101
|
Oser M, Mader CC, Gil-Henn H, Magalhaes M, Bravo-Cordero JJ, Koleske AJ, Condeelis J. Specific tyrosine phosphorylation sites on cortactin regulate Nck1-dependent actin polymerization in invadopodia. J Cell Sci 2011; 123:3662-73. [PMID: 20971703 DOI: 10.1242/jcs.068163] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Invadopodia are matrix-degrading membrane protrusions in invasive carcinoma cells enriched in proteins that regulate actin polymerization. The on-off regulatory switch that initiates actin polymerization in invadopodia requires phosphorylation of tyrosine residues 421, 466, and 482 on cortactin. However, it is unknown which of these cortactin tyrosine phosphorylation sites control actin polymerization. We investigated the contribution of individual tyrosine phosphorylation sites (421, 466, and 482) on cortactin to the regulation of actin polymerization in invadopodia. We provide evidence that the phosphorylation of tyrosines 421 and 466, but not 482, is required for the generation of free actin barbed ends in invadopodia. In addition, these same phosphotyrosines are important for Nck1 recruitment to invadopodia via its SH2 domain, for the direct binding of Nck1 to cortactin in vitro, and for the FRET interaction between Nck1 and cortactin in invadopodia. Furthermore, matrix proteolysis-dependent tumor cell invasion is dramatically inhibited in cells expressing a mutation in phosphotyrosine 421 or 466. Together, these results identify phosphorylation of tyrosines 421 and 466 on cortactin as the crucial residues that regulate Nck1-dependent actin polymerization in invadopodia and tumor cell invasion, and suggest that specifically blocking either tyrosine 421 or 466 phosphorylation might be effective at inhibiting tumor cell invasion in vivo.
Collapse
Affiliation(s)
- Matthew Oser
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Huang H, Sidhu SS. Studying binding specificities of peptide recognition modules by high-throughput phage display selections. Methods Mol Biol 2011; 781:87-97. [PMID: 21877279 DOI: 10.1007/978-1-61779-276-2_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Peptide recognition modules (PRMs) play critical roles in cellular processes, including differentiation, proliferation and cytoskeleton organization. PRMs normally bind to short linear motifs in protein ligands, and by so doing recruit proteins into signaling complexes. Based on the binding specificity profile of a PRM, one can predict putative natural interaction partners by searching genome databases. Candidate interaction partners can in turn provide clues to assemble potential in vivo protein complexes that the PRM may be involved with. Combinatorial peptide libraries have proven to be effective tools for profiling the binding specificities of PRMs. Herein, we describe high-throughput methods for the expression and purification of PRM proteins and the use of peptide-phage libraries for PRM specificity profiling. These high-throughput methods greatly expedite the study of PRM families on a genome-wide scale.
Collapse
Affiliation(s)
- Haiming Huang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
103
|
Abstract
Ever since the discovery of insulin and its role in the regulation of glucose uptake and utilization, there has been great interest in insulin, its structure and the way in which it interacts with its receptor and effects signal transduction. As the 90th anniversary of the discovery of insulin approaches, it is timely to provide an overview of the landmark discoveries relating to the structure and function of this remarkable molecule and its receptor.
Collapse
Affiliation(s)
- Colin W. Ward
- Walter and Eliza Hall Institute of Medical ResearchParkville, VIC, Australia
| | - Michael C. Lawrence
- Walter and Eliza Hall Institute of Medical ResearchParkville, VIC, Australia
- Department of Medical Biology, University of MelbourneParkville, VIC, Australia
- *Correspondence: Michael C. Lawrence, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia. e-mail:
| |
Collapse
|
104
|
Mueller C, Liotta LA, Espina V. Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol 2010; 4:461-81. [PMID: 20974554 PMCID: PMC2981612 DOI: 10.1016/j.molonc.2010.09.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 12/18/2022] Open
Abstract
Individualizing cancer therapy for molecular targeted inhibitors requires a new class of molecular profiling technology that can map the functional state of the cancer cell signal pathways containing the drug targets. Reverse phase protein microarrays (RPMA) are a technology platform designed for quantitative, multiplexed analysis of specific phosphorylated, cleaved, or total (phosphorylated and non-phosphorylated) forms of cellular proteins from a limited amount of sample. This class of microarray can be used to interrogate tissue samples, cells, serum, or body fluids. RPMA were previously a research tool; now this technology has graduated to use in research clinical trials with clinical grade sensitivity and precision. In this review we describe the application of RPMA for multiplexed signal pathway analysis in therapeutic monitoring, biomarker discovery, and evaluation of pharmaceutical targets, and conclude with a summary of the technical aspects of RPMA construction and analysis.
Collapse
Affiliation(s)
- Claudius Mueller
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, VA 20110, USA
| | | | | |
Collapse
|
105
|
Kelley LC, Ammer AG, Hayes KE, Martin KH, Machida K, Jia L, Mayer BJ, Weed SA. Oncogenic Src requires a wild-type counterpart to regulate invadopodia maturation. J Cell Sci 2010; 123:3923-32. [PMID: 20980387 DOI: 10.1242/jcs.075200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The proto-oncogene Src tyrosine kinase (Src) is overexpressed in human cancers and is currently a target of anti-invasive therapies. Activation of Src is an essential catalyst of invadopodia production. Invadopodia are cellular structures that mediate extracellular matrix (ECM) proteolysis, allowing invasive cell types to breach confining tissue barriers. Invadopodia assembly and maturation is a multistep process, first requiring the targeting of actin-associated proteins to form pre-invadopodia, which subsequently mature by recruitment and activation of matrix metalloproteases (MMPs) that facilitate ECM degradation. We demonstrate that active, oncogenic Src alleles require the presence of a wild-type counterpart to induce ECM degradation at invadopodia sites. In addition, we identify the phosphorylation of the invadopodia regulatory protein cortactin as an important mediator of invadopodia maturation downstream of wild-type Src. Distinct phosphotyrosine-based protein-binding profiles in cells forming pre-invadopodia and mature invadopodia were identified by SH2-domain array analysis. These results indicate that although elevated Src kinase activity is required to target actin-associated proteins to pre-invadopodia, regulated Src activity is required for invadopodia maturation and matrix degradation activity. Our findings describe a previously unappreciated role for proto-oncogenic Src in enabling the invasive activity of constitutively active Src alleles.
Collapse
Affiliation(s)
- Laura C Kelley
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300, USA
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Machida K, Eschrich S, Li J, Bai Y, Koomen J, Mayer BJ, Haura EB. Characterizing tyrosine phosphorylation signaling in lung cancer using SH2 profiling. PLoS One 2010; 5:e13470. [PMID: 20976048 PMCID: PMC2957407 DOI: 10.1371/journal.pone.0013470] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/23/2010] [Indexed: 11/18/2022] Open
Abstract
Background Tyrosine kinases drive the proliferation and survival of many human cancers. Thus profiling the global state of tyrosine phosphorylation of a tumor is likely to provide a wealth of information that can be used to classify tumors for prognosis and prediction. However, the comprehensive analysis of tyrosine phosphorylation of large numbers of human cancer specimens is technically challenging using current methods. Methodology/Principal Findings We used a phosphoproteomic method termed SH2 profiling to characterize the global state of phosphotyrosine (pTyr) signaling in human lung cancer cell lines. This method quantifies the phosphorylated binding sites for SH2 domains, which are used by cells to respond to changes in pTyr during signaling. Cells could be grouped based on SH2 binding patterns, with some clusters correlated with EGF receptor (EGFR) or K-RAS mutation status. Binding of specific SH2 domains, most prominently RAS pathway activators Grb2 and ShcA, correlated with EGFR mutation and sensitivity to the EGFR inhibitor erlotinib. SH2 binding patterns also reflected MET activation and could identify cells driven by multiple kinases. The pTyr responses of cells treated with kinase inhibitors provided evidence of distinct mechanisms of inhibition. Conclusions/Significance This study illustrates the potential of modular protein domains and their proteomic binding profiles as powerful molecular diagnostic tools for tumor classification and biomarker identification.
Collapse
Affiliation(s)
- Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Steven Eschrich
- Departments of Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Jiannong Li
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - John Koomen
- Deparment of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Bruce J. Mayer
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail: (BJM); (EBH)
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail: (BJM); (EBH)
| |
Collapse
|
107
|
Rajasekaran S, Merlin JC, Kundeti V, Mi T, Oommen A, Vyas J, Alaniz I, Chung K, Chowdhury F, Deverasatty S, Irvey TM, Lacambacal D, Lara D, Panchangam S, Rathnayake V, Watts P, Schiller MR. A computational tool for identifying minimotifs in protein-protein interactions and improving the accuracy of minimotif predictions. Proteins 2010; 79:153-64. [PMID: 20938975 DOI: 10.1002/prot.22868] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/22/2010] [Accepted: 08/13/2010] [Indexed: 01/12/2023]
Abstract
Protein-protein interactions are important to understanding cell functions; however, our theoretical understanding is limited. There is a general discontinuity between the well-accepted physical and chemical forces that drive protein-protein interactions and the large collections of identified protein-protein interactions in various databases. Minimotifs are short functional peptide sequences that provide a basis to bridge this gap in knowledge. However, there is no systematic way to study minimotifs in the context of protein-protein interactions or vice versa. Here we have engineered a set of algorithms that can be used to identify minimotifs in known protein-protein interactions and implemented this for use by scientists in Minimotif Miner. By globally testing these algorithms on verified data and on 100 individual proteins as test cases, we demonstrate the utility of these new computation tools. This tool also can be used to reduce false-positive predictions in the discovery of novel minimotifs. The statistical significance of these algorithms is demonstrated by an ROC analysis (P = 0.001).
Collapse
Affiliation(s)
- Sanguthevar Rajasekaran
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut 06269-2155, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Fredolini C, Liotta LA, Petricoin EF. Application of proteomic technologies for prostate cancer detection, prognosis, and tailored therapy. Crit Rev Clin Lab Sci 2010; 47:125-38. [PMID: 20858067 DOI: 10.3109/10408363.2010.503558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prostate cancer affects 3 in 10 men over the age of 50 years, and, unfortunately, the clinical course of the disease is poorly predicted. At present, there is no means that can distinguish indolent from aggressive/metastatic tumors. Thus, a personalized clinical approach could be helpful in diagnosing clinically relevant disease and guiding appropriate patient therapy. Individualized medicine requires a deep knowledge of the molecular mechanisms underpinning prostate cancer carcinogenesis. Proteomics may be the most powerful way to uncover biomarkers of detection, prognosis, and prediction, as proteins do the work of the cell and represent the majority of the diagnostic markers and drug targets today. Proteomic technologies are rapidly advancing beyond the two-dimensional gel separation techniques of the past to new types of mass spectrometry and protein microarray analyses. Biological fluids and tissue-cell proteomes from men with prostate cancer are being explored to identify diagnostic and prognostic biomarkers and therapeutic targets using these new proteomic approaches. Traditional and novel proteomic technology and their application to prostate cancer studies in translational research will be presented and discussed in this review. Proteomics coupled with powerful nanotechnology-based biomarker discovery approaches may provide a new and exciting opportunity for body fluid-borne biomarker discovery and characterization. While innovative mass spectrometry technology and nanotrap could be applied to improve the discovery and measurement of biomarkers for the early detection of prostate cancer, the use of tissue proteomic tools such as the reverse-phase protein microarray may provide new approaches for personalization of therapies tailored to each tumor's unique pathway activation network.
Collapse
|
109
|
Sylvester M, Kliche S, Lange S, Geithner S, Klemm C, Schlosser A, Großmann A, Stelzl U, Schraven B, Krause E, Freund C. Adhesion and degranulation promoting adapter protein (ADAP) is a central hub for phosphotyrosine-mediated interactions in T cells. PLoS One 2010; 5:e11708. [PMID: 20661443 PMCID: PMC2908683 DOI: 10.1371/journal.pone.0011708] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 06/08/2010] [Indexed: 01/13/2023] Open
Abstract
TCR stimulation leads to an increase in cellular adhesion among other outcomes. The adhesion and degranulation promoting adapter protein (ADAP) is known to be rapidly phosphorylated after T cell stimulation and relays the TCR signal to adhesion molecules of the integrin family. While three tyrosine phosphorylation sites have been characterized biochemically, the binding capabilities and associated functions of several other potential phosphotyrosine motifs remain unclear. Here, we utilize in vitro phosphorylation and mass spectrometry to map novel phosphotyrosine sites in the C-terminal part of human ADAP (486–783). Individual tyrosines were then mutated to phenylalanine and their relevance for cellular adhesion and migration was tested experimentally. Functionally important tyrosine residues include two sites within the folded hSH3 domains of ADAP and two at the C-terminus. Furthermore, using a peptide pulldown approach in combination with stable isotope labeling in cell culture (SILAC) we identified SLP-76, PLCγ, PIK3R1, Nck, CRK, Gads, and RasGAP as phospho-dependent binding partners of a central YDDV motif of ADAP. The phosphorylation-dependent interaction between ADAP and Nck was confirmed by yeast two-hybrid analysis, immunoprecipitation and binary pulldown experiments, indicating that ADAP directly links integrins to modulators of the cytoskeleton independent of SLP-76.
Collapse
Affiliation(s)
- Marc Sylvester
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Kliche
- Institut für Molekulare und Klinische Immunologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Sabine Lange
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Sabine Geithner
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Clementine Klemm
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Andreas Schlosser
- Institut für Medizinische Immunologie CCM, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arndt Großmann
- Otto-Warburg-Laboratorium, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Ulrich Stelzl
- Otto-Warburg-Laboratorium, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Burkhart Schraven
- Institut für Molekulare und Klinische Immunologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Eberhard Krause
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Christian Freund
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
110
|
Dubielecka PM, Machida K, Xiong X, Hossain S, Ogiue-Ikeda M, Carrera AC, Mayer BJ, Kotula L. Abi1/Hssh3bp1 pY213 links Abl kinase signaling to p85 regulatory subunit of PI-3 kinase in regulation of macropinocytosis in LNCaP cells. FEBS Lett 2010; 584:3279-86. [PMID: 20598684 DOI: 10.1016/j.febslet.2010.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/09/2010] [Accepted: 06/13/2010] [Indexed: 12/25/2022]
Abstract
Macropinocytosis is regulated by Abl kinase via an unknown mechanism. We previously demonstrated that Abl kinase activity is, itself, regulated by Abi1 subsequent to Abl kinase phosphorylation of Abi1 tyrosine 213 (pY213) [1]. Here we show that blocking phosphorylation of Y213 abrogated the ability of Abl to regulate macropinocytosis, implicating Abi1 pY213 as a key regulator of macropinocytosis. Results from screening the human SH2 domain library and mapping the interaction site between Abi1 and the p85 regulatory domain of PI-3 kinase, coupled with data from cells transfected with loss-of-function p85 mutants, support the hypothesis that macropinocytosis is regulated by interactions between Abi1 pY213 and the C-terminal SH2 domain of p85-thereby linking Abl kinase signaling to p85-dependent regulation of macropinocytosis.
Collapse
|
111
|
Lazer G, Pe'er L, Farago M, Machida K, Mayer BJ, Katzav S. Tyrosine residues at the carboxyl terminus of Vav1 play an important role in regulation of its biological activity. J Biol Chem 2010; 285:23075-85. [PMID: 20457609 DOI: 10.1074/jbc.m109.094508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The guanine nucleotide exchange factor (GEF) Vav1 is an essential signal transducer protein in the hematopoietic system, where it is expressed physiologically. It is also involved in several human malignancies. Tyrosine phosphorylation at the Vav1 amino terminus plays a central role in regulating its activity; however, the role of carboxyl terminal tyrosine residues is unknown. We found that mutation of either Tyr-826 (Y826F) or Tyr-841 (Y841F) to phenylalanine led to loss of Vav1 GEF activity. When these Vav1 mutants were ectopically expressed in pancreatic cancer cells lacking Vav1, they failed to induce growth in agar, indicating loss of transforming potential. Furthermore, although Y841F had no effect on Vav1-stimulated nuclear factor of activated T cells (NFAT) activity, Y826F doubled NFAT activity when compared with Vav1, suggesting that Tyr-826 mediates an autoinhibitory effect on NFAT activity. SH2 profiling revealed that Shc, Csk, Abl, and Sap associate with Tyr-826, whereas SH2-B, Src, Brk, GTPase-activating protein, and phospholipase C-gamma associate with Tyr-841. Although the mutations in the Tyr-826 and Tyr-841 did not affect the binding of the carboxyl SH3 of Vav1 to other proteins, binding to several of the proteins identified by the SH2 profiling was lost. Of interest is Csk, which associates with wild-type Vav1 and Y841F, yet it fails to associate with Y826F, suggesting that loss of binding between Y826F and Csk might relieve an autoinhibitory effect, leading to increased NFAT. Our data indicate that GEF activity is critical for the function of Vav1 as a transforming protein but not for NFAT stimulation. The association of Vav1 with other proteins, detected by SH2 profiling, might affect other Vav1-dependent activities, such as NFAT stimulation.
Collapse
Affiliation(s)
- Galit Lazer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
112
|
Sawasdikosol S. Detecting tyrosine-phosphorylated proteins by Western blot analysis. CURRENT PROTOCOLS IN IMMUNOLOGY 2010; Chapter 11:11.3.1-11.3.11. [PMID: 20376841 DOI: 10.1002/0471142735.im1103s89] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of monoclonal antibodies (mAbs) that recognize nearly all of the phosphorylated tyrosine residues, irrespective of the surrounding sequences, enables researchers to detect the phosphorylation state of proteins through the use of anti-phosphotyrosine western blotting. The availability of this simple, reliable, nonradioactive and yet sensitive method created a boom in signal transduction research. While the methodology of how to perform an anti-phosphotyrosine western blot remains unchanged since the procedure became widely used in the early part of 1990s, steady improvements in reagents and detection technologies have allowed researchers to detect tyrosine phosphorylation quantitatively, at unprecedented sensitivity. In addition to the improvements in the western blot-based systems, powerful new phosphotyrosine detection platforms, based on proteomic technologies, are emerging rapidly. This unit will describe in detail the steps needed to perform the standard anti-phosphotyrosine western blot analysis.
Collapse
|
113
|
Wojcik J, Hantschel O, Grebien F, Kaupe I, Bennett KL, Barkinge J, Jones RB, Koide A, Superti-Furga G, Koide S. A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Nat Struct Mol Biol 2010; 17:519-27. [PMID: 20357770 PMCID: PMC2926940 DOI: 10.1038/nsmb.1793] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/24/2010] [Indexed: 11/10/2022]
Abstract
Interactions between SH2 domains and phosphotyrosine sites regulate tyrosine kinase signaling networks. Selective perturbation of these interactions is challenging due to the high homology among the 120 human SH2 domains. Using an improved phage-display selection system, we generated a small antibody-mimic or ‘monobody’, termed HA4, that bound to the Abl kinase SH2 domain with low nanomolar affinity. SH2 protein microarray analysis and mass spectrometry of intracellular HA4 interactors demonstrated HA4's exquisite specificity, and a crystal structure revealed how this specificity is achieved. HA4 disrupted intramolecular interactions of Abl involving the SH2 domain and potently activated the kinase in vitro. Within cells, HA4 inhibited processive phosphorylation activity of Abl and also STAT5 activation. This work provides a design guideline for highly specific and potent inhibitors of a protein interaction domain and demonstrates their utility in mechanistic and cellular investigations.
Collapse
Affiliation(s)
- John Wojcik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Bowden P, Pendrak V, Zhu P, Marshall JG. Meta sequence analysis of human blood peptides and their parent proteins. J Proteomics 2010; 73:1163-75. [PMID: 20170764 DOI: 10.1016/j.jprot.2010.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/23/2010] [Accepted: 02/09/2010] [Indexed: 11/19/2022]
Abstract
Sequence analysis of the blood peptides and their qualities will be key to understanding the mechanisms that contribute to error in LC-ESI-MS/MS. Analysis of peptides and their proteins at the level of sequences is much more direct and informative than the comparison of disparate accession numbers. A portable database of all blood peptide and protein sequences with descriptor fields and gene ontology terms might be useful for designing immunological or MRM assays from human blood. The results of twelve studies of human blood peptides and/or proteins identified by LC-MS/MS and correlated against a disparate array of genetic libraries were parsed and matched to proteins from the human ENSEMBL, SwissProt and RefSeq databases by SQL. The reported peptide and protein sequences were organized into an SQL database with full protein sequences and up to five unique peptides in order of prevalence along with the peptide count for each protein. Structured query language or BLAST was used to acquire descriptive information in current databases. Sampling error at the level of peptides is the largest source of disparity between groups. Chi Square analysis of peptide to protein distributions confirmed the significant agreement between groups on identified proteins.
Collapse
Affiliation(s)
- Peter Bowden
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | | | | | | |
Collapse
|
115
|
Del Rosario AM, White FM. Quantifying oncogenic phosphotyrosine signaling networks through systems biology. Curr Opin Genet Dev 2010; 20:23-30. [PMID: 20074929 DOI: 10.1016/j.gde.2009.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/10/2009] [Accepted: 12/28/2009] [Indexed: 01/22/2023]
Abstract
Pathways linking oncogenic mutations to increased proliferative or migratory capacity are poorly characterized, yet provide potential targets for therapeutic intervention. As tyrosine phosphorylation signaling networks are known to mediate proliferation and migration, and frequently go awry in cancers, a comprehensive understanding of these networks in normal and diseased states is warranted. To this end, recent advances in mass spectrometry, protein microarrays, and computational algorithms provide insight into various aspects of the network including phosphotyrosine identification, analysis of kinase/phosphatase substrates, and phosphorylation-mediated protein-protein interactions. Here we detail technological advances underlying these system-level approaches and give examples of their applications. By combining multiple approaches, it is now possible to quantify changes in the phosphotyrosine signaling network with various oncogenic mutations, thereby unveiling novel therapeutic targets.
Collapse
Affiliation(s)
- Amanda M Del Rosario
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
116
|
Lin J, Xie Z, Zhu H, Qian J. Understanding protein phosphorylation on a systems level. Brief Funct Genomics 2010; 9:32-42. [PMID: 20056723 DOI: 10.1093/bfgp/elp045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Protein kinase phosphorylation is central to the regulation and control of protein and cellular function. Over the past decade, the development of many high-throughput approaches has revolutionized the understanding of protein phosphorylation and allowed rapid and unbiased surveys of phosphoproteins and phosphorylation events. In addition to this technological advancement, there have also been computational improvements; recent studies on network models of protein phosphorylation have provided many insights into the cellular processes and pathways regulated by phosphorylation. This article gives an overview of experimental and computational techniques for identifying and analyzing protein phosphorylation on a systems level.
Collapse
Affiliation(s)
- Jimmy Lin
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
117
|
Filippakopoulos P, Müller S, Knapp S. SH2 domains: modulators of nonreceptor tyrosine kinase activity. Curr Opin Struct Biol 2009; 19:643-9. [PMID: 19926274 PMCID: PMC2791838 DOI: 10.1016/j.sbi.2009.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 10/02/2009] [Indexed: 12/15/2022]
Abstract
The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed that the presence of the SH2 domain is frequently required for catalytic activity, suggesting a crucial function stabilizing the active state of many nonreceptor tyrosine kinases. Recently, the structure of the SH2–kinase domain of Fes revealed that the SH2 domain stabilizes the active kinase conformation by direct interactions with the regulatory helix αC. Stabilizing interactions between the SH2 and the kinase domains have also been observed in the structures of active Csk and Abl. Interestingly, mutations in the SH2 domain found in human disease can be explained by SH2 domain destabilization or incorrect positioning of the SH2. Here we summarize our understanding of mechanisms that lead to tyrosine kinase activation by direct interactions mediated by the SH2 domain and discuss how mutations in the SH2 domain trigger kinase inactivation.
Collapse
Affiliation(s)
- Panagis Filippakopoulos
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | | | | |
Collapse
|
118
|
Gould CM, Diella F, Via A, Puntervoll P, Gemünd C, Chabanis-Davidson S, Michael S, Sayadi A, Bryne JC, Chica C, Seiler M, Davey NE, Haslam N, Weatheritt RJ, Budd A, Hughes T, Pas J, Rychlewski L, Travé G, Aasland R, Helmer-Citterich M, Linding R, Gibson TJ. ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res 2009; 38:D167-80. [PMID: 19920119 PMCID: PMC2808914 DOI: 10.1093/nar/gkp1016] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a 'Bar Code' format, which also displays known instances from homologous proteins through a novel 'Instance Mapper' protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation.
Collapse
Affiliation(s)
- Cathryn M Gould
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Antoku S, Mayer BJ. Distinct roles for Crk adaptor isoforms in actin reorganization induced by extracellular signals. J Cell Sci 2009; 122:4228-38. [PMID: 19861495 DOI: 10.1242/jcs.054627] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Crk family adaptors, consisting of Src homology 2 (SH2) and SH3 protein-binding domains, mediate assembly of protein complexes in signaling. CrkI, an alternately spliced form of Crk, lacks the regulatory phosphorylation site and C-terminal SH3 domain present in CrkII and CrkL. We used gene silencing combined with mutational analysis to probe the role of Crk adaptors in platelet-derived growth-factor receptor beta (PDGFbetaR) signaling. We demonstrate that Crk adaptors are required for formation of focal adhesions, and for PDGF-stimulated remodeling of the actin cytoskeleton and cell migration. Crk-dependent signaling is crucial during the early stages of PDGFbetaR activation, whereas its termination by Abl family tyrosine kinases is important for turnover of focal adhesions and progression of dorsal-membrane ruffles. CrkII and CrkL preferentially activate the small GTPase Rac1, whereas variants lacking a functional C-terminal SH3 domain, including CrkI, preferentially activate Rap1. Thus, differences in the activity of Crk isoforms, including their effectors and their ability to be downregulated by phosphorylation, are important for coordinating dynamic changes in the actin cytoskeleton in response to extracellular signals.
Collapse
Affiliation(s)
- Susumu Antoku
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | | |
Collapse
|
120
|
Bowden P, Beavis R, Marshall J. Tandem mass spectrometry of human tryptic blood peptides calculated by a statistical algorithm and captured by a relational database with exploration by a general statistical analysis system. J Proteomics 2009; 73:103-11. [PMID: 19703602 DOI: 10.1016/j.jprot.2009.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/04/2009] [Accepted: 08/17/2009] [Indexed: 01/23/2023]
Abstract
A goodness of fit test may be used to assign tandem mass spectra of peptides to amino acid sequences and to directly calculate the expected probability of mis-identification. The product of the peptide expectation values directly yields the probability that the parent protein has been mis-identified. A relational database could capture the mass spectral data, the best fit results, and permit subsequent calculations by a general statistical analysis system. The many files of the Hupo blood protein data correlated by X!TANDEM against the proteins of ENSEMBL were collected into a relational database. A redundant set of 247,077 proteins and peptides were correlated by X!TANDEM, and that was collapsed to a set of 34,956 peptides from 13,379 distinct proteins. About 6875 distinct proteins were only represented by a single distinct peptide, 2866 proteins showed 2 distinct peptides, and 3454 proteins showed at least three distinct peptides by X!TANDEM. More than 99% of the peptides were associated with proteins that had cumulative expectation values, i.e. probability of false positive identification, of one in one hundred or less. The distribution of peptides per protein from X!TANDEM was significantly different than those expected from random assignment of peptides.
Collapse
Affiliation(s)
- Peter Bowden
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| | | | | |
Collapse
|
121
|
Lapetina S, Mader CC, Machida K, Mayer BJ, Koleske AJ. Arg interacts with cortactin to promote adhesion-dependent cell edge protrusion. ACTA ACUST UNITED AC 2009; 185:503-19. [PMID: 19414610 PMCID: PMC2700396 DOI: 10.1083/jcb.200809085] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular mechanisms by which the Abelson (Abl) or Abl-related gene (Arg) kinases interface with the actin polymerization machinery to promote cell edge protrusions during cell–matrix adhesion are unclear. In this study, we show that interactions between Arg and the Arp2/3 complex regulator cortactin are essential to mediate actin-based cell edge protrusion during fibroblast adhesion to fibronectin. Arg-deficient and cortactin knockdown fibroblasts exhibit similar defects in adhesion-dependent cell edge protrusion, which can be restored via reexpression of Arg and cortactin. Arg interacts with cortactin via both binding and catalytic events. The cortactin Src homology (SH) 3 domain binds to a Pro-rich motif in the Arg C terminus. Arg mediates adhesion-dependent phosphorylation of cortactin, creating an additional binding site for the Arg SH2 domain. Mutation of residues that mediate Arg–cortactin interactions abrogate the abilities of both proteins to support protrusions, and the Nck adapter, which binds phosphocortactin, is also required. These results demonstrate that interactions between Arg, cortactin, and Nck1 are critical to promote adhesion-dependent cell edge protrusions.
Collapse
Affiliation(s)
- Stefanie Lapetina
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
122
|
Kwon MH, Jung JW, Jung SH, Park JY, Kim YM, Ha KS. Quantitative and rapid analysis of transglutaminase activity using protein arrays in mammalian cells. Mol Cells 2009; 27:337-43. [PMID: 19326081 DOI: 10.1007/s10059-009-0043-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/14/2008] [Accepted: 01/07/2009] [Indexed: 10/21/2022] Open
Abstract
We developed a novel on-chip activity assay using protein arrays for quantitative and rapid analysis of transglutami-nase activity in mammalian cells. Transglutaminases are a family of Ca2+-dependent enzymes involved in cell regulation as well as human diseases such as neurodegenerative disorders, inflammatory diseases and tumor progression. We fabricated the protein arrays by immobilizing N,N'-dimethylcasein (a substrate) on the amine surface of the arrays. We initiated transamidating reaction on the protein arrays and determined the transglutaminase activity by analyzing the fluorescence intensity of biotinylated casein. The on-chip transglutaminase activity assay was proved to be much more sensitive than the [3H]putrescine-incorporation assay. We successfully applied the on-chip assay to a rapid and quantitative analysis of the transgluta-minase activity in all-trans retinoic acid-treated NIH 3T3 and SH-SY5Y cells. In addition, the on-chip transglutaminase activity assay was sufficiently sensitive to determine the transglutaminase activity in eleven mammalian cell lines. Thus, this novel on-chip transglutaminase activity assay was confirmed to be a sensitive and high-throughput approach to investigating the roles of transglutaminase in cellular signaling, and, moreover, it is likely to have a strong potential for monitoring human diseases.
Collapse
Affiliation(s)
- Mi-Hye Kwon
- Department of Molecular and Cellular Biochemistry and Vascular System Research Center, Kangwon National University School of Medicine, Chuncheon 200-701, Korea
| | | | | | | | | | | |
Collapse
|
123
|
Abstract
Far-western blotting is a convenient method to characterize protein-protein interactions, in which protein samples of interest are immobilized on a membrane and then probed with a nonantibody protein. In contrast to western blotting, which uses specific antibodies to detect target proteins, far-western blotting detects proteins on the basis of the presence or the absence of binding sites for the protein probe. When specific modular protein binding domains are used as probes, this approach allows characterization of protein-protein interactions involved in biological processes such as signal transduction, including interactions regulated by posttranslational modification. We here describe a rapid and simple protocol for far-western blotting, in which GST-tagged Src homology 2 (SH2) domains are used to probe cellular proteins in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | | |
Collapse
|
124
|
Riechers A, Grauer A, Ritter S, Sperl B, Berg T, König B. Binding of phosphorylated peptides and inhibition of their interaction with disease-relevant human proteins by synthetic metal-chelate receptors. J Mol Recognit 2009; 23:329-34. [DOI: 10.1002/jmr.986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
125
|
Abstract
Global monitoring of cellular signaling activity is of great importance for the understanding of the regulation of complex signaling networks and the characterization of signaling pathways deregulated in diseases. Tyrosine phosphorylation of intracellular signaling proteins followed by the recognition and binding of Src homology 2 (SH2) domains are key mechanisms in the downstream transmission of many important biological signals. SH2 domains, comprising 120 members in humans, are small modular protein binding domains that recognize tyrosine phosphorylated signaling proteins with high specificity. Based on these binding properties, the large number of naturally occurring and currently available SH2 domains serve as excellent probes for the comprehensive profiling of the cellular state of signaling activity. Here we have described different experimental strategies for global SH2 profiling: high-resolution phosphoproteomic scanning by far-Western Blot analysis and high-throughput profiling by our recently developed oligonucleotide-tagged multiplex assay (OTM) and Rosette assay.
Collapse
|
126
|
Chong PK, Lee H, Kong JWF, Loh MCS, Wong CH, Lim YP. Phosphoproteomics, oncogenic signaling and cancer research. Proteomics 2008; 8:4370-82. [PMID: 18814326 DOI: 10.1002/pmic.200800051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The past 5 years have seen an explosion of phosphoproteomics methods development. In this review, using epidermal growth-factor signaling as a model, we will discuss how phosphoproteomics, along with bioinformatics and computational modeling, have impacted key aspects of oncogenic signaling such as in the temporal fine mapping of phosphorylation events, and the identification of novel tyrosine kinase substrates and phosphorylation sites. We submit that the next decade will see considerable exploitation of phosphoproteomics in cancer research. Such a phenomenon is already happening as exemplified by its use in promoting the understanding of the molecular etiology of cancer and target-directed therapeutics.
Collapse
Affiliation(s)
- Poh-Kuan Chong
- Oncology Research Institute, Yong Loo Lin School of Medicine, Singapore
| | | | | | | | | | | |
Collapse
|
127
|
Towards functional phosphoproteomics by mapping differential phosphorylation events in signaling networks. Proteomics 2008; 8:4453-65. [DOI: 10.1002/pmic.200800175] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
128
|
Abstract
In recent years, phosphoproteomic technologies have increased our understanding of cellular signaling networks. Here, we frame recent phosphoproteomics-based advances in the context of the DNA damage response and ErbB receptor family signaling and offer a perspective on how the molecular insights arising from the integration of such proteomic approaches might be used for clinical applications.
Collapse
Affiliation(s)
- Paul H Huang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
129
|
Emaduddin M, Edelmann MJ, Kessler BM, Feller SM. Odin (ANKS1A) is a Src family kinase target in colorectal cancer cells. Cell Commun Signal 2008; 6:7. [PMID: 18844995 PMCID: PMC2584000 DOI: 10.1186/1478-811x-6-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 10/09/2008] [Indexed: 11/25/2022] Open
Abstract
Background Src family kinases (SFK) are implicated in the development of some colorectal cancers (CRC). One SFK member, Lck, is not detectable in normal colonic epithelium, but becomes aberrantly expressed in a subset of CRCs. Although SFK have been extensively studied in fibroblasts and different types of immune cells, their physical and functional targets in many epithelial cancers remain poorly characterised. Results 64 CRC cell lines were tested for expression of Lck. SW620 CRC cells, which express high levels of Lck and also contain high basal levels of tyrosine phosphorylated (pY) proteins, were then analysed to identify novel SFK targets. Since SH2 domains of SFK are known to often bind substrates after phosphorylation by the kinase domain, the LckSH2 was compared with 14 other SH2s for suitability as affinity chromatography reagent. Mass spectrometric analyses of LckSH2-purified pY proteins subsequently identified several proteins readily known as SFK kinase substrates, including cortactin, Tom1L1 (SRCASM), GIT1, vimentin and AFAP1L2 (XB130). Additional proteins previously reported as substrates of other tyrosine kinase were also detected, including the EGF and PDGF receptor target Odin. Odin was further analysed and found to contain substantially less pY upon inhibition of SFK activity in SW620 cells, indicating that it is a formerly unknown SFK target in CRC cells. Conclusion Rapid identification of known and novel SFK targets in CRC cells is feasible with SH2 domain affinity chromatography. The elucidation of new SFK targets like Odin in epithelial cancer cells is expected to lead to novel insight into cancer cell signalling mechanisms and may also serve to indicate new biomarkers for monitoring tumor cell responses to drug treatments.
Collapse
Affiliation(s)
- Muhammad Emaduddin
- Cell Signalling Group, Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Headley Way, Oxford OX3 9DS, UK.
| | | | | | | |
Collapse
|
130
|
Sharma A, Mayer BJ. Phosphorylation of p130Cas initiates Rac activation and membrane ruffling. BMC Cell Biol 2008; 9:50. [PMID: 18793427 PMCID: PMC2553404 DOI: 10.1186/1471-2121-9-50] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 09/15/2008] [Indexed: 12/27/2022] Open
Abstract
Background Non-receptor tyrosine kinases (NTKs) regulate physiological processes such as cell migration, differentiation, proliferation, and survival by interacting with and phosphorylating a large number of substrates simultaneously. This makes it difficult to attribute a particular biological effect to the phosphorylation of a particular substrate. We developed the Functional Interaction Trap (FIT) method to phosphorylate specifically a single substrate of choice in living cells, thereby allowing the biological effect(s) of that phosphorylation to be assessed. In this study we have used FIT to investigate the effects of specific phosphorylation of p130Cas, a protein implicated in cell migration. We have also used this approach to address a controversy regarding whether it is Src family kinases or focal adhesion kinase (FAK) that phosphorylates p130Cas in the trimolecular Src-FAK-p130Cas complex. Results We show here that SYF cells (mouse fibroblasts lacking the NTKs Src, Yes and Fyn) exhibit a low level of basal tyrosine phosphorylation at focal adhesions. FIT-mediated tyrosine phosphorylation of NTK substrates p130Cas, paxillin and FAK and cortactin was observed at focal adhesions, while FIT-mediated phosphorylation of cortactin was also seen at the cell periphery. Phosphorylation of p130Cas in SYF cells led to activation of Rac1 and increased membrane ruffling and lamellipodium formation, events associated with cell migration. We also found that the kinase activity of Src and not FAK is essential for phosphorylation of p130Cas when the three proteins exist as a complex in focal adhesions. Conclusion These results demonstrate that tyrosine phosphorylation of p130Cas is sufficient for its localization to focal adhesions and for activation of downstream signaling events associated with cell migration. FIT provides a valuable tool to evaluate the contribution of individual components of the response to signals with multiple outputs, such as activation of NTKs.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, 1260 Elm Street, Manchester, NH 03101, USA.
| | | |
Collapse
|
131
|
Ramachandran N, Srivastava S, Labaer J. Applications of protein microarrays for biomarker discovery. Proteomics Clin Appl 2008; 2:1444-59. [PMID: 21136793 DOI: 10.1002/prca.200800032] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Indexed: 01/18/2023]
Abstract
The search for new biomarkers for diagnosis, prognosis, and therapeutic monitoring of diseases continues in earnest despite dwindling success at finding novel reliable markers. Some of the current markers in clinical use do not provide optimal sensitivity and specificity, with the prostate cancer antigen (PSA) being one of many such examples. The emergence of proteomic techniques and systems approaches to study disease pathophysiology has rekindled the quest for new biomarkers. In particular the use of protein microarrays has surged as a powerful tool for large-scale testing of biological samples. Approximately half the reports on protein microarrays have been published in the last two years especially in the area of biomarker discovery. In this review, we will discuss the application of protein microarray technologies that offer unique opportunities to find novel biomarkers.
Collapse
Affiliation(s)
- Niroshan Ramachandran
- Harvard Institute of Proteomics, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Cambridge, MA, USA
| | | | | |
Collapse
|
132
|
Jankowski A, Zhu P, Marshall JG. Capture of an activated receptor complex from the surface of live cells by affinity receptor chromatography. Anal Biochem 2008; 380:235-48. [DOI: 10.1016/j.ab.2008.05.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/16/2008] [Accepted: 05/18/2008] [Indexed: 11/30/2022]
|
133
|
Kruse U, Bantscheff M, Drewes G, Hopf C. Chemical and pathway proteomics: powerful tools for oncology drug discovery and personalized health care. Mol Cell Proteomics 2008; 7:1887-901. [PMID: 18676365 DOI: 10.1074/mcp.r800006-mcp200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In recent years mass spectrometry-based proteomics has moved beyond a mere quantitative description of protein expression levels and their possible correlation with disease or drug action. Impressive progress in LC-MS instrumentation together with the availability of new enabling tools and methods for quantitative proteome analysis and for identification of posttranslational modifications has triggered a surge of chemical and functional proteomics studies dissecting mechanisms of action of cancer drugs and molecular mechanisms that modulate signal transduction pathways. Despite the tremendous progress that has been made in the field, major challenges, relating to sensitivity, dynamic range, and throughput of the described methods, remain. In this review we summarize recent advances in LC-MS-based approaches and their application to cancer drug discovery and to studies of cancer-related pathways in cell culture models with particular emphasis on mechanistic studies of drug action in these systems. Moreover we highlight the emerging utility of pathway and chemical proteomics techniques for translational research in patient tissue.
Collapse
Affiliation(s)
- Ulrich Kruse
- Deptartment of Discovery Technology, Cellzome AG, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
134
|
Koomen JM, Haura EB, Bepler G, Sutphen R, Remily-Wood ER, Benson K, Hussein M, Hazlehurst LA, Yeatman TJ, Hildreth LT, Sellers TA, Jacobsen PB, Fenstermacher DA, Dalton WS. Proteomic contributions to personalized cancer care. Mol Cell Proteomics 2008; 7:1780-94. [PMID: 18664563 DOI: 10.1074/mcp.r800002-mcp200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer impacts each patient and family differently. Our current understanding of the disease is primarily limited to clinical hallmarks of cancer, but many specific molecular mechanisms remain elusive. Genetic markers can be used to determine predisposition to tumor development, but molecularly targeted treatment strategies that improve patient prognosis are not widely available for most cancers. Individualized care plans, also described as personalized medicine, still must be developed by understanding and implementing basic science research into clinical treatment. Proteomics holds great promise in contributing to the prevention and cure of cancer because it provides unique tools for discovery of biomarkers and therapeutic targets. As such, proteomics can help translate basic science discoveries into the clinical practice of personalized medicine. Here we describe how biological mass spectrometry and proteome analysis interact with other major patient care and research initiatives and present vignettes illustrating efforts in discovery of diagnostic biomarkers for ovarian cancer, development of treatment strategies in lung cancer, and monitoring prognosis and relapse in multiple myeloma patients.
Collapse
Affiliation(s)
- John M Koomen
- H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Vermeulen M, Hubner NC, Mann M. High confidence determination of specific protein-protein interactions using quantitative mass spectrometry. Curr Opin Biotechnol 2008; 19:331-7. [PMID: 18590817 DOI: 10.1016/j.copbio.2008.06.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 01/24/2023]
Abstract
In recent years, interactions between proteins have successfully been determined by mass spectrometry. A limitation of this technology has been the need for extensive purification, which restricts throughput and implies a tradeoff between specificity and the ability to detect weak or transient interactions. Quantitative proteomics sidesteps this problem by directly comparing specific and control pull-downs. Specific interaction partners are revealed by their quantitative ratios rather than by gel-based visualization and can be retrieved from a vast excess of background proteins. This principle is revolutionizing the protein interaction field as demonstrated by recent applications in fields as diverse as tyrosine signaling pathways, cell adhesion, and chromatin biology.
Collapse
Affiliation(s)
- Michiel Vermeulen
- Department of proteomics and signal transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | |
Collapse
|
136
|
The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci U S A 2008; 105:9674-9. [PMID: 18621719 DOI: 10.1073/pnas.0801314105] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tyrosine kinase signaling has long been considered a hallmark of intercellular communication, unique to multicellular animals. Our genomic analysis of the unicellular choanoflagellate Monosiga brevicollis discovers a remarkable count of 128 tyrosine kinases, 38 tyrosine phosphatases, and 123 phosphotyrosine (pTyr)-binding SH2 proteins, all higher counts than seen in any metazoan. This elaborate signaling network shows little orthology to metazoan counterparts yet displays many innovations reminiscent of metazoans. These include extracellular domains structurally related to those of metazoan receptor kinases, alternative methods for membrane anchoring and phosphotyrosine interaction in cytoplasmic kinases, and domain combinations that link kinases to small GTPase signaling and transcription. These proteins also display a wealth of combinations of known signaling domains. This uniquely divergent and elaborate signaling network illuminates the early evolution of pTyr signaling, explores innovative ways to traverse the cellular signaling circuitry, and shows extensive convergent evolution, highlighting pervasive constraints on pTyr signaling.
Collapse
|
137
|
Abstract
Phosphorylation is one of the most relevant and ubiquitous post-translational modifications. Despite its relevance, the analysis of protein phosphorylation has been revealed as one of the most challenging tasks due to its highly dynamic nature and low stoichiometry. However, the development and introduction of new analytical methods are modifying rapidly and substantially this field. Especially important has been the introduction of more sensitive and specific methods for phosphoprotein and phosphopeptide purification as well as the use of more sensitive and accurate MS-based analytical methods. The integration of both approaches has enabled large-scale phosphoproteome studies to be performed, an unimaginable task few years ago. Additionally, methods originally developed for differential proteomics have been adapted making the study of the highly dynamic nature of protein phosphorylation feasible. This review aims at offering an overview on the most frequently used methods in phosphoprotein and phosphopeptide enrichment as well as on the most recent MS-based analysis strategies. Current strategies for quantitative phosphoproteomics and the study of the dynamics of protein phosphorylation are highlighted.
Collapse
Affiliation(s)
- Alberto Paradela
- Departamento de Proteómica, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | |
Collapse
|
138
|
Xiong X, Cui P, Hossain S, Xu R, Warner B, Guo X, An X, Debnath AK, Cowburn D, Kotula L. Allosteric inhibition of the nonMyristoylated c-Abl tyrosine kinase by phosphopeptides derived from Abi1/Hssh3bp1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:737-47. [PMID: 18328268 DOI: 10.1016/j.bbamcr.2008.01.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 01/09/2008] [Accepted: 01/28/2008] [Indexed: 11/25/2022]
Abstract
Here we report c-Abl kinase inhibition mediated by a phosphotyrosine located in trans in the c-Abl substrate, Abi1. The mechanism, which is pertinent to the nonmyristoylated c-Abl kinase, involves high affinity concurrent binding of the phosphotyrosine pY213 to the Abl SH2 domain and binding of a proximal PXXP motif to the Abl SH3 domain. Abi1 regulation of c-Abl in vivo appears to play a critical role, as demonstrated by inhibition of pY412 phosphorylation of the nonmyristoylated Abl by coexpression of Abi1. Pervanadate-induced c-Abl kinase activity was also reduced upon expression of the wild type Abi1 but not by expression of the Y213 to F213 mutant Abi1 in LNCaP cells, which are naturally deficient in the regulatory pY213. Our findings suggest a novel mechanism by which Abl kinase is regulated in cells.
Collapse
Affiliation(s)
- Xiaoling Xiong
- Laboratory of Cell Signaling, New York Blood Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Gurard-Levin ZA, Mrksich M. Combining self-assembled monolayers and mass spectrometry for applications in biochips. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:767-800. [PMID: 20636097 DOI: 10.1146/annurev.anchem.1.031207.112903] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biochip arrays have enabled the massively parallel analysis of genomic DNA and hold great promise for application to the analysis of proteins, carbohydrates, and small molecules. Surface chemistry plays an intrinsic role in the preparation and analysis of biochips by providing functional groups for immobilization of ligands, providing an environment that maintains activity of the immobilized molecules, controlling nonspecific interactions of analytes with the surface, and enabling detection methods. This review describes recent advances in surface chemistry that enable quantitative assays of a broad range of biochemical activities. The discussion emphasizes the use of self-assembled monolayers of alkanethiolates on gold as a structurally well-defined and synthetically flexible platform for controlling the immobilization and activity of molecules in an array. The review also surveys recent methods of performing label-free assays, and emphasizes the use of matrix-assisted laser desorption/ionization mass spectrometry to directly observe molecules attached to the self-assembled monolayers.
Collapse
Affiliation(s)
- Zachary A Gurard-Levin
- Department of Chemistry, Howard Hughes Medical Institute, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
140
|
VanMeter A, Signore M, Pierobon M, Espina V, Liotta LA, Petricoin EF. Reverse-phase protein microarrays: application to biomarker discovery and translational medicine. Expert Rev Mol Diagn 2007; 7:625-33. [PMID: 17892368 DOI: 10.1586/14737159.7.5.625] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mapping of protein signaling networks within tumors can identify new targets for therapy and provide a means to stratify patients for individualized therapy. Kinases are important drug targets, as such kinase network information could become the basis for development of therapeutic strategies for improving treatment outcome. An urgent clinical goal is to identify functionally important molecular networks associated with subpopulations of patients that may not respond to conventional combination chemotherapy. Reverse-phase protein microarrays are a technology platform designed for quantitative, multiplexed analysis of specific phosphorylated, cleaved, or total (phosphorylated and nonphosphorylated) forms of cellular proteins from a limited amount of sample. This class of microarray can be used to interrogate cellular samples, serum or body fluids. This review focuses on the application of reverse-phase protein microarrays for translational research and therapeutic drug target discovery.
Collapse
Affiliation(s)
- Amy VanMeter
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, VA 20110, USA.
| | | | | | | | | | | |
Collapse
|