101
|
Chen LT, Wang AHJ. A rationally designed peptide enhances homologous recombination in vitro and resistance to DNA damaging agents in vivo. Nucleic Acids Res 2010; 38:4361-71. [PMID: 20308162 PMCID: PMC2910059 DOI: 10.1093/nar/gkq182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The RecA family of proteins is essential in homologous recombination, a critical step in DNA repair. Here, we report that a rationally-designed small peptide based on the crystal structure of Escherichia coli RecA–DNA complex can promote homologous recombination through the enhancement of both RecA-mediated strand assimilation and three-strand exchange activity. Among 17 peptides tested, peptide #3 with the amino acid sequence of IRFLTARRR has the most potent activity in promoting the RecA-mediated D-loop formation by ∼7.2-fold at 37°C. Other peptides such as IRFLTAKKK and IRLLTARRR also have similar, albeit lower, activities. Therefore, hydrophobicity and poly-positive charges, and the space between them in those small peptides are crucial features for such activities. The enhancement of recombination by these peptides appears to be a general phenomenon as similar results were seen by using different plasmids. Remarkably, peptide #3 alone without RecA can also promote the D-loop formation at elevated temperature. Cell viability assays showed that the peptide elevates mammalian cell resistance to two cytotoxic DNA drugs, cisplatin and doxorubicin. The rescue of viability may result from increased DNA repair efficiency. Such peptides may find future biological applications.
Collapse
Affiliation(s)
- Li-Tzu Chen
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | | |
Collapse
|
102
|
Asakawa H, Koizumi H, Koike A, Takahashi M, Wu W, Iwase H, Fukuda M, Ohta T. Prediction of breast cancer sensitivity to neoadjuvant chemotherapy based on status of DNA damage repair proteins. Breast Cancer Res 2010; 12:R17. [PMID: 20205718 PMCID: PMC2879561 DOI: 10.1186/bcr2486] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/07/2010] [Accepted: 03/05/2010] [Indexed: 12/31/2022] Open
Abstract
Introduction Various agents used in breast cancer chemotherapy provoke DNA double-strand breaks (DSBs). DSB repair competence determines the sensitivity of cells to these agents whereby aberrations in the repair machinery leads to apoptosis. Proteins required for this pathway can be detected as nuclear foci at sites of DNA damage when the pathway is intact. Here we investigate whether focus formation of repair proteins can predict chemosensitivity of breast cancer. Methods Core needle biopsy specimens were obtained from sixty cases of primary breast cancer before and 18-24 hours after the first cycle of neoadjuvant epirubicin plus cyclophosphamide (EC) treatment. Nuclear focus formation of DNA damage repair proteins was immunohistochemically analyzed and compared with tumor response to chemotherapy. Results EC treatment induced nuclear foci of γH2AX, conjugated ubiquitin, and Rad51 in a substantial amount of cases. In contrast, BRCA1 foci were observed before treatment in the majority of the cases and only decreased after EC in thirteen cases. The presence of BRCA1-, γH2AX-, or Rad51-foci before treatment or the presence of Rad51-foci after treatment was inversely correlated with tumor response to chemotherapy. DNA damage response (DDR) competence was further evaluated by considering all four repair indicators together. A high DDR score significantly correlated with low tumor response to EC and EC + docetaxel whereas other clinicopathological factors analyzed did not. Conclusions High performing DDR focus formation resulted in tumor resistance to DNA damage-inducing chemotherapy. Our results suggested an importance of evaluation of DDR competence to predict breast cancer chemosensitivity, and merits further studying into its usefulness in exclusion of non-responder patients.
Collapse
Affiliation(s)
- Hideki Asakawa
- Division of Breast and Endocrine Surgery, Department of Surgery, St, Marianna University School of Medicine, Kawasaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Zafar F, Seidler SB, Kronenberg A, Schild D, Wiese C. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions. Radiat Res 2010; 173:27-39. [PMID: 20041757 DOI: 10.1667/rr1910.1] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To test the contribution of homologous recombinational repair (HRR) in repairing DNA damage sites induced by high-energy iron ions, we used (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We found that in response to exposure to iron ions, HRR contributed to cell survival in rodent cells and that HRR deficiency abrogated RAD51 focus formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 focus formation. For human cells irradiated with iron ions, cell survival was decreased, and in p53 mutant cells, the levels of mutagenesis were increased when HRR was impaired. Human cells synchronized in S phase exhibited a more pronounced resistance to iron ions compared with cells in G(1) phase, and this increase in radioresistance was diminished by RAD51 knockdown. These results indicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged-particle radiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival after exposure to high-energy high-LET radiation.
Collapse
Affiliation(s)
- Faria Zafar
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
104
|
Schild D, Wiese C. Overexpression of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability. Nucleic Acids Res 2009; 38:1061-70. [PMID: 19942681 PMCID: PMC2831301 DOI: 10.1093/nar/gkp1063] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RAD51, a key protein in the homologous recombinational DNA repair (HRR) pathway, is the major strand-transferase required for mitotic recombination. An important early step in HRR is the formation of single-stranded DNA (ss-DNA) coated by RPA (a ss-DNA-binding protein). Displacement of RPA by RAD51 is highly regulated and facilitated by a number of different proteins known as the 'recombination mediators'. To assist these recombination mediators, a second group of proteins also is required and we are defining these proteins here as 'recombination co-mediators'. Defects in either recombination mediators or co-mediators, including BRCA1 and BRCA2, lead to impaired HRR that can genetically be complemented for (i.e. suppressed) by overexpression of RAD51. Defects in HRR have long been known to contribute to genomic instability leading to tumor development. Since genomic instability also slows cell growth, precancerous cells presumably require genomic re-stabilization to gain a growth advantage. RAD51 is overexpressed in many tumors, and therefore, we hypothesize that the complementing ability of elevated levels of RAD51 in tumors with initial HRR defects limits genomic instability during carcinogenic progression. Of particular interest, this model may also help explain the high frequency of TP53 mutations in human cancers, since wild-type p53 represses RAD51 expression.
Collapse
Affiliation(s)
- David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.
| | | |
Collapse
|
105
|
Takaku M, Machida S, Nakayama S, Takahashi D, Kurumizaka H. Biochemical analysis of the human EVL domains in homologous recombination. FEBS J 2009; 276:5841-8. [DOI: 10.1111/j.1742-4658.2009.07265.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
106
|
Drosos Y, Kouloukoussa M, Østvold AC, Grundt K, Goutas N, Vlachodimitropoulos D, Havaki S, Kollia P, Kittas C, Marinos E, Aleporou-Marinou V. NUCKS overexpression in breast cancer. Cancer Cell Int 2009; 9:19. [PMID: 19664271 PMCID: PMC2743642 DOI: 10.1186/1475-2867-9-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 08/10/2009] [Indexed: 12/15/2022] Open
Abstract
Background NUCKS (Nuclear, Casein Kinase and Cyclin-dependent Kinase Substrate) is a nuclear, DNA-binding and highly phosphorylated protein. A number of reports show that NUCKS is highly expressed on the level of mRNA in several human cancers, including breast cancer. In this work, NUCKS expression on both RNA and protein levels was studied in breast tissue biopsies consisted of invasive carcinomas, intraductal proliferative lesions, benign epithelial proliferations and fibroadenomas, as well as in primary cultures derived from the above biopsies. Specifically, in order to evaluate the level of NUCKS protein in correlation with the histopathological features of breast disease, immunohistochemistry was employed on paraffin sections of breast biopsies of the above types. In addition, NUCKS expression was studied by means of Reverse Transcription PCR (RT-PCR), real-time PCR (qRT-PCR) and Western immunoblot analyses in the primary cell cultures developed from the same biopsies. Results The immunohistochemical Results showed intense NUCKS staining mostly in grade I and II breast carcinomas compared to normal tissues. Furthermore, NUCKS was moderate expressed in benign epithelial proliferations, such as adenosis and sclerosing adenosis, and highly expressed in intraductal lesions, specifically in ductal carcinomas in situ (DCIS). It is worth noting that all the fibroadenoma tissues examined were negative for NUCKS staining. RT-PCR and qRT-PCR showed an increase of NUCKS expression in cells derived from primary cultures of proliferative lesions and cancerous tissues compared to the ones derived from normal breast tissues and fibroadenomas. This increase was also confirmed by Western immunoblot analysis. Although NUCKS is a cell cycle related protein, its expression does not correlate with Ki67 expression, neither in tissue sections nor in primary cell cultures. Conclusion The results show overexpression of the NUCKS protein in a number of non malignant breast lesions and cancerous tissues. In particular, the NUCKS overexpression in ADH and DCIS indicates a significant role of this protein in neoplastic progression.
Collapse
Affiliation(s)
- Yiannis Drosos
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistimioupoli, 15701 Ilissia, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Morozumi Y, Takizawa Y, Takaku M, Kurumizaka H. Human PSF binds to RAD51 and modulates its homologous-pairing and strand-exchange activities. Nucleic Acids Res 2009; 37:4296-307. [PMID: 19447914 PMCID: PMC2715225 DOI: 10.1093/nar/gkp298] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RAD51, a eukaryotic recombinase, catalyzes homologous-pairing and strand-exchange reactions, which are essential steps in homologous recombination and recombinational repair of double strand breaks. On the other hand, human PSF was originally identified as a component of spliceosomes, and its multiple functions in RNA processing, transcription and DNA recombination were subsequently revealed. In the present study, we found that PSF directly interacted with RAD51. PSF significantly enhanced RAD51-mediated homologous pairing and strand exchange at low RAD51 concentrations; however, in contrast, it inhibited these RAD51-mediated recombination reactions at the optimal RAD51 concentration. Deletion analyses revealed that the N-terminal region of PSF possessed the RAD51- and DNA-binding activities, but the central region containing the RNA-recognition motifs bound neither RAD51 nor DNA. These results suggest that PSF may have dual functions in homologous recombination and RNA processing through its N-terminal and central regions, respectively.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | | | | | | |
Collapse
|
108
|
Takaku M, Machida S, Hosoya N, Nakayama S, Takizawa Y, Sakane I, Shibata T, Miyagawa K, Kurumizaka H. Recombination activator function of the novel RAD51- and RAD51B-binding protein, human EVL. J Biol Chem 2009; 284:14326-36. [PMID: 19329439 DOI: 10.1074/jbc.m807715200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The RAD51 protein is a central player in homologous recombinational repair. The RAD51B protein is one of five RAD51 paralogs that function in the homologous recombinational repair pathway in higher eukaryotes. In the present study, we found that the human EVL (Ena/Vasp-like) protein, which is suggested to be involved in actin-remodeling processes, unexpectedly binds to the RAD51 and RAD51B proteins and stimulates the RAD51-mediated homologous pairing and strand exchange. The EVL knockdown cells impaired RAD51 assembly onto damaged DNA after ionizing radiation or mitomycin C treatment. The EVL protein alone promotes single-stranded DNA annealing, and the recombination activities of the EVL protein are further enhanced by the RAD51B protein. The expression of the EVL protein is not ubiquitous, but it is significantly expressed in breast cancer-derived MCF7 cells. These results suggest that the EVL protein is a novel recombination factor that may be required for repairing specific DNA lesions, and that may cause tumor malignancy by its inappropriate expression.
Collapse
Affiliation(s)
- Motoki Takaku
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, and Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Hartford CM, Duan S, Delaney SM, Mi S, Kistner EO, Lamba JK, Huang RS, Dolan ME. Population-specific genetic variants important in susceptibility to cytarabine arabinoside cytotoxicity. Blood 2009; 113:2145-53. [PMID: 19109566 PMCID: PMC2652364 DOI: 10.1182/blood-2008-05-154302] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 12/16/2008] [Indexed: 11/20/2022] Open
Abstract
Cytarabine arabinoside (ara-C) is an antimetabolite used to treat hematologic malignancies. Resistance is a common reason for treatment failure with adverse side effects contributing to morbidity and mortality. Identification of genetic factors important in susceptibility to ara-C cytotoxicity may allow for individualization of treatment. We used an unbiased whole-genome approach using lymphoblastoid cell lines derived from persons of European (CEU) or African (YRI) ancestry to identify these genetic factors. We interrogated more than 2 million single nucleotide polymorphisms (SNPs) for association with susceptibility to ara-C and narrowed our focus by concentrating on SNPs that affected gene expression. We identified a unique pharmacogenetic signature consisting of 4 SNPs explaining 51% of the variability in sensitivity to ara-C among the CEU and 5 SNPs explaining 58% of the variation among the YRI. Population-specific signatures were secondary to either (1) polymorphic SNPs in one population but monomorphic in the other, or (2) significant associations of SNPs with cytotoxicity or gene expression in one population but not the other. We validated the gene expression-cytotoxicity relationship for a subset of genes in a separate group of lymphoblastoid cell lines. These unique genetic signatures comprise novel genes that can now be studied further in functional studies.
Collapse
|
110
|
Kawata K, Shimazaki R, Okabe S. Comparison of gene expression profiles in HepG2 cells exposed to arsenic, cadmium, nickel, and three model carcinogens for investigating the mechanisms of metal carcinogenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:46-59. [PMID: 19031421 DOI: 10.1002/em.20438] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Carcinogenesis is an important chronic toxicity of metals and metalloids, although their mechanisms of action are still unclear. Comparison of gene expression patterns induced by carcinogenic metals, metalloids, and model carcinogens would give an insight into understanding of their carcinogenic mechanisms. In this study, we examined the gene expression alteration in human hepatoma cell line, HepG2, after exposing to two metals (cadmium and nickel), a metalloid (arsenic), and three model carcinogenic chemicals N-dimethylnitrosoamine (DMN), 12-O-tetradecanoylphorbol-13-acetate (TPA), and tetrachloroethylene (TCE) using DNA microarrays with 8,795 human genes. Of the genes altered by As, Cd, and Ni exposures, 31-55% were overlapped with those altered by three model carcinogenic chemical exposures in our experiments. In particular, the metals and metalloid shared certain characteristics with TPA and TCE in remarkable upregulations of the genes associated with progression of cell cycle, which might play a central role in As, Cd, and Ni carcinogenesis. This characteristic of gene expression alteration was partially counteracted by intracellular accumulation of vitamin C in As-exposed cells, whereas the number of cell-cycle associated genes was increased in Cd- and Ni-exposed cells. In our experimental conditions, ROS might have an accelerative effect on the cell proliferation mechanisms of As, but have an inhibitory effect on those of other two heavy metals. Furthermore, based on the results of Q-PCR, the oncogene PTTG1, which was upregulated by all carcinogenic chemical exposures in the array experiments, might be a useful biomarker for evaluation of the carcinogenesis of inorganic carcinogens.
Collapse
Affiliation(s)
- Koji Kawata
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo 060-8628, Japan
| | | | | |
Collapse
|
111
|
Budzowska M, Kanaar R. Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem Biophys 2008; 53:17-31. [PMID: 19034694 DOI: 10.1007/s12013-008-9039-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2008] [Indexed: 12/31/2022]
Abstract
During every S phase, cells need to duplicate their genomes so that both daughter cells inherit complete copies of genetic information. Given the large size of mammalian genomes and the required precision of DNA replication, genome duplication requires highly fine-tuned corrective and quality control processes. A major threat to the accuracy and efficiency of DNA synthesis is the presence of DNA lesions, caused by both endogenous and exogenous damaging agents. Replicative DNA polymerases, which carry out the bulk of DNA synthesis, evolved to do their job extremely precisely and efficiently. However, they are unable to use damaged DNA as a template and, consequently, are stopped at most DNA lesions. Failure to restart such stalled replication forks can result in major chromosomal aberrations and lead to cell dysfunction or death. Therefore, a well-coordinated response to replication perturbation is essential for cell survival and fitness. Here we review how this response involves activating checkpoint signaling and the use of specialized pathways promoting replication restart. Checkpoint signaling adjusts cell cycle progression to the emergency situation and thus gives cells more time to deal with the damage. Replication restart is mediated by two pathways. Homologous recombination uses homologous DNA sequence to repair or bypass the lesion and is therefore mainly error free. Error-prone translesion synthesis employs specialized, low fidelity polymerases to bypass the damage.
Collapse
Affiliation(s)
- Magda Budzowska
- Department of Cell Biology & Genetics, Cancer Genomics Center, Rotterdam, The Netherlands
| | | |
Collapse
|
112
|
Trickey M, Grimaldi M, Yamano H. The anaphase-promoting complex/cyclosome controls repair and recombination by ubiquitylating Rhp54 in fission yeast. Mol Cell Biol 2008; 28:3905-16. [PMID: 18426916 PMCID: PMC2423112 DOI: 10.1128/mcb.02116-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/08/2008] [Accepted: 04/07/2008] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination (HR) is important for maintaining genome integrity and for the process of meiotic chromosome segregation and the generation of variation. HR is regulated throughout the cell cycle, being prevalent in the S and G2 phases and suppressed in the G1 phase. Here we show that the anaphase-promoting complex/cyclosome (APC/C) regulates homologous recombination in the fission yeast Schizosaccharomyces pombe by ubiquitylating Rhp54 (an ortholog of Rad54). We show that Rhp54 is a novel APC/C substrate that is destroyed in G1 phase in a KEN-box- and Ste9/Fizzy-related manner. The biological consequences of failing to temporally regulate HR via Rhp54 degradation are seen in haploid cells only in the absence of antirecombinase Srs2 function and are more extensive in diploid cells, which become sensitive to a range of DNA-damaging agents, including hydroxyurea, methyl methanesulfonate, bleomycin, and UV. During meiosis, expression of nondegradable Rhp54 inhibits interhomolog recombination and stimulates sister chromatid recombination. We thus propose that it is critical to control levels of Rhp54 in G1 to suppress HR repair of double-strand breaks and during meiosis to coordinate interhomolog recombination.
Collapse
Affiliation(s)
- Michelle Trickey
- Cell Cycle Control Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, United Kingdom
| | | | | |
Collapse
|
113
|
Kanaar R, Wyman C, Rothstein R. Quality control of DNA break metabolism: in the 'end', it's a good thing. EMBO J 2008; 27:581-8. [PMID: 18285819 DOI: 10.1038/emboj.2008.11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 01/14/2008] [Indexed: 12/27/2022] Open
Abstract
DNA ends pose specific problems in the control of genetic information quality. Ends of broken DNA need to be rejoined to avoid genome rearrangements, whereas natural DNA ends of linear chromosomes, telomeres, need to be stable and hidden from the DNA damage response. Efficient DNA end metabolism, either at induced DNA breaks or telomeres, does not result from the machine-like precision of molecular reactions, but rather from messier, more stochastic processes. The necessary molecular interactions are dynamically unstable, with constructive and destructive processes occurring in competition. In the end, quality control comes from the constant building up and tearing down of inappropriate, but also appropriate reaction steps in combination with factors that only slightly shift the equilibrium to eventually favour appropriate events. Thus, paradoxically, enzymes antagonizing DNA end metabolism help to ensure that genome maintenance becomes a robust process.
Collapse
Affiliation(s)
- Roland Kanaar
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
114
|
Modesti M, Budzowska M, Baldeyron C, Demmers JAA, Ghirlando R, Kanaar R. RAD51AP1 is a structure-specific DNA binding protein that stimulates joint molecule formation during RAD51-mediated homologous recombination. Mol Cell 2008; 28:468-81. [PMID: 17996710 DOI: 10.1016/j.molcel.2007.08.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 07/19/2007] [Accepted: 08/23/2007] [Indexed: 12/24/2022]
Abstract
Homologous recombination is essential for preserving genome integrity. Joining of homologous DNA molecules through strand exchange, a pivotal step in recombination, is mediated by RAD51. Here, we identify RAD51AP1 as a RAD51 accessory protein that specifically stimulates joint molecule formation through the combination of structure-specific DNA binding and physical contact with RAD51. At the cellular level, we show that RAD51AP1 is required to protect cells from the adverse effects of DNA double-strand break-inducing agents. At the biochemical level, we show that RAD51AP1 has a selective affinity for branched-DNA structures that are obligatory intermediates during joint molecule formation. Our results highlight the importance of structural transitions in DNA as control points in recombination. The affinity of RAD51AP1 for the central protein and DNA intermediates of recombination confers on it the ability to control the preservation of genome integrity at a number of critical mechanistic steps.
Collapse
Affiliation(s)
- Mauro Modesti
- Department of Cell Biology and Genetics, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|