of de novo MCM transcription. Reducing MCM levels using endosperm-specific RNAi constructs resulted in the up-regulation of DNA repair transcripts, consistent with the current hypothesis that excess MCM2-7 complexes are loaded during G1 phase, and are required during S phase to overcome replicative stress or DNA damage. Overall, this study demonstrates the importance of the MCM2-7 subunits during seed development and suggests that there are functional differences between the subunits.
Collapse
Affiliation(s)
- Rowan P Herridge
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | | | | |
Collapse
|
119
|
Abstract
Hsk1 (homologue of Cdc7 kinase 1) of the fission yeast is a member of the conserved Cdc7 (cell division cycle 7) kinase family, and promotes initiation of chromosome replication by phosphorylating Mcm (minichromosome maintenance) subunits, essential components for the replicative helicase. Recent studies, however, indicate more diverse roles for Hsk1/Cdc7 in regulation of various chromosome dynamics, including initiation of meiotic recombination, meiotic chromosome segregation, DNA repair, replication checkpoints, centromeric heterochromatin formation and so forth. Hsk1/Cdc7, with its unique target specificity, can now be regarded as an important modulator of various chromosome transactions.
Collapse
|
120
|
Costa A, Renault L, Swuec P, Petojevic T, Pesavento JJ, Ilves I, MacLellan-Gibson K, Fleck RA, Botchan MR, Berger JM. DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. eLife 2014; 3:e03273. [PMID: 25117490 PMCID: PMC4359367 DOI: 10.7554/elife.03273] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/08/2014] [Indexed: 01/29/2023] Open
Abstract
The Cdc45/Mcm2-7/GINS (CMG) helicase separates DNA strands during replication in eukaryotes. How the CMG is assembled and engages DNA substrates remains unclear. Using electron microscopy, we have determined the structure of the CMG in the presence of ATPγS and a DNA duplex bearing a 3' single-stranded tail. The structure shows that the MCM subunits of the CMG bind preferentially to single-stranded DNA, establishes the polarity by which DNA enters into the Mcm2-7 pore, and explains how Cdc45 helps prevent DNA from dissociating from the helicase. The Mcm2-7 subcomplex forms a cracked-ring, right-handed spiral when DNA and nucleotide are bound, revealing unexpected congruencies between the CMG and both bacterial DnaB helicases and the AAA+ motor of the eukaryotic proteasome. The existence of a subpopulation of dimeric CMGs establishes the subunit register of Mcm2-7 double hexamers and together with the spiral form highlights how Mcm2-7 transitions through different conformational and assembly states as it matures into a functional helicase.
Collapse
Affiliation(s)
- Alessandro Costa
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Ludovic Renault
- London Research Institute, Cancer Research UK, London, United Kingdom Department of Imaging, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Paolo Swuec
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Tatjana Petojevic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - James J Pesavento
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ivar Ilves
- Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Kirsty MacLellan-Gibson
- Department of Imaging, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Roland A Fleck
- Department of Imaging, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
121
|
Itou H, Muramatsu S, Shirakihara Y, Araki H. Crystal structure of the homology domain of the eukaryotic DNA replication proteins Sld3/Treslin. Structure 2014; 22:1341-1347. [PMID: 25126958 DOI: 10.1016/j.str.2014.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 06/05/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
The initiation of eukaryotic chromosomal DNA replication requires the formation of an active replicative helicase at the replication origins of chromosomal DNA. Yeast Sld3 and its metazoan counterpart Treslin are the hub proteins mediating protein associations critical for the helicase formation. Here, we show the crystal structure of the central domain of Sld3 that is conserved in Sld3/Treslin family of proteins. The domain consists of two segments with 12 helices and is sufficient to bind to Cdc45, the essential helicase component. The structure model of the Sld3-Cdc45 complex, which is crucial for the formation of the active helicase, is proposed.
Collapse
Affiliation(s)
- Hiroshi Itou
- Structural Biology Center, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI, Yata1111, Mishima, Shizuoka 411-8540, Japan.
| | - Sachiko Muramatsu
- Division of Microbial Genetics, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan
| | - Yasuo Shirakihara
- Structural Biology Center, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI, Yata1111, Mishima, Shizuoka 411-8540, Japan
| | - Hiroyuki Araki
- Division of Microbial Genetics, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI, Yata1111, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
122
|
Brandão LN, Ferguson R, Santoro I, Jinks-Robertson S, Sclafani RA. The role of Dbf4-dependent protein kinase in DNA polymerase ζ-dependent mutagenesis in Saccharomyces cerevisiae. Genetics 2014; 197:1111-22. [PMID: 24875188 PMCID: PMC4125387 DOI: 10.1534/genetics.114.165308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/23/2014] [Indexed: 11/18/2022] Open
Abstract
The yeast Dbf4-dependent kinase (DDK) (composed of Dbf4 and Cdc7 subunits) is an essential, conserved Ser/Thr protein kinase that regulates multiple processes in the cell, including DNA replication, recombination and induced mutagenesis. Only DDK substrates important for replication and recombination have been identified. Consequently, the mechanism by which DDK regulates mutagenesis is unknown. The yeast mcm5-bob1 mutation that bypasses DDK's essential role in DNA replication was used here to examine whether loss of DDK affects spontaneous as well as induced mutagenesis. Using the sensitive lys2ΔA746 frameshift reversion assay, we show DDK is required to generate "complex" spontaneous mutations, which are a hallmark of the Polζ translesion synthesis DNA polymerase. DDK co-immunoprecipitated with the Rev7 regulatory, but not with the Rev3 polymerase subunit of Polζ. Conversely, Rev7 bound mainly to the Cdc7 kinase subunit and not to Dbf4. The Rev7 subunit of Polζ may be regulated by DDK phosphorylation as immunoprecipitates of yeast Cdc7 and also recombinant Xenopus DDK phosphorylated GST-Rev7 in vitro. In addition to promoting Polζ-dependent mutagenesis, DDK was also important for generating Polζ-independent large deletions that revert the lys2ΔA746 allele. The decrease in large deletions observed in the absence of DDK likely results from an increase in the rate of replication fork restart after an encounter with spontaneous DNA damage. Finally, nonepistatic, additive/synergistic UV sensitivity was observed in cdc7Δ pol32Δ and cdc7Δ pol30-K127R,K164R double mutants, suggesting that DDK may regulate Rev7 protein during postreplication "gap filling" rather than during "polymerase switching" by ubiquitinated and sumoylated modified Pol30 (PCNA) and Pol32.
Collapse
Affiliation(s)
- Luis N Brandão
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Rebecca Ferguson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Irma Santoro
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Sue Jinks-Robertson
- Department of Biology, Emory University, Atlanta, Georgia 30322 Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Robert A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
123
|
Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression. Proc Natl Acad Sci U S A 2014; 111:E1899-908. [PMID: 24740181 DOI: 10.1073/pnas.1404063111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic DNA synthesis initiates from multiple replication origins and progresses through bidirectional replication forks to ensure efficient duplication of the genome. Temporal control of initiation from origins and regulation of replication fork functions are important aspects for maintaining genome stability. Multiple kinase-signaling pathways are involved in these processes. The Dbf4-dependent Cdc7 kinase (DDK), cyclin-dependent kinase (CDK), and Mec1, the yeast Ataxia telangiectasia mutated/Ataxia telangiectasia mutated Rad3-related checkpoint regulator, all target the structurally disordered N-terminal serine/threonine-rich domain (NSD) of mini-chromosome maintenance subunit 4 (Mcm4), a subunit of the mini-chromosome maintenance (MCM) replicative helicase complex. Using whole-genome replication profile analysis and single-molecule DNA fiber analysis, we show that under replication stress the temporal pattern of origin activation and DNA replication fork progression are altered in cells with mutations within two separate segments of the Mcm4 NSD. The proximal segment of the NSD residing next to the DDK-docking domain mediates repression of late-origin firing by checkpoint signals because in its absence late origins become active despite an elevated DNA damage-checkpoint response. In contrast, the distal segment of the NSD at the N terminus plays no role in the temporal pattern of origin firing but has a strong influence on replication fork progression and on checkpoint signaling. Both fork progression and checkpoint response are regulated by the phosphorylation of the canonical CDK sites at the distal NSD. Together, our data suggest that the eukaryotic MCM helicase contains an intrinsic regulatory domain that integrates multiple signals to coordinate origin activation and replication fork progression under stress conditions.
Collapse
|
124
|
Multisite phosphorylation of the Sum1 transcriptional repressor by S-phase kinases controls exit from meiotic prophase in yeast. Mol Cell Biol 2014; 34:2249-63. [PMID: 24710277 DOI: 10.1128/mcb.01413-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Activation of the meiotic transcription factor Ndt80 is a key regulatory transition in the life cycle of Saccharomyces cerevisiae because it triggers exit from pachytene and entry into meiosis. The NDT80 promoter is held inactive by a complex containing the DNA-binding protein Sum1 and the histone deacetylase Hst1. Meiosis-specific phosphorylation of Sum1 by the protein kinases Cdk1, Ime2, and Cdc7 is required for NDT80 expression. Here, we show that the S-phase-promoting cyclin Clb5 activates Cdk1 to phosphorylate most, and perhaps all, of the 11 minimal cyclin-dependent kinase (CDK) phospho-consensus sites (S/T-P) in Sum1. Nine of these sites can individually promote modest levels of meiosis, yet these sites function in a quasiadditive manner to promote substantial levels of meiosis. Two Cdk1 sites and an Ime2 site individually promote high levels of meiosis, likely by preparing Sum1 for phosphorylation by Cdc7. Chromatin immunoprecipitation reveals that the phosphorylation sites are required for removal of Sum1 from the NDT80 promoter. We also find that Sum1, but not its partner protein Hst1, is required to repress NDT80 transcription. Thus, while the phosphorylation of Sum1 may lead to dissociation from DNA by influencing Hst1, it is the presence of Sum1 on DNA that determines whether NDT80 will be expressed.
Collapse
|
125
|
Leman AR, Noguchi E. The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (Basel) 2014; 4:1-32. [PMID: 23599899 PMCID: PMC3627427 DOI: 10.3390/genes4010001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells must accurately and efficiently duplicate their genomes during each round of the cell cycle. Multiple linear chromosomes, an abundance of regulatory elements, and chromosome packaging are all challenges that the eukaryotic DNA replication machinery must successfully overcome. The replication machinery, the “replisome” complex, is composed of many specialized proteins with functions in supporting replication by DNA polymerases. Efficient replisome progression relies on tight coordination between the various factors of the replisome. Further, replisome progression must occur on less than ideal templates at various genomic loci. Here, we describe the functions of the major replisome components, as well as some of the obstacles to efficient DNA replication that the replisome confronts. Together, this review summarizes current understanding of the vastly complicated task of replicating eukaryotic DNA.
Collapse
Affiliation(s)
- Adam R. Leman
- Authors to whom correspondence should be addressed; E-Mails: (A.R.L.); (E.N.); Tel.: +1-215-762-4825 (E.N.); Fax: +1-215-762-4452 (E.N.)
| | - Eishi Noguchi
- Authors to whom correspondence should be addressed; E-Mails: (A.R.L.); (E.N.); Tel.: +1-215-762-4825 (E.N.); Fax: +1-215-762-4452 (E.N.)
| |
Collapse
|
126
|
Hiraga SI, Alvino GM, Chang F, Lian HY, Sridhar A, Kubota T, Brewer BJ, Weinreich M, Raghuraman MK, Donaldson AD. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev 2014; 28:372-83. [PMID: 24532715 PMCID: PMC3937515 DOI: 10.1101/gad.231258.113] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Initiation of eukaryotic DNA replication requires phosphorylation of the MCM complex by Dbf4-dependent kinase (DDK), composed of Cdc7 kinase and its activator, Dbf4. We report here that budding yeast Rif1 (Rap1-interacting factor 1) controls DNA replication genome-wide and describe how Rif1 opposes DDK function by directing Protein Phosphatase 1 (PP1)-mediated dephosphorylation of the MCM complex. Deleting RIF1 partially compensates for the limited DDK activity in a cdc7-1 mutant strain by allowing increased, premature phosphorylation of Mcm4. PP1 interaction motifs within the Rif1 N-terminal domain are critical for its repressive effect on replication. We confirm that Rif1 interacts with PP1 and that PP1 prevents premature Mcm4 phosphorylation. Remarkably, our results suggest that replication repression by Rif1 is itself also DDK-regulated through phosphorylation near the PP1-interacting motifs. Based on our findings, we propose that Rif1 is a novel PP1 substrate targeting subunit that counteracts DDK-mediated phosphorylation during replication. Fission yeast and mammalian Rif1 proteins have also been implicated in regulating DNA replication. Since PP1 interaction sites are evolutionarily conserved within the Rif1 sequence, it is likely that replication control by Rif1 through PP1 is a conserved mechanism.
Collapse
Affiliation(s)
- Shin-Ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Becker JR, Nguyen HD, Wang X, Bielinsky AK. Mcm10 deficiency causes defective-replisome-induced mutagenesis and a dependency on error-free postreplicative repair. Cell Cycle 2014; 13:1737-48. [PMID: 24674891 DOI: 10.4161/cc.28652] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mcm10 is a multifunctional replication factor with reported roles in origin activation, polymerase loading, and replication fork progression. The literature supporting these variable roles is controversial, and it has been debated whether Mcm10 has an active role in elongation. Here, we provide evidence that the mcm10-1 allele confers alterations in DNA synthesis that lead to defective-replisome-induced mutagenesis (DRIM). Specifically, we observed that mcm10-1 cells exhibited elevated levels of PCNA ubiquitination and activation of the translesion polymerase, pol-ζ. Whereas translesion synthesis had no measurable impact on viability, mcm10-1 mutants also engaged in error-free postreplicative repair (PRR), and this pathway promoted survival at semi-permissive conditions. Replication gaps in mcm10-1 were likely caused by elongation defects, as dbf4-1 mutants, which are compromised for origin activation did not display any hallmarks of replication stress. Furthermore, we demonstrate that deficiencies in priming, induced by a pol1-1 mutation, also resulted in DRIM, but not in error-free PRR. Similar to mcm10-1 mutants, DRIM did not rescue the replication defect in pol1-1 cells. Thus, it appears that DRIM is not proficient to fill replication gaps in pol1-1 and mcm10-1 mutants. Moreover, the ability to correctly prime nascent DNA may be a crucial prerequisite to initiate error-free PRR.
Collapse
Affiliation(s)
- Jordan R Becker
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Hai Dang Nguyen
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Xiaohan Wang
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| |
Collapse
|
128
|
Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep 2014; 7:62-9. [PMID: 24685139 DOI: 10.1016/j.celrep.2014.03.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/15/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022] Open
Abstract
The Rif1 protein, originally identified as a telomere-binding factor in yeast, has recently been implicated in DNA replication control from yeast to metazoans. Here, we show that budding yeast Rif1 protein inhibits activation of prereplication complexes (pre-RCs). This inhibitory function requires two N-terminal motifs, RVxF and SILK, associated with recruitment of PP1 phosphatase (Glc7). In G1 phase, we show both that Glc7 interacts with Rif1 in an RVxF/SILK-dependent manner and that two proteins implicated in pre-RC activation, Mcm4 and Sld3, display increased Dbf4-dependent kinase (DDK) phosphorylation in rif1 mutants. Rif1 also interacts with Dbf4 in yeast two-hybrid assays, further implicating this protein in direct modulation of pre-RC activation through the DDK. Finally, we demonstrate Rif1 RVxF/SILK motif-dependent recruitment of Glc7 to telomeres and earlier replication of these regions in cells where the motifs are mutated. Our data thus link Rif1 to negative regulation of replication origin firing through recruitment of the Glc7 phosphatase.
Collapse
|
129
|
Davé A, Cooley C, Garg M, Bianchi A. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep 2014; 7:53-61. [PMID: 24656819 PMCID: PMC3989773 DOI: 10.1016/j.celrep.2014.02.019] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/20/2014] [Accepted: 02/14/2014] [Indexed: 01/23/2023] Open
Abstract
The firing of eukaryotic origins of DNA replication requires CDK and DDK kinase activities. DDK, in particular, is involved in setting the temporal program of origin activation, a conserved feature of eukaryotes. Rif1, originally identified as a telomeric protein, was recently implicated in specifying replication timing in yeast and mammals. We show that this function of Rif1 depends on its interaction with PP1 phosphatases. Mutations of two PP1 docking motifs in Rif1 lead to early replication of telomeres in budding yeast and misregulation of origin firing in fission yeast. Several lines of evidence indicate that Rif1/PP1 counteract DDK activity on the replicative MCM helicase. Our data suggest that the PP1/Rif1 interaction is downregulated by the phosphorylation of Rif1, most likely by CDK/DDK. These findings elucidate the mechanism of action of Rif1 in the control of DNA replication and demonstrate a role of PP1 phosphatases in the regulation of origin firing. Rif1 recruits protein phosphatase 1 to telomeres and DNA replication origins PP1 docking motifs mediate the effect of Rif1 on DNA replication timing The PP1 recruitment activity of Rif1 counteracts DDK action on Mcm4 Mutations in putative CDK/DDK sites near the PP1 motifs in Rif1 affect PP1 recruitment
Collapse
Affiliation(s)
- Anoushka Davé
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Carol Cooley
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Mansi Garg
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Alessandro Bianchi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| |
Collapse
|
130
|
On KF, Beuron F, Frith D, Snijders AP, Morris EP, Diffley JFX. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO J 2014; 33:605-20. [PMID: 24566989 PMCID: PMC3989654 DOI: 10.1002/embj.201387369] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/17/2013] [Accepted: 01/10/2014] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic DNA replication initiates from multiple replication origins. To ensure each origin fires just once per cell cycle, initiation is divided into two biochemically discrete steps: the Mcm2-7 helicase is first loaded into prereplicative complexes (pre-RCs) as an inactive double hexamer by the origin recognition complex (ORC), Cdt1 and Cdc6; the helicase is then activated by a set of "firing factors." Here, we show that plasmids containing pre-RCs assembled with purified proteins support complete and semi-conservative replication in extracts from budding yeast cells overexpressing firing factors. Replication requires cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK). DDK phosphorylation of Mcm2-7 does not by itself promote separation of the double hexamer, but is required for the recruitment of firing factors and replisome components in the extract. Plasmid replication does not require a functional replication origin; however, in the presence of competitor DNA and limiting ORC concentrations, replication becomes origin-dependent in this system. These experiments indicate that Mcm2-7 double hexamers can be precursors of replication and provide insight into the nature of eukaryotic DNA replication origins.
Collapse
Affiliation(s)
- Kin Fan On
- Chromosome Replication Laboratory, Cancer Research UK London Research InstituteSouth Mimms, Herts, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer ResearchLondon, UK
| | - David Frith
- Protein Analysis and Proteomics, Cancer Research UK London Research Institute, Clare Hall LaboratoriesSouth Mimms, Herts, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics, Cancer Research UK London Research Institute, Clare Hall LaboratoriesSouth Mimms, Herts, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer ResearchLondon, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, Cancer Research UK London Research InstituteSouth Mimms, Herts, UK
| |
Collapse
|
131
|
Kumar R, Cheok CF. RIF1: a novel regulatory factor for DNA replication and DNA damage response signaling. DNA Repair (Amst) 2014; 15:54-9. [PMID: 24462468 DOI: 10.1016/j.dnarep.2013.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 12/30/2022]
Abstract
DNA double strand breaks (DSBs) are highly toxic to the cells and accumulation of DSBs results in several detrimental effects in various cellular processes which can lead to neurological, immunological and developmental disorders. Failure of the repair of DSBs spurs mutagenesis and is a driver of tumorigenesis, thus underscoring the importance of the accurate repair of DSBs. Two major canonical DSB repair pathways are the non-homologous end joining (NHEJ) and homologous recombination (HR) pathways. 53BP1 and BRCA1 are the key mediator proteins which coordinate with other components of the DNA repair machinery in the NHEJ and HR pathways respectively, and their exclusive recruitment to DNA breaks/ends potentially decides the choice of repair by either NHEJ or HR. Recently, Rap1 interacting factor 1 has been identified as an important component of the DNA repair pathway which acts downstream of the ATM/53BP1 to inhibit the 5'-3' end resection of broken DNA ends, in-turn facilitating NHEJ repair and inhibiting homology directed repair. Rif1 is conserved from yeast to humans but its function has evolved from telomere length regulation in yeast to the maintenance of genome integrity in mammalian cells. Recently its role in the maintenance of genomic integrity has been expanded to include the regulation of chromatin structure, replication timing and intra-S phase checkpoint. We present a summary of these important findings highlighting the various aspects of Rif1 functions and discuss the key implications for genomic integrity.
Collapse
Affiliation(s)
- Ramesh Kumar
- IFOM-p53Lab Joint Research Laboratory, 8A Biomedical Grove, #06-38, Immunos, A*STAR, S138648 Singapore, Singapore; IFOM, The FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| | - Chit Fang Cheok
- IFOM-p53Lab Joint Research Laboratory, 8A Biomedical Grove, #06-38, Immunos, A*STAR, S138648 Singapore, Singapore; IFOM, The FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, S117597 Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, S639798 Singapore, Singapore.
| |
Collapse
|
132
|
Poh WT, Chadha GS, Gillespie PJ, Kaldis P, Blow JJ. Xenopus Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1. Open Biol 2014; 4:130138. [PMID: 24403013 PMCID: PMC3909274 DOI: 10.1098/rsob.130138] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/03/2013] [Indexed: 01/31/2023] Open
Abstract
The initiation of DNA replication requires two protein kinases: cyclin-dependent kinase (Cdk) and Cdc7. Although S phase Cdk activity has been intensively studied, relatively little is known about how Cdc7 regulates progression through S phase. We have used a Cdc7 inhibitor, PHA-767491, to dissect the role of Cdc7 in Xenopus egg extracts. We show that hyperphosphorylation of mini-chromosome maintenance (MCM) proteins by Cdc7 is required for the initiation, but not for the elongation, of replication forks. Unlike Cdks, we demonstrate that Cdc7 executes its essential functions by phosphorylating MCM proteins at virtually all replication origins early in S phase and is not limiting for progression through the Xenopus replication timing programme. We demonstrate that protein phosphatase 1 (PP1) is recruited to chromatin and rapidly reverses Cdc7-mediated MCM hyperphosphorylation. Checkpoint kinases induced by DNA damage or replication inhibition promote the association of PP1 with chromatin and increase the rate of MCM dephosphorylation, thereby counteracting the previously completed Cdc7 functions and inhibiting replication initiation. This novel mechanism for regulating Cdc7 function provides an explanation for previous contradictory results concerning the control of Cdc7 by checkpoint kinases and has implications for the use of Cdc7 inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Wei Theng Poh
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Republic of Singapore
| | - Gaganmeet Singh Chadha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Peter J. Gillespie
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Republic of Singapore
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| |
Collapse
|
133
|
Lam SKW, Ma X, Sing TL, Shilton BH, Brandl CJ, Davey MJ. The PS1 hairpin of Mcm3 is essential for viability and for DNA unwinding in vitro. PLoS One 2013; 8:e82177. [PMID: 24349215 PMCID: PMC3859580 DOI: 10.1371/journal.pone.0082177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
The pre-sensor 1 (PS1) hairpin is found in ring-shaped helicases of the AAA+ family (ATPases associated with a variety of cellular activities) of proteins and is implicated in DNA translocation during DNA unwinding of archaeal mini-chromosome maintenance (MCM) and superfamily 3 viral replicative helicases. To determine whether the PS1 hairpin is required for the function of the eukaryotic replicative helicase, Mcm2-7 (also comprised of AAA+ proteins), we mutated the conserved lysine residue in the putative PS1 hairpin motif in each of the Saccharomyces cerevisiae Mcm2-7 subunits to alanine. Interestingly, only the PS1 hairpin of Mcm3 was essential for viability. While mutation of the PS1 hairpin in the remaining MCM subunits resulted in minimal phenotypes, with the exception of Mcm7 which showed slow growth under all conditions examined, the viable alleles were synthetic lethal with each other. Reconstituted Mcm2-7 containing Mcm3 with the PS1 mutation (Mcm3(K499A)) had severely decreased helicase activity. The lack of helicase activity provides a probable explanation for the inviability of the mcm3(K499A) strain. The ATPase activity of Mcm2-7(3K499A) was similar to the wild type complex, but its interaction with single-stranded DNA in an electrophoretic mobility shift assay and its associations in cells were subtly altered. Together, these findings indicate that the PS1 hairpins in the Mcm2-7 subunits have important and distinct functions, most evident by the essential nature of the Mcm3 PS1 hairpin in DNA unwinding.
Collapse
Affiliation(s)
- Simon K. W. Lam
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Xiaoli Ma
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Tina L. Sing
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian H. Shilton
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Christopher J. Brandl
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| | - Megan J. Davey
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
134
|
Bruck I, Kaplan DL. The replication initiation protein Sld2 regulates helicase assembly. J Biol Chem 2013; 289:1948-59. [PMID: 24307213 DOI: 10.1074/jbc.m113.532085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Assembly of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase complex must be regulated to ensure that DNA unwinding is coupled with DNA synthesis. Sld2 is required for the initiation of DNA replication in budding yeast. We identified a mutant of Sld2, Sld2-m1,4, that is specifically defective in Mcm2-7 binding. When this sld2-m1,4 mutant is expressed, cells exhibit severe inhibition of DNA replication. Furthermore, the CMG complex assembles prematurely in G1 in mutant cells, but not wild-type cells. These data suggest that Sld2 binding to Mcm2-7 is essential to block the inappropriate formation of a CMG helicase complex in G1. We also study a mutant of Sld2 that is defective in binding DNA, sld2-DNA, and find that sld2-DNA cells exhibit no GINS-Mcm2-7 interaction. These data suggest that Sld2 association with DNA is required for CMG assembly in S phase.
Collapse
Affiliation(s)
- Irina Bruck
- From the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32312
| | | |
Collapse
|
135
|
Tanaka S, Araki H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol 2013; 5:a010371. [PMID: 23881938 DOI: 10.1101/cshperspect.a010371] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many replication proteins assemble on the pre-RC-formed replication origins and constitute the pre-initiation complex (pre-IC). This complex formation facilitates the conversion of Mcm2-7 in the pre-RC to an active DNA helicase, the Cdc45-Mcm-GINS (CMG) complex. Two protein kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), work to complete the formation of the pre-IC. Each kinase is responsible for a distinct step of the process in yeast; Cdc45 associates with origins in a DDK-dependent manner, whereas the association of GINS with origins depends on CDK. These associations with origins also require specific initiation proteins: Sld3 for Cdc45; and Dpb11, Sld2, and Sld3 for GINS. Functional homologs of these proteins exist in metazoa, although pre-IC formation cannot be separated by requirement of DDK and CDK because of experimental limitations. Once the replicative helicase is activated, the origin DNA is unwound, and bidirectional replication forks are established.
Collapse
Affiliation(s)
- Seiji Tanaka
- Division of Microbial Genetics, National Institute of Genetics, and Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
136
|
Mansouri M, Mirzaei SA, Lage H, Mousavi SS, Elahian F. The cell cycle arrest and the anti-invasive effects of nitrogen-containing bisphosphonates are not mediated by DBF4 in breast cancer cells. Biochimie 2013; 99:71-6. [PMID: 24287290 DOI: 10.1016/j.biochi.2013.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/11/2013] [Indexed: 01/13/2023]
Abstract
Recent work has shown that a DBF4 analog in yeast may be a target of nitrogen-containing bisphosphonates. DBF4 is an essential protein kinase required for DNA replication from primary eukaryotes to humans and appears to play a critical role in the S-phase checkpoint. It is also required for cell migration and cell surface adhesion. The effects of Pamidronate, risedronate, or zoledronate on cell viability and DBF4 expression were measured via MTT assays and western blotting. In addition, FACS cell cycle analyses and invasion assays were conducted in cells in the presence of nitrogen-containing bisphosphonates to identify any correlations between DBF4 expression and S-phase arrest or anti-invasive effects of the bisphosphonates. Zoledronate transiently down-regulated DBF4 expression in all three cell lines in the first 24 h of the experiment, but after 72 h, DBF4 expression returned to the control levels in all treated cells. Following treatment of the tumor cells with the bisphosphonates, the number of cells in S-phase was increased. Pamidronate and zoledronate showed anti-invasive effects in BT20 cells. The anti-invasive effects of pamidronate, risedronate and zoledronate appeared after 48 h of exposure. In MDA-MB231 cells a reduction of invasiveness was only observed after 72 h of the pamidronate exposure. We finally concluded that the anti-invasive and cell cycle arrest-inducing effects of nitrogen-containing bisphosphonates are not DBF4 mediated, and other mediators are therefore needed to explain the observed complex behaviors.
Collapse
Affiliation(s)
- Mahdieh Mansouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Iran
| | - Seyed Abbas Mirzaei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Iran; Institute of Pathology, Charité Campus Mitte, University Medicine Berlin, Berlin, Germany
| | - Hermann Lage
- Institute of Pathology, Charité Campus Mitte, University Medicine Berlin, Berlin, Germany
| | - Seyyedeh Soghra Mousavi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Iran
| | - Fatemeh Elahian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Iran; Institute of Pathology, Charité Campus Mitte, University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
137
|
Kong B, Yang T, Chen L, Kuang YQ, Gu JW, Xia X, Cheng L, Zhang JH. Protein-protein interaction network analysis and gene set enrichment analysis in epilepsy patients with brain cancer. J Clin Neurosci 2013; 21:316-9. [PMID: 24239228 DOI: 10.1016/j.jocn.2013.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 06/09/2013] [Accepted: 06/15/2013] [Indexed: 11/18/2022]
Abstract
Many patients with brain cancer experience seizures or epilepsy and tumor-associated epilepsy (TAE) significantly decreases their quality of life. This study aimed to achieve a better understanding of the mechanisms of TAE. The differentially expressed genes (DEG) between epilepsy patients with or without brain tumor were firstly screened using the Linear Models for Microarray Data package using GSE4290 datasets from the USA National Center for Biotechnology Information Gene Expression Omnibus database. Then the protein-protein interaction (PPI) network, using data from the Human Protein Reference Database and the Biological General Repository for Interaction Datasets, was constructed. For further analysis, the PPI network structure and clusters in this PPI network were identified by ClusterOne. Meanwhile, gene set enrichment analysis was performed to illuminate the biological pathways and processes which generally affect patients with TAE. A total of 5113 DEG were identified and a PPI network, which contained 114 DEG and 21 normal genes, was established. Proteins, which mainly belonged to the mini chromosome maintenance and collagen families, were discovered to be enriched in the three identified clusters in the PPI network. Finally, several biological pathways (including cell cycle, DNA replication and transforming growth factor β1 signaling pathways) and processes (such as nucleocytoplasmic transport, nuclear transport and regulation of phosphorylation) were identified. Proteins in these three clusters may become new targets for TAE treatment. Our results provide some potential underlying biomarkers for understanding the pathogenesis of epilepsy in patients with brain tumor.
Collapse
Affiliation(s)
- Bin Kong
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China; Third Military Medical University, Chongqing, China
| | - Tao Yang
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China; Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Neurology, Chengdu Military General Hospital, Chengdu, Sichuan Province, China
| | - Yong-Qin Kuang
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China
| | - Jian-Wen Gu
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China.
| | - Xun Xia
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China
| | - Lin Cheng
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China
| | - Jun-Hai Zhang
- Department of Neurosurgery, Chengdu Military General Hospital, 270 Rong Du Road, Chengdu 610083, Sichuan Province, China
| |
Collapse
|
138
|
Li Z, Zhang X, Jiang X, Wei D, Zhang C. Preparation and identification of a novel antibody against human CDC7 kinase. Monoclon Antib Immunodiagn Immunother 2013; 32:349-53. [PMID: 24111867 DOI: 10.1089/mab.2013.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell division cycle 7-related protein kinase (CDC7), which is conservatively expressed in the eukaryotic cells, is being intensely studied because of its significant function in DNA replication. In order to get further information on human CDC7, we generated a novel antibody against human CDC7. The steady strain of hybridoma (2G12) that can secrete specific monoclonal antibodies against human CDC7 was obtained by hybridoma technique. It is poised to contribute novel ways to study the cell cycle. The isotope of the monoclonal antibody was tested to be IgG2a/κ, and its characterizations were shown by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. The affinity constant (Kaff) of the monoclonal antibody was measured by non-competitive ELISA. By Western blot analysis, we found that CDC7 was largely expressed on the HCCLM3 cell line. Further identifications were adopted by the HRP-labeled MAbs. Thus, the antibody might boost studies on tumor cell lines.
Collapse
Affiliation(s)
- Zhiguang Li
- Department of Immunology, School of Preclinical and Forensic Medicine, West China Medical Centre, Sichuan University , Chengdu, China
| | | | | | | | | |
Collapse
|
139
|
Abstract
DNA replication is tightly controlled in eukaryotic cells to ensure that an exact copy of the genetic material is inherited by both daughter cells. Oscillating waves of cyclin-dependent kinase (CDK) and anaphase-promoting complex/cyclosome (APC/C) activities provide a binary switch that permits the replication of each chromosome exactly once per cell cycle. Work from several organisms has revealed a conserved strategy whereby inactive replication complexes are assembled onto DNA during periods of low CDK and high APC activity but are competent to execute genome duplication only when these activities are reversed. Periods of high CDK and low APC/C serve an essential function by blocking reassembly of replication complexes, thereby preventing rereplication. Higher eukaryotes have evolved additional CDK-independent mechanisms for preventing rereplication.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | |
Collapse
|
140
|
Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing. Trends Genet 2013; 29:449-60. [DOI: 10.1016/j.tig.2013.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/27/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022]
|
141
|
Mcm10 self-association is mediated by an N-terminal coiled-coil domain. PLoS One 2013; 8:e70518. [PMID: 23894664 PMCID: PMC3720919 DOI: 10.1371/journal.pone.0070518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/11/2013] [Indexed: 01/13/2023] Open
Abstract
Minichromosome maintenance protein 10 (Mcm10) is an essential eukaryotic DNA-binding replication factor thought to serve as a scaffold to coordinate enzymatic activities within the replisome. Mcm10 appears to function as an oligomer rather than in its monomeric form (or rather than as a monomer). However, various orthologs have been found to contain 1, 2, 3, 4, or 6 subunits and thus, this issue has remained controversial. Here, we show that self-association of Xenopus laevis Mcm10 is mediated by a conserved coiled-coil (CC) motif within the N-terminal domain (NTD). Crystallographic analysis of the CC at 2.4 Å resolution revealed a three-helix bundle, consistent with the formation of both dimeric and trimeric Mcm10 CCs in solution. Mutation of the side chains at the subunit interface disrupted in vitro dimerization of both the CC and the NTD as monitored by analytical ultracentrifugation. In addition, the same mutations also impeded self-interaction of the full-length protein in vivo, as measured by yeast-two hybrid assays. We conclude that Mcm10 likely forms dimers or trimers to promote its diverse functions during DNA replication.
Collapse
|
142
|
Zhong Y, Nellimoottil T, Peace JM, Knott SRV, Villwock SK, Yee JM, Jancuska JM, Rege S, Tecklenburg M, Sclafani RA, Tavaré S, Aparicio OM. The level of origin firing inversely affects the rate of replication fork progression. ACTA ACUST UNITED AC 2013; 201:373-83. [PMID: 23629964 PMCID: PMC3639389 DOI: 10.1083/jcb.201208060] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cells with reduced origin firing have an increased rate of replication fork progression, whereas fork progression is slowed in cells with excess origins. DNA damage slows DNA synthesis at replication forks; however, the mechanisms remain unclear. Cdc7 kinase is required for replication origin activation, is a target of the intra-S checkpoint, and is implicated in the response to replication fork stress. Remarkably, we found that replication forks proceed more rapidly in cells lacking Cdc7 function than in wild-type cells. We traced this effect to reduced origin firing, which results in fewer replication forks and a consequent decrease in Rad53 checkpoint signaling. Depletion of Orc1, which acts in origin firing differently than Cdc7, had similar effects as Cdc7 depletion, consistent with decreased origin firing being the source of these defects. In contrast, mec1-100 cells, which initiate excess origins and also are deficient in checkpoint activation, showed slower fork progression, suggesting the number of active forks influences their rate, perhaps as a result of competition for limiting factors.
Collapse
Affiliation(s)
- Yuan Zhong
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Bell SP, Kaguni JM. Helicase loading at chromosomal origins of replication. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a010124. [PMID: 23613349 DOI: 10.1101/cshperspect.a010124] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Loading of the replicative DNA helicase at origins of replication is of central importance in DNA replication. As the first of the replication fork proteins assemble at chromosomal origins of replication, the loaded helicase is required for the recruitment of the rest of the replication machinery. In this work, we review the current knowledge of helicase loading at Escherichia coli and eukaryotic origins of replication. In each case, this process requires both an origin recognition protein as well as one or more additional proteins. Comparison of these events shows intriguing similarities that suggest a similar underlying mechanism, as well as critical differences that likely reflect the distinct processes that regulate helicase loading in bacterial and eukaryotic cells.
Collapse
Affiliation(s)
- Stephen P Bell
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
144
|
McGuffee SR, Smith DJ, Whitehouse I. Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. Mol Cell 2013; 50:123-35. [PMID: 23562327 DOI: 10.1016/j.molcel.2013.03.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/20/2012] [Accepted: 03/01/2013] [Indexed: 01/26/2023]
Abstract
Many fundamental aspects of DNA replication, such as the exact locations where DNA synthesis is initiated and terminated, how frequently origins are used, and how fork progression is influenced by transcription, are poorly understood. Via the deep sequencing of Okazaki fragments, we comprehensively document replication fork directionality throughout the S. cerevisiae genome, which permits the systematic analysis of initiation, origin efficiency, fork progression, and termination. We show that leading-strand initiation preferentially occurs within a nucleosome-free region at replication origins. Using a strain in which late origins can be induced to fire early, we show that replication termination is a largely passive phenomenon that does not rely on cis-acting sequences or replication fork pausing. The replication profile is predominantly determined by the kinetics of origin firing, allowing us to reconstruct chromosome-wide timing profiles from an asynchronous culture.
Collapse
Affiliation(s)
- Sean R McGuffee
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
145
|
Ramer MD, Suman ES, Richter H, Stanger K, Spranger M, Bieberstein N, Duncker BP. Dbf4 and Cdc7 proteins promote DNA replication through interactions with distinct Mcm2-7 protein subunits. J Biol Chem 2013; 288:14926-35. [PMID: 23549044 DOI: 10.1074/jbc.m112.392910] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The essential cell cycle target of the Dbf4/Cdc7 kinase (DDK) is the Mcm2-7 helicase complex. Although Mcm4 has been identified as the critical DDK phosphorylation target for DNA replication, it is not well understood which of the six Mcm2-7 subunits actually mediate(s) docking of this kinase complex. We systematically examined the interaction between each Mcm2-7 subunit with Dbf4 and Cdc7 through two-hybrid and co-immunoprecipitation analyses. Strikingly different binding patterns were observed, as Dbf4 interacted most strongly with Mcm2, whereas Cdc7 displayed association with both Mcm4 and Mcm5. We identified an N-terminal Mcm2 region required for interaction with Dbf4. Cells expressing either an Mcm2 mutant lacking this docking domain (Mcm2ΔDDD) or an Mcm4 mutant lacking a previously identified DDK docking domain (Mcm4ΔDDD) displayed modest DNA replication and growth defects. In contrast, combining these two mutations resulted in synthetic lethality, suggesting that Mcm2 and Mcm4 play overlapping roles in the association of DDK with MCM rings at replication origins. Consistent with this model, growth inhibition could be induced in Mcm4ΔDDD cells through Mcm2 overexpression as a means of titrating the Dbf4-MCM ring interaction. This growth inhibition was exacerbated by exposing the cells to either hydroxyurea or methyl methanesulfonate, lending support for a DDK role in stabilizing or restarting replication forks under S phase checkpoint conditions. Finally, constitutive overexpression of each individual MCM subunit was examined, and genotoxic sensitivity was found to be specific to Mcm2 or Mcm4 overexpression, further pointing to the importance of the DDK-MCM ring interaction.
Collapse
Affiliation(s)
- Matthew D Ramer
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | | | | | | | | | | | | |
Collapse
|
146
|
Yekezare M, Gómez-González B, Diffley JFX. Controlling DNA replication origins in response to DNA damage - inhibit globally, activate locally. J Cell Sci 2013; 126:1297-306. [PMID: 23645160 DOI: 10.1242/jcs.096701] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA replication in eukaryotic cells initiates from multiple replication origins that are distributed throughout the genome. Coordinating the usage of these origins is crucial to ensure complete and timely replication of the entire genome precisely once in each cell cycle. Replication origins fire according to a cell-type-specific temporal programme, which is established in the G1 phase of each cell cycle. In response to conditions causing the slowing or stalling of DNA replication forks, the programme of origin firing is altered in two contrasting ways, depending on chromosomal context. First, inactive or 'dormant' replication origins in the vicinity of the stalled replication fork become activated and, second, the S phase checkpoint induces a global shutdown of further origin firing throughout the genome. Here, we review our current understanding on the role of dormant origins and the S phase checkpoint in the rescue of stalled forks and the completion of DNA replication in the presence of replicative stress.
Collapse
Affiliation(s)
- Mona Yekezare
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | | | | |
Collapse
|
147
|
Foltman M, Evrin C, De Piccoli G, Jones RC, Edmondson RD, Katou Y, Nakato R, Shirahige K, Labib K. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep 2013; 3:892-904. [PMID: 23499444 DOI: 10.1016/j.celrep.2013.02.028] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/30/2012] [Accepted: 02/28/2013] [Indexed: 11/30/2022] Open
Abstract
DNA unwinding at eukaryotic replication forks displaces parental histones, which must be redeposited onto nascent DNA in order to preserve chromatin structure. By screening systematically for replisome components that pick up histones released from chromatin into a yeast cell extract, we found that the Mcm2 helicase subunit binds histones cooperatively with the FACT (facilitiates chromatin transcription) complex, which helps to re-establish chromatin during transcription. FACT does not associate with the Mcm2-7 helicase at replication origins during G1 phase but is subsequently incorporated into the replisome progression complex independently of histone binding and uniquely among histone chaperones. The amino terminal tail of Mcm2 binds histones via a conserved motif that is dispensable for DNA synthesis per se but helps preserve subtelomeric chromatin, retain the 2 micron minichromosome, and support growth in the absence of Ctf18-RFC. Our data indicate that the eukaryotic replication and transcription machineries use analogous assemblies of multiple chaperones to preserve chromatin integrity.
Collapse
Affiliation(s)
- Magdalena Foltman
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Mulvey CM, Tudzarova S, Crawford M, Williams GH, Stoeber K, Godovac-Zimmermann J. Subcellular proteomics reveals a role for nucleo-cytoplasmic trafficking at the DNA replication origin activation checkpoint. J Proteome Res 2013; 12:1436-53. [PMID: 23320540 PMCID: PMC4261602 DOI: 10.1021/pr3010919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depletion of DNA replication initiation factors such as CDC7 kinase triggers the origin activation checkpoint in healthy cells and leads to a protective cell cycle arrest at the G1 phase of the mitotic cell division cycle. This protective mechanism is thought to be defective in cancer cells. To investigate how this checkpoint is activated and maintained in healthy cells, we conducted a quantitative SILAC analysis of the nuclear- and cytoplasmic-enriched compartments of CDC7-depleted fibroblasts and compared them to a total cell lysate preparation. Substantial changes in total abundance and/or subcellular location were detected for 124 proteins, including many essential proteins associated with DNA replication/cell cycle. Similar changes in protein abundance and subcellular distribution were observed for various metabolic processes, including oxidative stress, iron metabolism, protein translation and the tricarboxylic acid cycle. This is accompanied by reduced abundance of two karyopherin proteins, suggestive of reduced nuclear import. We propose that altered nucleo-cytoplasmic trafficking plays a key role in the regulation of cell cycle arrest. The results increase understanding of the mechanisms underlying maintenance of the DNA replication origin activation checkpoint and are consistent with our proposal that cell cycle arrest is an actively maintained process that appears to be distributed over various subcellular locations.
Collapse
Affiliation(s)
- Claire M. Mulvey
- Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Slavica Tudzarova
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Mark Crawford
- Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Gareth H. Williams
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, United Kingdom
| | - Kai Stoeber
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
149
|
Bruck I, Kaplan DL. Cdc45 protein-single-stranded DNA interaction is important for stalling the helicase during replication stress. J Biol Chem 2013; 288:7550-7563. [PMID: 23382391 DOI: 10.1074/jbc.m112.440941] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replicative polymerase stalling is coordinated with replicative helicase stalling in eukaryotes, but the mechanism underlying this coordination is not known. Cdc45 activates the Mcm2-7 helicase. We report here that Cdc45 from budding yeast binds tightly to long (≥ 40 nucleotides) genomic single-stranded DNA (ssDNA) and that 60mer ssDNA specifically disrupts the interaction between Cdc45 and Mcm2-7. We identified a mutant of Cdc45 that does not bind to ssDNA. When this mutant of cdc45 is expressed in budding yeast cells exposed to hydroxyurea, cell growth is severely inhibited, and excess RPA accumulates at or near an origin. Chromatin immunoprecipitation suggests that helicase movement is uncoupled from polymerase movement for mutant cells exposed to hydroxyurea. These data suggest that Cdc45-ssDNA interaction is important for stalling the helicase during replication stress.
Collapse
Affiliation(s)
- Irina Bruck
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida 32306
| | - Daniel L Kaplan
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida 32306.
| |
Collapse
|
150
|
Duderstadt KE, Berger JM. A structural framework for replication origin opening by AAA+ initiation factors. Curr Opin Struct Biol 2012; 23:144-53. [PMID: 23266000 DOI: 10.1016/j.sbi.2012.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
ATP-dependent initiation factors help process replication origins and coordinate replisome assembly to control the onset of DNA synthesis. Although the specific properties and regulatory mechanisms of initiator proteins can vary greatly between different organisms, certain nucleotide-binding elements and assembly patterns appear preserved not only within the three domains of cellular life (bacteria, archaea, and eukaryotes), but also with certain classes of double-stranded DNA viruses. Structural studies of replication initiation proteins, both as higher-order oligomers and in complex with cognate DNA substrates, are revealing how an evolutionarily related ATPase fold can support different modes of macromolecular assembly and function. Comparative studies between initiation systems in turn provide clues as to how duplex origin regions may be melted during initiation events.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|