101
|
NMR and X-ray structures of the putative sterol carrier protein 2 from Thermus thermophilus HB8 show conformational changes. ACTA ACUST UNITED AC 2010; 11:247-56. [DOI: 10.1007/s10969-010-9096-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/23/2010] [Indexed: 11/27/2022]
|
102
|
Koch J, Pranjic K, Huber A, Ellinger A, Hartig A, Kragler F, Brocard C. PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance. J Cell Sci 2010; 123:3389-400. [PMID: 20826455 DOI: 10.1242/jcs.064907] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dynamic changes of membrane structure are intrinsic to organelle morphogenesis and homeostasis. Ectopic expression of proteins of the PEX11 family from yeast, plant or human lead to the formation of juxtaposed elongated peroxisomes (JEPs),which is evocative of an evolutionary conserved function of these proteins in membrane tubulation. Microscopic examinations reveal that JEPs are composed of independent elongated peroxisomes with heterogeneous distribution of matrix proteins. We established the homo- and heterodimerization properties of the human PEX11 proteins and their interaction with the fission factor hFis1, which is known to recruit the GTPase DRP1 to the peroxisomal membrane. We show that excess of hFis1 but not of DRP1 is sufficient to fragment JEPs into normal round-shaped organelles, and illustrate the requirement of microtubules for JEP formation. Our results demonstrate that PEX11-induced JEPs represent intermediates in the process of peroxisome membrane proliferation and that hFis1 is the limiting factor for progression. Hence, we propose a model for a conserved role of PEX11 proteins in peroxisome maintenance through peroxisome polarization, membrane elongation and segregation.
Collapse
Affiliation(s)
- Johannes Koch
- Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Department of Biochemistry and Cell Biology, Dr Bohr-Gasse 9, 1030, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
103
|
Rucktäschel R, Girzalsky W, Erdmann R. Protein import machineries of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:892-900. [PMID: 20659419 DOI: 10.1016/j.bbamem.2010.07.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
Peroxisomes are a class of structurally and functionally related organelles present in almost all eukaryotic cells. The importance of peroxisomes for human life is highlighted by severe inherited diseases which are caused by defects of peroxins, encoded by PEX genes. To date 32 peroxins are known to be involved in different aspects of peroxisome biogenesis. This review addresses two of these aspects, the translocation of soluble proteins into the peroxisomal matrix and the biogenesis of the peroxisomal membrane. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Robert Rucktäschel
- Abteilung für Systembiochemie, Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | |
Collapse
|
104
|
Williams CP, Stanley WA. Peroxin 5: a cycling receptor for protein translocation into peroxisomes. Int J Biochem Cell Biol 2010; 42:1771-4. [PMID: 20633695 DOI: 10.1016/j.biocel.2010.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/05/2010] [Accepted: 07/06/2010] [Indexed: 11/26/2022]
Abstract
Peroxins are proteins that regulate the biogenesis of peroxisomes-small vesicular subcellular organelles essential for human life and health. A key peroxin - to date the best studied - is peroxin 5. Structurally, peroxin 5 is a bi-domain protein of about 70 kDa containing both globular and non-globular segments and displaying conformational flexibility. Functionally, it is a cycling receptor for importing essential enzymes into the peroxisome lumen, facilitated by highly promiscuous interactions with numerous proteins and possibly lipids. Peroxin 5 has medical significance in that (i) congenital defects can lead to fatal peroxisome biogenesis disorders, (ii) inefficient peroxisome targeting is linked to disease and aging and (iii) differences between human peroxin 5 and homologues in pathogens may be exploited in the development of therapeutics.
Collapse
Affiliation(s)
- Chris P Williams
- European Molecular Biology Laboratory, c/o DESY, Hamburg, Germany
| | | |
Collapse
|
105
|
Wolf J, Schliebs W, Erdmann R. Peroxisomes as dynamic organelles: peroxisomal matrix protein import. FEBS J 2010; 277:3268-78. [PMID: 20629744 DOI: 10.1111/j.1742-4658.2010.07739.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The heterogeneity of peroxisomal matrix proteins which are imported in a folded, even oligomeric state, requires adaptive and dynamic properties of the translocation machinery. Dynamic multicompartmental subcellular distribution of peroxisomal proteins is governed by the accessibility of targeting signals. Conformational changes of peroxisomal targeting receptors upon cargo-binding might serve as a docking 'quality control'. Although the mechanisms are not understood in detail, recent work suggests the existence of a transient translocon within the peroxisomal membrane. Rapid formation and disassembly of the transient import pore ensures the integrity of the peroxisomal membrane barrier for small metabolites. In this review, we will focus on the regulatory aspects of peroxisomal matrix protein import.
Collapse
Affiliation(s)
- Janina Wolf
- Institut für Physiologische Chemie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
106
|
Ghosh D, Berg JM. A proteome-wide perspective on peroxisome targeting signal 1(PTS1)-Pex5p affinities. J Am Chem Soc 2010; 132:3973-9. [PMID: 20178365 DOI: 10.1021/ja9109049] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most proteins are targeted to the peroxisomal matrix by virtue of a peroxisomal targeting signal-1 (PTS1), a short carboxy-terminal sequence specifically recognized by the PTS1 receptor Pex5p. We had previously developed a model that allowed the estimation of the affinities of many PTS1 sequences within the human proteome for Pex5p that revealed a wide range of predicted affinities. We have now experimentally determined the affinities of the PTS1-containing peptides from 42 proteins from the human proteome for Pex5p and show that these range over 4 orders of magnitude. These affinities correlate reasonably well with the predicted values and are substantially more precise. In an attempt to provide a possible explanation for the wide range of PTS1-Pex5p affinities, we compared these affinities with mRNA levels (as a proxy for rates of protein production) of the genes encoding these proteins in 79 human tissues and cell types. We note that high affinity PTS1-Pex5p interactions tend to correspond to proteins encoded by genes expressed at relatively low levels, whereas lower affinity PTS1-Pex5p interactions tend to correspond to proteins encoded by genes exhibiting higher levels and wider ranges of expression. Further analysis revealed that these relationships are consistent with the notion that a relatively uniform pool of protein-Pex5p complexes is maintained for appropriate peroxisome assembly.
Collapse
Affiliation(s)
- Debdip Ghosh
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
107
|
Danot O. The inducer maltotriose binds in the central cavity of the tetratricopeptide-like sensor domain of MalT, a bacterial STAND transcription factor. Mol Microbiol 2010; 77:628-41. [DOI: 10.1111/j.1365-2958.2010.07237.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
108
|
The peroxisomal receptor Pex19p forms a helical mPTS recognition domain. EMBO J 2010; 29:2491-500. [PMID: 20531392 DOI: 10.1038/emboj.2010.115] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 05/06/2010] [Indexed: 01/23/2023] Open
Abstract
The protein Pex19p functions as a receptor and chaperone of peroxisomal membrane proteins (PMPs). The crystal structure of the folded C-terminal part of the receptor reveals a globular domain that displays a bundle of three long helices in an antiparallel arrangement. Complementary functional experiments, using a range of truncated Pex19p constructs, show that the structured alpha-helical domain binds PMP-targeting signal (mPTS) sequences with about 10 muM affinity. Removal of a conserved N-terminal helical segment from the mPTS recognition domain impairs the ability for mPTS binding, indicating that it forms part of the mPTS-binding site. Pex19p variants with mutations in the same sequence segment abolish correct cargo import. Our data indicate a divided N-terminal and C-terminal structural arrangement in Pex19p, which is reminiscent of a similar division in the Pex5p receptor, to allow separation of cargo-targeting signal recognition and additional functions.
Collapse
|
109
|
Girzalsky W, Saffian D, Erdmann R. Peroxisomal protein translocation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:724-31. [DOI: 10.1016/j.bbamcr.2010.01.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/22/2009] [Accepted: 01/04/2010] [Indexed: 11/30/2022]
|
110
|
The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 2010; 12:273-7. [PMID: 20154681 DOI: 10.1038/ncb2027] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 01/25/2010] [Indexed: 11/08/2022]
Abstract
The peroxisomal protein import machinery differs fundamentally from known translocons (endoplasmic reticulum, mitochondria, chloroplasts, bacteria) as it allows membrane passage of folded, even oligomerized proteins. However, the mechanistic principles of protein translocation across the peroxisomal membrane remain unknown. There are various models that consider membrane invagination events, vesicle fusion or the existence of large import pores. Current data show that a proteinaceous peroxisomal importomer enables docking of the cytosolic cargo-loaded receptors, cargo translocation and receptor recycling. Remarkably, the cycling import receptor Pex5p changes its topology from a soluble cytosolic form to an integral membrane-bound form. According to the transient pore hypothesis, the membrane-bound receptor is proposed to form the core component of the peroxisomal import pore. Here, we demonstrate that the membrane-associated import receptor Pex5p together with its docking partner Pex14p forms a gated ion-conducting channel which can be opened to a diameter of about 9 nm by the cytosolic receptor-cargo complex. The newly identified pore shows striking dynamics, as expected for an import machinery translocating proteins of variable sizes.
Collapse
|
111
|
Lanyon-Hogg T, Warriner SL, Baker A. Getting a camel through the eye of a needle: the import of folded proteins by peroxisomes. Biol Cell 2010; 102:245-63. [PMID: 20146669 DOI: 10.1042/bc20090159] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peroxisomes are a family of organelles which have many unusual features. They can arise de novo from the endoplasmic reticulum by a still poorly characterized process, yet possess a unique machinery for the import of their matrix proteins. As peroxisomes lack DNA, their function, which is highly variable and dependent on developmental and/or environmental conditions, is determined by the post-translational import of specific metabolic enzymes in folded or oligomeric states. The two classes of matrix targeting signals for peroxisomal proteins [PTS1 (peroxisomal targeting signal 1) and PTS2] are recognized by cytosolic receptors [PEX5 (peroxin 5) and PEX7 respectively] which escort their cargo proteins to, or possibly across, the peroxisome membrane. Although the membrane translocation mechanism remains unclear, it appears to be driven by thermodynamically favourable binding interactions. Recycling of the receptors from the peroxisome membrane requires ATP hydrolysis for two linked processes: ubiquitination of PEX5 (and the PEX7 co-receptors in yeast) and the function of two peroxisome-associated AAA (ATPase associated with various cellular activities) ATPases, which play a role in recycling or turnover of the ubiquitinated receptors. This review summarizes and integrates recent findings on peroxisome matrix protein import from yeast, plant and mammalian model systems, and discusses some of the gaps in our understanding of this remarkable protein transport system.
Collapse
Affiliation(s)
- Thomas Lanyon-Hogg
- School of Chemistry, Faculty of Mathematical and Physical Sciences, University of Leeds, Leeds LS29JT, UK
| | | | | |
Collapse
|
112
|
Girzalsky W, Platta HW, Erdmann R. Protein transport across the peroxisomal membrane. Biol Chem 2009; 390:745-51. [PMID: 19558328 DOI: 10.1515/bc.2009.104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The maintenance of peroxisome function depends on the formation of the peroxisomal membrane and the subsequent import of both membrane and matrix proteins. Without exception, peroxisomal matrix proteins are nuclear encoded, synthesized on free ribosomes and subsequently imported post-translationally. In contrast to other translocation systems that transport unfolded polypeptide chains, the peroxisomal import apparatus can facilitate the transport of folded and oligomeric proteins across the peroxisomal membrane. The peroxisomal protein import is mediated by cycling receptors that shuttle between the cytosol and peroxisomal lumen and depends on ATP and ubiquitin. In this brief review, we will summarize our current knowledge on the import of soluble proteins into the peroxisomal matrix.
Collapse
Affiliation(s)
- Wolfgang Girzalsky
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | |
Collapse
|
113
|
Shiozawa K, Konarev PV, Neufeld C, Wilmanns M, Svergun DI. Solution structure of human Pex5.Pex14.PTS1 protein complexes obtained by small angle X-ray scattering. J Biol Chem 2009; 284:25334-42. [PMID: 19584060 DOI: 10.1074/jbc.m109.002311] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pex5p receptor recognizes newly synthesized peroxisomal matrix proteins which have a C-terminal peroxisomal targeting signal to the peroxisome. After docking to protein complexes on the membrane, these proteins are translocated across the membrane. The docking mechanism remains unclear, as no structural data on the multicomponent docking complex are available. As the interaction of the cargo-loaded Pex5p receptor and the peroxisomal membrane protein Pex14p is the essential primary docking step, we have investigated the solution structure of these complexes by small angle x-ray scattering and static light scattering. Titration studies yielded a 1:6 stoichiometry for the Pex5p.Pex14p complex, and low resolution structural models were reconstructed from the x-ray scattering data. The free full-length human Pex5p is monomeric in solution, with an elongated, partially unfolded N-terminal domain. The model of the complex reveals that the N terminus of Pex5p remains extended in the presence of cargo and Pex14p, the latter proteins being significantly intermingled with the Pex5p moiety. These results suggest that the extended structure of Pex5p may play a role in interactions with other substrates such as lipids and membrane proteins during the formation of functional multiprotein complexes.
Collapse
Affiliation(s)
- Kumiko Shiozawa
- European Molecular Biology Laboratory-Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | | | | | | | | |
Collapse
|
114
|
Abstract
Peroxisomes play an important role in lipid metabolic pathways and are implicated in many human disorders. Their biogenesis has been studied over the last two decades using many uni and multi-cellular model systems and many aspects of the mechanisms and proteins involved in peroxisome biogenesis are conserved from yeast to humans. In this manuscript we review the recent progress made in our understanding of the mechanisms by which matrix and membrane proteins are sorted to and assembled into peroxisomes.
Collapse
Affiliation(s)
- Changle Ma
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA
| |
Collapse
|
115
|
Grunau S, Schliebs W, Linnepe R, Neufeld C, Cizmowski C, Reinartz B, Meyer HE, Warscheid B, Girzalsky W, Erdmann R. Peroxisomal targeting of PTS2 pre-import complexes in the yeast Saccharomyces cerevisiae. Traffic 2009; 10:451-60. [PMID: 19183303 DOI: 10.1111/j.1600-0854.2008.00876.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Posttranslational matrix protein import into peroxisomes uses either one of the two peroxisomal targeting signals (PTS), PTS1 and PTS2. Unlike the PTS1 receptor Pex5p, the PTS2 receptor Pex7p is necessary but not sufficient to target cargo proteins into the peroxisomal matrix and requires coreceptors. Saccharomyces cerevisiae possesses two coreceptors, Pex18p and Pex21p, with a redundant but not a clearly defined function. To gain further insight into the early events of this import pathway, PTS2 pre-import complexes of S. cerevisiae were isolated and characterized by determination of size and protein composition in wild-type and different mutant strains. Mass spectrometric analysis of the cytosolic PTS2 pre-import complex indicates that Fox3p is the only abundant PTS2 protein under oleate growth conditions. Our data strongly suggest that the formation of the ternary cytosolic PTS2 pre-import complex occurs hierarchically. First, Pex7p recognizes cargo proteins through its PTS2 in the cytosol. In a second step, the coreceptor binds to this complex, and finally, this ternary 150 kDa pre-import complex docks at the peroxisomal membrane, where both the PTS1 and the PTS2 import pathways converge. Gel filtration analysis of membrane-bound subcomplexes suggests that Pex13p provides the initial binding partner at the peroxisomal membrane, whereas Pex14p assembles with Pex18p in high-molecular-weight complexes after or during dissociation of the PTS2 receptor.
Collapse
Affiliation(s)
- Silke Grunau
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Ebberink MS, Mooyer PAW, Koster J, Dekker CJM, Eyskens FJM, Dionisi-Vici C, Clayton PT, Barth PG, Wanders RJA, Waterham HR. Genotype-phenotype correlation in PEX5-deficient peroxisome biogenesis defective cell lines. Hum Mutat 2009; 30:93-8. [PMID: 18712838 DOI: 10.1002/humu.20833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteins destined for the peroxisomal matrix are targeted by virtue of a peroxisomal targeting sequence type 1 (PTS1) or type 2 (PTS2). In humans, targeting of either class of proteins relies on a cytosolic receptor protein encoded by the PEX5 gene. Alternative splicing of PEX5 results in two protein variants, PEX5S and PEX5L. PEX5S is exclusively involved in PTS1 protein import, whereas PEX5L mediates the import of both PTS1 and PTS2 proteins. Genetic complementation testing with over 500 different fibroblast cell lines from patients diagnosed with a peroxisome biogenesis disorder (PBD) identified 11 cell lines with a defect in PEX5. The aim of this study was to characterize these cell lines at a biochemical and genetic level. To this end, the cultured fibroblasts were analyzed for very long chain fatty acid (VLCFA) concentrations, peroxisomal beta-and alpha-oxidation, dihydroxyacetone-phosphate acyltransferase (DHAPAT) activity, peroxisomal thiolase, and catalase immunofluorescence. Mutation analysis of the PEX5 gene revealed 11 different mutations, eight of which are novel. PTS1- and PTS2-protein import capacity was assessed by transfection of the cells with green fluorescent protein (GFP) tagged with either PTS1 or PTS2. Six cell lines showed a defect in both PTS1 and PTS2 protein import, whereas four cell lines only showed a defect in PTS1 protein import. The location of the different mutations within the PEX5 amino acid sequence correlates rather well with the peroxisomal protein import defect observed in the cell lines.
Collapse
Affiliation(s)
- Merel S Ebberink
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Neufeld C, Filipp FV, Simon B, Neuhaus A, Schüller N, David C, Kooshapur H, Madl T, Erdmann R, Schliebs W, Wilmanns M, Sattler M. Structural basis for competitive interactions of Pex14 with the import receptors Pex5 and Pex19. EMBO J 2009; 28:745-54. [PMID: 19197237 DOI: 10.1038/emboj.2009.7] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 01/05/2009] [Indexed: 11/09/2022] Open
Abstract
Protein import into peroxisomes depends on a complex and dynamic network of protein-protein interactions. Pex14 is a central component of the peroxisomal import machinery and binds the soluble receptors Pex5 and Pex19, which have important function in the assembly of peroxisome matrix and membrane, respectively. We show that the N-terminal domain of Pex14, Pex14(N), adopts a three-helical fold. Pex5 and Pex19 ligand helices bind competitively to the same surface in Pex14(N) albeit with opposite directionality. The molecular recognition involves conserved aromatic side chains in the Pex5 WxxxF/Y motif and a newly identified F/YFxxxF sequence in Pex19. The Pex14-Pex5 complex structure reveals molecular details for a critical interaction in docking Pex5 to the peroxisomal membrane. We show that mutations of Pex14 residues located in the Pex5/Pex19 binding region disrupt Pex5 and/or Pex19 binding in vitro. The corresponding full-length Pex14 variants are impaired in peroxisomal membrane localisation in vivo, showing that the molecular interactions mediated by the N-terminal domain modulate peroxisomal targeting of Pex14.
Collapse
|
118
|
Abstract
Peroxisomes are organelles that carry out diverse biochemical processes in eukaryotic cells, including the core pathways of beta-oxidation of lipid molecules and detoxification of reactive oxygen species. In multicellular organisms defects in peroxisome assembly result in multiple biochemical and developmental abnormalities. As peroxisomes do not contain genetic material, their protein content, and therefore function, is determined by the import of nuclearly encoded proteins from the cytosol and, presumably, removal of damaged or obsolete proteins. Import of matrix proteins can be broken down into four steps: targeting signal recognition by the cycling import receptors; receptor-cargo docking at the peroxisome membrane; translocation and cargo unloading; and receptor recycling. Import is mediated by a set of evolutionarily conserved proteins called peroxins that have been identified primarily via genetic screens, but knowledge of their biochemical activities remains largely unresolved. Recent studies have filled in some of the blanks regarding receptor recycling and the role of ubiquitination but outstanding questions remain concerning the nature of the translocon and its ability to accommodate folded, even oligomeric proteins, and the mechanism of cargo unloading and turnover of peroxisomal proteins. This review seeks to integrate recent findings from yeast, mammalian and plant systems to present an up to date account of how proteins enter the peroxisome matrix.
Collapse
|
119
|
Structural insights into the recognition of peroxisomal targeting signal 1 by Trypanosoma brucei peroxin 5. J Mol Biol 2008; 381:867-80. [PMID: 18598704 DOI: 10.1016/j.jmb.2008.05.089] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 05/29/2008] [Accepted: 05/31/2008] [Indexed: 11/24/2022]
Abstract
Glycosomes are peroxisome-like organelles essential for trypanosomatid parasites. Glycosome biogenesis is mediated by proteins called "peroxins," which are considered to be promising drug targets in pathogenic Trypanosomatidae. The first step during protein translocation across the glycosomal membrane of peroxisomal targeting signal 1 (PTS1)-harboring proteins is signal recognition by the cytosolic receptor peroxin 5 (PEX5). The C-terminal PTS1 motifs interact with the PTS1 binding domain (P1BD) of PEX5, which is made up of seven tetratricopeptide repeats. Obtaining diffraction-quality crystals of the P1BD of Trypanosoma brucei PEX5 (TbPEX5) required surface entropy reduction mutagenesis. Each of the seven tetratricopeptide repeats appears to have a residue in the alpha(L) conformation in the loop connecting helices A and B. Five crystal structures of the P1BD of TbPEX5 were determined, each in complex with a hepta- or decapeptide corresponding to a natural or nonnatural PTS1 sequence. The PTS1 peptides are bound between the two subdomains of the P1BD. These structures indicate precise recognition of the C-terminal Leu of the PTS1 motif and important interactions between the PTS1 peptide main chain and up to five invariant Asn side chains of PEX5. The TbPEX5 structures reported here reveal a unique hydrophobic pocket in the subdomain interface that might be explored to obtain compounds that prevent relative motions of the subdomains and interfere selectively with PTS1 motif binding or release in trypanosomatids, and would therefore disrupt glycosome biogenesis and prevent parasite growth.
Collapse
|
120
|
Molecular basis for peroxisomal localization of tetrameric carbonyl reductase. Structure 2008; 16:388-97. [PMID: 18334214 DOI: 10.1016/j.str.2007.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 12/22/2007] [Accepted: 12/28/2007] [Indexed: 11/24/2022]
Abstract
Pig heart peroxisomal carbonyl reductase (PerCR) belongs to the short-chain dehydrogenase/reductase family, and its sequence comprises a C-terminal SRL tripeptide, which is a variant of the type 1 peroxisomal targeting signal (PTS1) Ser-Lys-Leu. PerCR is imported into peroxisomes of HeLa cells when the cells are transfected with vectors expressing the enzyme. However, PerCR does not show specific targeting when introduced into the cells with a protein transfection reagent. To understand the structural basis for peroxisomal localization of PerCR, we determined the crystal structure of PerCR. Our data revealed that the C-terminal PTS1 of each subunit of PerCR was involved in intersubunit interactions and was buried in the interior of the tetrameric molecule. These findings indicate that the PTS1 receptor Pex5p in the cytosol recognizes the monomeric form of PerCR whose C-terminal PTS1 is exposed, and that this PerCR is targeted into the peroxisome, thereby forming a tetramer.
Collapse
|
121
|
Martin GG, Hostetler HA, McIntosh AL, Tichy SE, Williams BJ, Russell DH, Berg JM, Spencer TA, Ball J, Kier AB, Schroeder F. Structure and function of the sterol carrier protein-2 N-terminal presequence. Biochemistry 2008; 47:5915-34. [PMID: 18465878 PMCID: PMC2474712 DOI: 10.1021/bi800251e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although sterol carrier protein-2 (SCP-2) is encoded as a precursor protein (proSCP-2), little is known regarding the structure and function of the 20-amino acid N-terminal presequence. As shown herein, the presequence contains significant secondary structure and alters SCP-2: (i) secondary structure (CD), (ii) tertiary structure (aqueous exposure of Trp shown by UV absorbance, fluorescence, and fluorescence quenching), (iii) ligand binding site [Trp response to ligands, peptide cross-linked by photoactivatable free cholesterol (FCBP)], (iv) selectivity for interaction with anionic phospholipid-rich membranes, (v) interaction with a peroxisomal import protein [FRET studies of Pex5p(C) binding], the N-terminal presequence increased SCP-2's affinity for Pex5p(C) by 10-fold, and (vi) intracellular targeting in living and fixed cells (confocal microscopy). Nearly 5-fold more SCP-2 than proSCP-2 colocalized with plasma membrane lipid rafts and caveolae (AF488-CTB); 2.8-fold more SCP-2 than proSCP-2 colocalized with a mitochondrial marker (Mitotracker), but nearly 2-fold less SCP-2 than proSCP-2 colocalized with peroxisomes (AF488 antibody to PMP70). These data indicate the importance of the N-terminal presequence in regulating SCP-2 structure, cholesterol localization within the ligand binding site, membrane association, and, potentially, intracellular targeting.
Collapse
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - Heather A. Hostetler
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - Avery L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - Shane E. Tichy
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255
| | - Brad J. Williams
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255
| | - Jeremy M. Berg
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | - Judith Ball
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| |
Collapse
|
122
|
Fransen M, Amery L, Hartig A, Brees C, Rabijns A, Mannaerts GP, Van Veldhoven PP. Comparison of the PTS1- and Rab8b-binding properties of Pex5p and Pex5Rp/TRIP8b. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:864-73. [PMID: 18346465 DOI: 10.1016/j.bbamcr.2008.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 11/26/2022]
Abstract
Tetratricopeptide (TPR)-domain proteins are involved in various cellular processes. The TPR domain is known to be responsible for interaction with other proteins commonly recognizing sequence motifs at the C-termini. One such TPR-protein, TRIP8b, was originally identified in rat as an interaction partner of Rab8b, and its human orthologue as a protein related to the peroxisomal targeting signal 1 (PTS1) receptor Pex5p (Pex5Rp). Somewhat later, the mouse orthologue was reported to bind the hyperpolarization-activated, cyclic nucleotide-regulated HCN channels, and, very recently, the rat orthologue was shown to interact with latrophilin 1, the calcium-independent receptor of alpha-latrotoxin. Here we employed various methodological approaches to investigate and compare the binding specificities of the human PTS1 receptor Pex5p and the related protein Pex5Rp/TRIP8b towards a subset of targets, including Rab8b and various C-termini resembling PTS1. The results show that the TPR domains of Pex5p and Pex5Rp/TRIP8b have distinct but overlapping substrate specificities. This suggests that selectivity in the recognition of substrates by the TPR domains of Pex5p and Pex5Rp/TRIP8b is a matter of considerable complexity, and that no single determinant appears to be sufficient in unambiguously defining a binding target for either protein. This idea is further corroborated by our observations that changes in the surrounding residues or the conformational state of one of the binding partners can profoundly alter their binding activities. The implications of these findings for the possible peroxisome-related functions of Pex5Rp/TRIP8b are discussed.
Collapse
Affiliation(s)
- Marc Fransen
- Katholieke Universiteit Leuven, Campus Gasthuisberg (O&N 1), Departement Moleculaire Celbiologie, LIPIT, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
123
|
Black SL, Stanley WA, Filipp FV, Bhairo M, Verma A, Wichmann O, Sattler M, Wilmanns M, Schultz C. Probing lipid- and drug-binding domains with fluorescent dyes. Bioorg Med Chem 2007; 16:1162-73. [PMID: 18024138 DOI: 10.1016/j.bmc.2007.10.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/12/2007] [Accepted: 10/23/2007] [Indexed: 11/24/2022]
Abstract
A series of 2- and 3-OH Nile red dyes was prepared in order to generate water-soluble probes that could be used to probe lipid binding to proteins. Various substitutions in positions 2-/3-, 6-, and 7-shifted wavelengths while maintaining the environmental sensitivity of Nile red. In order to increase the solubility of the dyes in aqueous solutions, we attached butyric acid groups to the 2- or 3-OH position. In addition, phenothiazine dyes, which exhibited particularly long excitation properties, were synthesized and tested for the first time. All dyes showed Stoke's shifts of 70-100 nm and changes in excitation and emission of over 100 nm, depending on the hydrophobicity of the environment. Binding studies with bovine serum albumin and the non-specific lipid transfer protein SCP2 revealed emission changes of more than 30 nm upon binding to the protein and a five-fold increase in emission intensity. Titration of the dye-loaded proteins with various lipids or drugs replaced the dye and thereby reversed the shift in wavelength intensity. This allowed us to estimate the lipid binding affinity of the investigated proteins. For SCP2, isothermal calorimetry (ITC) data verified the titration experiments. NMR titration experiments of SCP2 with Nile red 2-O-butyric acid (1a) revealed that the dye is bound within the lipid binding pocket and competes with lipid ligands for this binding site. These results give valuable insight into lipid and drug transport by proteins outside and inside cells.
Collapse
Affiliation(s)
- Shannon L Black
- European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Platta HW, Erdmann R. Peroxisomal dynamics. Trends Cell Biol 2007; 17:474-84. [PMID: 17913497 DOI: 10.1016/j.tcb.2007.06.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 06/08/2007] [Accepted: 06/12/2007] [Indexed: 11/20/2022]
Abstract
Peroxisomes are a dynamic compartment in almost all eukaryotic cells and have diverse metabolic roles in response to environmental changes and cellular demands. The accompanying changes in enzyme content or abundance of peroxisomes are accomplished by dynamically operating membrane- and matrix-protein transport machineries. This review discusses recent progress in understanding peroxisomal proliferation and maintenance, insertion of peroxisomal membrane proteins, compartmentalization of peroxisomal matrix proteins and selective degradation of peroxisomes via pexophagy.
Collapse
Affiliation(s)
- Harald W Platta
- Ruhr-Universität Bochum, Medizinische Fakultät, Institut für Physiologische Chemie, Abteilung für Systembiochemie, Universitätsstr. 150, D-44780 Bochum, Germany
| | | |
Collapse
|
125
|
Stanley WA, Fodor K, Marti-Renom MA, Schliebs W, Wilmanns M. Protein translocation into peroxisomes by ring-shaped import receptors. FEBS Lett 2007; 581:4795-802. [PMID: 17884042 DOI: 10.1016/j.febslet.2007.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/04/2007] [Indexed: 12/27/2022]
Abstract
Folded and functional proteins destined for translocation from the cytosol into the peroxisomal matrix are recognized by two different peroxisomal import receptors, Pex5p and Pex7p. Both cargo-loaded receptors dock on the same translocon components, followed by cargo release and receptor recycling, as part of the complete translocation process. Recent structural and functional evidence on the Pex5p receptor has provided insight on the molecular requirements of specific cargo recognition, while the remaining processes still remain largely elusive. Comparison of experimental structures of Pex5p and a structural model of Pex7p reveal that both receptors are built by ring-like arrangements with cargo binding sites, central to the respective structures. Although, molecular insight into the complete peroxisomal translocon still remains to be determined, emerging data allow to deduce common molecular principles that may hold for other translocation systems as well.
Collapse
Affiliation(s)
- Will A Stanley
- ARC Plant Energy Biology Centre M316, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | | | | | | | |
Collapse
|
126
|
Parr RD, Martin GG, Hostetler HA, Schroeder ME, Mir KD, Kier AB, Ball JM, Schroeder F. A new N-terminal recognition domain in caveolin-1 interacts with sterol carrier protein-2 (SCP-2). Biochemistry 2007; 46:8301-14. [PMID: 17580960 PMCID: PMC3658303 DOI: 10.1021/bi7002636] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although plasma membrane domains, such as caveolae, provide an organizing principle for signaling pathways and cholesterol homeostasis in the cell, relatively little is known regarding specific mechanisms, whereby intracellular lipid-binding proteins are targeted to caveolae. Therefore, the interaction between caveolin-1 and sterol carrier protein-2 (SCP-2), a protein that binds and transfers both cholesterol and signaling lipids (e.g., phosphatidylinositides and sphingolipids), was examined by yeast two-hybrid, in vitro binding and fluorescence resonance energy transfer (FRET) analyses. Results of the in vivo and in vitro assays identified for the first time the N-terminal amino acids (aa) 1-32 amphipathic alpha helix of SCP-2 functionally interacted with caveolin-1. This interaction was independent of the classic caveolin-1 scaffolding domain, in which many signaling proteins interact. Instead, SCP-2 bound caveolin-1 through a new domain identified in the N-terminal domain of caveolin-1 between aa 34-40. Modeling studies suggested that electrostatic interactions between the SCP-2 N-terminal aa 1-32 amphipathic alpha-helical domain (cationic, positively charged face) and the caveolin-1 N-terminal aa 33-59 alpha helix (anionic, negatively charged face) may significantly contribute to this interaction. These findings provide new insights on how SCP-2 enhances cholesterol retention within the cell as well as regulates the distribution of signaling lipids, such as phosphoinositides and sphingolipids, at plasma membrane caveolae.
Collapse
Affiliation(s)
- Rebecca D. Parr
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX77843-4467
| | - Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX77843-4466
| | - Heather A. Hostetler
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX77843-4466
| | - Megan E. Schroeder
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX77843-4467
| | - Kiran D. Mir
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX77843-4467
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX77843-4467
| | - Judith M. Ball
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX77843-4466
| |
Collapse
|
127
|
Abstract
The nonspecific lipid transfer protein sterol carrier protein 2 (SCP2) is involved in organellar fatty acid metabolism. A hydrophobic cavity in the structure of SCP2 accommodates a wide variety of apolar ligands such as cholesterol derivatives or fatty acyl-coenzyme A (CoA) conjugates. The properties of this nonspecific lipid binding pocket are explored using NMR chemical shift perturbations, paramagnetic relaxation enhancement, amide hydrogen exchange, and 15N relaxation measurements. A common binding cavity shared by different physiological ligands is identified. NMR relaxation measurements reveal that residues in the three C-terminal alpha-helices within the lipid binding region exhibit mobility at fast (picosecond to nanosecond) and slow (microsecond to millisecond) time scales. Ligand binding is associated with a considerable loss of peptide backbone mobility. The observed conformational dynamics in SCP2 may play a role for the access of hydrophobic ligands to an occluded binding pocket. The C-terminal peroxisomal targeting signal of SCP2 is specifically recognized by the Pex5p receptor protein, which conducts cargo proteins toward the peroxisomal organelle. Neither the C-terminal targeting signal nor the N-terminal precursor sequence interferes with lipid binding by SCP2. The alpha-helices involved in lipid binding also mediate a secondary interaction interface with the Pex5p receptor. Silencing of conformational dynamics of the peptide backbone in these helices upon either lipid or Pex5p binding might communicate the loading state of the cargo protein to the targeting receptor.
Collapse
Affiliation(s)
| | - Michael Sattler
- Corresponding author. Telephone: +49-6221-387-552. Fax: +49-6221-387-98552.
| |
Collapse
|
128
|
Carvalho AF, Grou CP, Pinto MP, Alencastre IS, Costa-Rodrigues J, Fransen M, Sá-Miranda C, Azevedo JE. Functional characterization of two missense mutations in Pex5p - C11S and N526K. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1141-8. [PMID: 17532062 DOI: 10.1016/j.bbamcr.2007.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 11/29/2022]
Abstract
Most newly synthesized peroxisomal proteins are targeted to the organelle by Pex5p, the peroxisomal cycling receptor. Pex5p interacts with these proteins in the cytosol, transports them to the peroxisomal docking/translocation machinery and promotes their translocation across the organelle membrane. Finally, Pex5p is recycled back to the cytosol in order to catalyse additional rounds of transportation. Although several properties of this protein sorting pathway have been recently uncovered, we are still far from comprehending many of its basic principles. Here, we describe the mechanistic implications of two single-amino acid substitutions in Pex5p. The first mutation characterized, Cys11Ser, blocks the recycling of Pex5p back into the cytosol at the step in which stage 2 Pex5p is converted into stage 3 Pex5p. The mutation Asn526Lys, previously described in a child with neonatal adrenoleukodystrophy and shown to abolish the PTS1-binding capacity of Pex5p, results in a Pex5p protein exhibiting import capacity. Protease assays suggest that the Asn526Lys mutation causes conformational alterations at the N-terminal half of Pex5p mimicking the ones induced by binding of a PTS1-containing peptide to the normal peroxin. The implications of these findings on the mechanism of protein translocation across the peroxisomal membrane are discussed.
Collapse
|
129
|
A previously unobserved conformation for the human Pex5p receptor suggests roles for intrinsic flexibility and rigid domain motions in ligand binding. BMC STRUCTURAL BIOLOGY 2007; 7:24. [PMID: 17428317 PMCID: PMC1854907 DOI: 10.1186/1472-6807-7-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 04/11/2007] [Indexed: 11/16/2022]
Abstract
Background The C-terminal tetratricopeptide (TPR) repeat domain of Pex5p recognises proteins carrying a peroxisomal targeting signal type 1 (PTS1) tripeptide in their C-terminus. Previously, structural data have been obtained from the TPR domain of Pex5p in both the liganded and unliganded states, indicating a conformational change taking place upon cargo protein binding. Such a conformational change would be expected to play a major role both during PTS1 protein recognition as well as in cargo release into the peroxisomal lumen. However, little information is available on the factors that may regulate such structural changes. Results We have used a range of biophysical and computational methods to further analyse the conformational flexibility and ligand binding of Pex5p. A new crystal form for the human Pex5p C-terminal domain (Pex5p(C)) was obtained in the presence of Sr2+ ions, and the structure presents a novel conformation, distinct from all previous liganded and apo crystal structures for Pex5p(C). The difference relates to a near-rigid body movement of two halves of the molecule, and this movement is different from that required to reach a ring-like conformation upon PTS1 ligand binding. The bound Sr2+ ion changes the dynamic properties of Pex5p(C) affecting its conformation, possibly by making the Sr2+-binding loop – located near the hinge region for the observed domain motions – more rigid. Conclusion The current data indicate that Pex5p(C) is able to sample a range of conformational states in the absence of bound PTS1 ligand. The domain movements between various apo conformations are distinct from those involved in ligand binding, although the differences between all observed conformations so far can be characterised by the movement of the two halves of Pex5p(C) as near-rigid bodies with respect to each other.
Collapse
|
130
|
Platta HW, Erdmann R. The peroxisomal protein import machinery. FEBS Lett 2007; 581:2811-9. [PMID: 17445803 DOI: 10.1016/j.febslet.2007.04.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 03/27/2007] [Accepted: 04/02/2007] [Indexed: 11/19/2022]
Abstract
Peroxisomes are unique organelles whose physiological functions vary depending on the cellular environment or metabolic and developmental state of the organism. These changes in enzyme content are accomplished by the dynamically operating membrane and matrix protein import machineries of peroxisomes that rely on the concerted function of at least 20 peroxins. The import of folded matrix proteins is mediated by cycling receptors that shuttle between the cytosol and peroxisomal lumen. Receptor release back to the cytosol represents the ATP-dependent step of peroxisomal matrix protein import, which consists of two energy-consuming reactions: receptor ubiquitination and dislocation.
Collapse
Affiliation(s)
- Harald W Platta
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
131
|
Moscicka KB, Klompmaker SH, Wang D, van der Klei IJ, Boekema EJ. TheHansenula polymorphaperoxisomal targeting signal 1 receptor, Pex5p, functions as a tetramer. FEBS Lett 2007; 581:1758-62. [PMID: 17418823 DOI: 10.1016/j.febslet.2007.03.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 03/14/2007] [Accepted: 03/18/2007] [Indexed: 11/26/2022]
Abstract
We have studied Hansenula polymorpha Pex5p and Pex20p, peroxins involved in peroxisomal matrix protein import. In vitro binding experiments suggested that H. polymorpha Pex5p and Pex20p physically interact. We used single particle electron microscopy (EM) to analyze the structure of purified Pex5p and its possible association with Pex20p. Upon addition of Pex20p, a multimeric Pex20p complex was observed to be associated to the periphery of the Pex5p tetramer. In this Pex5p-Pex20p complex, the conformation of tetrameric Pex5p had changed from a closed conformation with a diameter of 115A into an open conformation of 134A. EM also indicated that the Pex5p-Pex20p complex was capable to bind native, folded catalase, a peroxisomal PTS1 protein. This suggests that the Pex5p-Pex20p complex may be functional as receptor complex.
Collapse
Affiliation(s)
- Katarzyna B Moscicka
- Department of Biophysical Chemistry, GBB, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
132
|
Stanley WA, Versluis K, Schultz C, Heck AJR, Wilmanns M. Investigation of the ligand spectrum of human sterol carrier protein 2 using a direct mass spectrometry assay. Arch Biochem Biophys 2007; 461:50-8. [PMID: 17418802 DOI: 10.1016/j.abb.2007.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/11/2007] [Accepted: 02/12/2007] [Indexed: 11/17/2022]
Abstract
Sterol carrier protein 2 (SCP2) has been investigated by nearly native electrospray ionisation mass spectrometry in the presence of long chain fatty acyl CoAs (LCFA-CoAs) and carnitine derivatives of equivalent fatty acid chain length (LCFA-carnitines). Four SCP2 constructs were compared to examine the influence of the N-terminal presequence and the C-terminal peroxisomal targeting signal on ligand binding. Removal of N- or C-terminal residues did not influence ligand binding. The observation that LCFA-CoAs are high affinity ligands for SCP2 was confirmed, while LCFA-carnitines were demonstrated for the first time not to interact with SCP2. LCFA-CoAs formed non-covalent complexes with SCP2 of 2:1 and 1:1 stoichiometry, which could be dissociated by elevating the energy of the ions upon entrance to the mass spectrometer. A fluorescence-competition assay using Nile Red butyric acid confirmed the mass spectrometric observations in solution. The physiological significance of the lack of LCFA-carnitine binding by SCP2 is discussed.
Collapse
Affiliation(s)
- Will A Stanley
- EMBL-Hamburg, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
133
|
Maynard EL, Berg JM. Quantitative analysis of peroxisomal targeting signal type-1 binding to wild-type and pathogenic mutants of Pex5p supports an affinity threshold for peroxisomal protein targeting. J Mol Biol 2007; 368:1259-66. [PMID: 17399738 DOI: 10.1016/j.jmb.2007.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 03/02/2007] [Indexed: 11/26/2022]
Abstract
Peroxisomal biogenesis disorders (PBDs) are caused by mutations in 12 distinct genes that encode the components of the peroxisome assembly machinery. Three mutations in the gene encoding Pex5p, the peroxisomal targeting signal type-1 (PTS1) receptor, have been reported, each associated with a disorder of the Zellweger spectrum of different severity. Here, we report studies of the affinities of mutated forms of Pex5p for a series of PTS1 peptides and conclude that PTS1-affinity reductions are correlated with disease severity and cell biological phenotype. A quantitative model has been developed that allows estimation of the dissociation constants for complexes with a wide range of PTS1 sequences bound to wild-type and mutant Pex5p. In the context of this model, the binding measurements suggest that no PTS1-containing proteins are targeted by Pex5p(N489K) and only a relatively small subset of PTS1-containing proteins with the highest affinity for Pex5p are targeted to peroxisomes by Pex5p(S563W). Furthermore, the results of the analysis are consistent with an approximate dissociation constant threshold near 500 nM required for efficient protein targeting to peroxisomes.
Collapse
Affiliation(s)
- Ernest L Maynard
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
134
|
Stanley WA, Wilmanns M. Dynamic architecture of the peroxisomal import receptor Pex5p. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1592-8. [PMID: 17141887 DOI: 10.1016/j.bbamcr.2006.10.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 10/26/2006] [Accepted: 10/26/2006] [Indexed: 11/29/2022]
Abstract
The majority of peroxisomal matrix proteins are recognized by the import receptor Pex5p. The receptor is dynamic in terms of its overall architecture and association with the peroxisomal membrane. It participates in different protein complexes during the translocation of cargos from the cytosol to the peroxisomal matrix. Its sequence comprises two structurally and functionally autonomous parts. The N-terminal segment interacts with several peroxins that assemble into distinct protein complexes during cargo translocation. Despite evidence for alpha-helical binding motifs for some of these components (Pex13p, Pex14p) its overall appearance is that of a molten globule and folding/unfolding transitions may play a critical role in its function. In contrast, most of the C-terminal part of the receptor folds into a ring-like alpha-helical structure and binds folded and functionally intact peroxisomal targets that bear a C-terminal peroxisomal targeting signal type-1. Some of these targets also bind to secondary binding sites of the receptor.
Collapse
Affiliation(s)
- Will A Stanley
- EMBL-Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | | |
Collapse
|