101
|
Deng W, Rupon JW, Krivega I, Breda L, Motta I, Jahn KS, Reik A, Gregory PD, Rivella S, Dean A, Blobel GA. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 2014; 158:849-860. [PMID: 25126789 DOI: 10.1016/j.cell.2014.05.050] [Citation(s) in RCA: 327] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/26/2014] [Accepted: 05/29/2014] [Indexed: 01/17/2023]
Abstract
Distal enhancers commonly contact target promoters via chromatin looping. In erythroid cells, the locus control region (LCR) contacts β-type globin genes in a developmental stage-specific manner to stimulate transcription. Previously, we induced LCR-promoter looping by tethering the self-association domain (SA) of Ldb1 to the β-globin promoter via artificial zinc fingers. Here, we show that targeting the SA to a developmentally silenced embryonic globin gene in adult murine erythroblasts triggers its transcriptional reactivation. This activity depends on the LCR, consistent with an LCR-promoter looping mechanism. Strikingly, targeting the SA to the fetal γ-globin promoter in primary adult human erythroblasts increases γ-globin promoter-LCR contacts, stimulating transcription to approximately 85% of total β-globin synthesis, with a reciprocal reduction in adult β-globin expression. Our findings demonstrate that forced chromatin looping can override a stringent developmental gene expression program and suggest a novel approach to control the balance of globin gene transcription for therapeutic applications.
Collapse
Affiliation(s)
- Wulan Deng
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Transcription Imaging Consortium, Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jeremy W Rupon
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Breda
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, New York, NY 10021, USA
| | - Irene Motta
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, New York, NY 10021, USA
| | - Kristen S Jahn
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | - Stefano Rivella
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, New York, NY 10021, USA; Division of Hematology-Oncology, Department of Cell and Biology Development, Weill Cornell Medical College, New York, NY 10021, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
102
|
Joseph S, Kwan AH, Stokes PH, Mackay JP, Cubeddu L, Matthews JM. The structure of an LIM-only protein 4 (LMO4) and Deformed epidermal autoregulatory factor-1 (DEAF1) complex reveals a common mode of binding to LMO4. PLoS One 2014; 9:e109108. [PMID: 25310299 PMCID: PMC4195752 DOI: 10.1371/journal.pone.0109108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/27/2014] [Indexed: 12/23/2022] Open
Abstract
LIM-domain only protein 4 (LMO4) is a widely expressed protein with important roles in embryonic development and breast cancer. It has been reported to bind many partners, including the transcription factor Deformed epidermal autoregulatory factor-1 (DEAF1), with which LMO4 shares many biological parallels. We used yeast two-hybrid assays to show that DEAF1 binds both LIM domains of LMO4 and that DEAF1 binds the same face on LMO4 as two other LMO4-binding partners, namely LIM domain binding protein 1 (LDB1) and C-terminal binding protein interacting protein (CtIP/RBBP8). Mutagenic screening analysed by the same method, indicates that the key residues in the interaction lie in LMO4LIM2 and the N-terminal half of the LMO4-binding domain in DEAF1. We generated a stable LMO4LIM2-DEAF1 complex and determined the solution structure of that complex. Although the LMO4-binding domain from DEAF1 is intrinsically disordered, it becomes structured on binding. The structure confirms that LDB1, CtIP and DEAF1 all bind to the same face on LMO4. LMO4 appears to form a hub in protein-protein interaction networks, linking numerous pathways within cells. Competitive binding for LMO4 therefore most likely provides a level of regulation between those different pathways.
Collapse
Affiliation(s)
- Soumya Joseph
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Ann H. Kwan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Philippa H. Stokes
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Joel P. Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Liza Cubeddu
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
- School of Science and Health, University of Western Sydney, Campbelltown, NSW Australia
| | | |
Collapse
|
103
|
Abstract
Enhancers establish spatial or temporal patterns of gene expression that are critical for development, yet our understanding of how these DNA cis-regulatory elements function from a distance to increase transcription of their target genes and shape the cellular transcriptome has been gleaned primarily from studies of individual genes or gene families. High-throughput sequencing studies place enhancer-gene interactions within the 3D context of chromosome folding, inviting a new look at enhancer function and stimulating provocative new questions. Here, we integrate these whole-genome studies with recent mechanistic studies to illuminate how enhancers physically interact with target genes, how enhancer activity is regulated during development, and the role of noncoding RNAs transcribed from enhancers in their function.
Collapse
Affiliation(s)
- Jennifer L Plank
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
104
|
Kolovos P, van de Werken HJ, Kepper N, Zuin J, Brouwer RW, Kockx CE, Wendt KS, van IJcken WF, Grosveld F, Knoch TA. Targeted Chromatin Capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements. Epigenetics Chromatin 2014; 7:10. [PMID: 25031611 PMCID: PMC4100494 DOI: 10.1186/1756-8935-7-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/28/2014] [Indexed: 11/26/2022] Open
Abstract
Background Significant efforts have recently been put into the investigation of the spatial organization and the chromatin-interaction networks of genomes. Chromosome conformation capture (3C) technology and its derivatives are important tools used in this effort. However, many of these have limitations, such as being limited to one viewpoint, expensive with moderate to low resolution, and/or requiring a large sequencing effort. Techniques like Hi-C provide a genome-wide analysis. However, it requires massive sequencing effort with considerable costs. Here we describe a new technique termed Targeted Chromatin Capture (T2C), to interrogate large selected regions of the genome. T2C provides an unbiased view of the spatial organization of selected loci at superior resolution (single restriction fragment resolution, from 2 to 6 kbp) at much lower costs than Hi-C due to the lower sequencing effort. Results We applied T2C on well-known model regions, the mouse β-globin locus and the human H19/IGF2 locus. In both cases we identified all known chromatin interactions. Furthermore, we compared the human H19/IGF2 locus data obtained from different chromatin conformation capturing methods with T2C data. We observed the same compartmentalization of the locus, but at a much higher resolution (single restriction fragments vs. the common 40 kbp bins) and higher coverage. Moreover, we compared the β-globin locus in two different biological samples (mouse primary erythroid cells and mouse fetal brain), where it is either actively transcribed or not, to identify possible transcriptional dependent interactions. We identified the known interactions in the β-globin locus and the same topological domains in both mouse primary erythroid cells and in mouse fetal brain with the latter having fewer interactions probably due to the inactivity of the locus. Furthermore, we show that interactions due to the important chromatin proteins, Ldb1 and Ctcf, in both tissues can be analyzed easily to reveal their role on transcriptional interactions and genome folding. Conclusions T2C is an efficient, easy, and affordable with high (restriction fragment) resolution tool to address both genome compartmentalization and chromatin-interaction networks for specific genomic regions at high resolution for both clinical and non-clinical research.
Collapse
Affiliation(s)
- Petros Kolovos
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Harmen Jg van de Werken
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Nick Kepper
- Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Jessica Zuin
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Rutger Ww Brouwer
- Center for Biomics, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Christel Em Kockx
- Center for Biomics, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Wilfred Fj van IJcken
- Center for Biomics, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Tobias A Knoch
- Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| |
Collapse
|
105
|
Krivega I, Dale RK, Dean A. Role of LDB1 in the transition from chromatin looping to transcription activation. Genes Dev 2014; 28:1278-90. [PMID: 24874989 PMCID: PMC4066399 DOI: 10.1101/gad.239749.114] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Many questions remain about the relationship between chromatin loop formation and transcription. In erythroid cells, LDB1 is required for looping of the β-globin locus control region (LCR) to the active β-globin promoter. Dean and colleagues show that the LDB1 dimerization domain (DD) is necessary to restore LCR-promoter looping and transcription in LDB1-depleted cells. Deletion analysis reveals a conserved region of the LDB1 DD dispensable for dimerization and chromatin looping but necessary for transcription activation. The results thus uncouple enhancer–promoter looping from transcription at the β-globin locus. Many questions remain about how close association of genes and distant enhancers occurs and how this is linked to transcription activation. In erythroid cells, lim domain binding 1 (LDB1) protein is recruited to the β-globin locus via LMO2 and is required for looping of the β-globin locus control region (LCR) to the active β-globin promoter. We show that the LDB1 dimerization domain (DD) is necessary and, when fused to LMO2, sufficient to completely restore LCR–promoter looping and transcription in LDB1-depleted cells. The looping function of the DD is unique and irreplaceable by heterologous DDs. Dissection of the DD revealed distinct functional properties of conserved subdomains. Notably, a conserved helical region (DD4/5) is dispensable for LDB1 dimerization and chromatin looping but essential for transcriptional activation. DD4/5 is required for the recruitment of the coregulators FOG1 and the nucleosome remodeling and deacetylating (NuRD) complex. Lack of DD4/5 alters histone acetylation and RNA polymerase II recruitment and results in failure of the locus to migrate to the nuclear interior, as normally occurs during erythroid maturation. These results uncouple enhancer–promoter looping from nuclear migration and transcription activation and reveal new roles for LDB1 in these processes.
Collapse
Affiliation(s)
- Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
106
|
Hewitt KJ, Sanalkumar R, Johnson KD, Keles S, Bresnick EH. Epigenetic and genetic mechanisms in red cell biology. Curr Opin Hematol 2014; 21:155-64. [PMID: 24722192 PMCID: PMC6061918 DOI: 10.1097/moh.0000000000000034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Erythropoiesis, in which hematopoietic stem cells (HSCs) generate lineage-committed progenitors that mature into erythrocytes, is regulated by numerous chromatin modifying and remodeling proteins. We will focus on how epigenetic and genetic mechanisms mesh to establish the erythroid transcriptome and how studying erythropoiesis can yield genomic principles. RECENT FINDINGS Trans-acting factor binding to small DNA motifs (cis-elements) underlies regulatory complex assembly at specific chromatin sites, and therefore unique transcriptomes. As cis-elements are often very small, thousands or millions of copies of a given element reside in a genome. Chromatin restricts factor access in a context-dependent manner, and cis-element-binding factors recruit chromatin regulators that mediate functional outputs. Technologies to map chromatin attributes of loci in vivo, to edit genomes and to sequence whole genomes have been transformative in discovering critical cis-elements linked to human disease. SUMMARY Cis-elements mediate chromatin-targeting specificity, and chromatin regulators dictate cis-element accessibility/function, illustrating an amalgamation of genetic and epigenetic mechanisms. Cis-elements often function ectopically when studied outside of their endogenous loci, and complex strategies to identify nonredundant cis-elements require further development. Facile genome-editing technologies provide a new approach to address this problem. Extending genetic analyses beyond exons and promoters will yield a rich pipeline of cis-element alterations with importance for red cell biology and disease.
Collapse
Affiliation(s)
- Kyle J. Hewitt
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Rajendran Sanalkumar
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Kirby D. Johnson
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Sunduz Keles
- UW-Madison Blood Research Program, Carbone Cancer Center
- Department of Biostatistics and Medical Informatics, Department of Statistics, Wisconsin Institutes for Medical Research, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| |
Collapse
|
107
|
Wendt KS, Grosveld FG. Transcription in the context of the 3D nucleus. Curr Opin Genet Dev 2014; 25:62-7. [DOI: 10.1016/j.gde.2013.11.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/29/2013] [Indexed: 11/27/2022]
|
108
|
Abstract
The unremitting demand to replenish differentiated cells in tissues requires efficient mechanisms to generate and regulate stem and progenitor cells. Although master regulatory transcription factors, including GATA binding protein-2 (GATA-2), have crucial roles in these mechanisms, how such factors are controlled in developmentally dynamic systems is poorly understood. Previously, we described five dispersed Gata2 locus sequences, termed the -77, -3.9, -2.8, -1.8, and +9.5 GATA switch sites, which contain evolutionarily conserved GATA motifs occupied by GATA-2 and GATA-1 in hematopoietic precursors and erythroid cells, respectively. Despite common attributes of transcriptional enhancers, targeted deletions of the -2.8, -1.8, and +9.5 sites revealed distinct and unpredictable contributions to Gata2 expression and hematopoiesis. Herein, we describe the targeted deletion of the -3.9 site and mechanistically compare the -3.9 site with other GATA switch sites. The -3.9(-/-) mice were viable and exhibited normal Gata2 expression and steady-state hematopoiesis in the embryo and adult. We established a Gata2 repression/reactivation assay, which revealed unique +9.5 site activity to mediate GATA factor-dependent chromatin structural transitions. Loss-of-function analyses provided evidence for a mechanism in which a mediator of long-range transcriptional control [LIM domain binding 1 (LDB1)] and a chromatin remodeler [Brahma related gene 1 (BRG1)] synergize through the +9.5 site, conferring expression of GATA-2, which is known to promote the genesis and survival of hematopoietic stem cells.
Collapse
|
109
|
Stadhouders R, Aktuna S, Thongjuea S, Aghajanirefah A, Pourfarzad F, van Ijcken W, Lenhard B, Rooks H, Best S, Menzel S, Grosveld F, Thein SL, Soler E. HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. J Clin Invest 2014; 124:1699-710. [PMID: 24614105 DOI: 10.1172/jci71520] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/09/2014] [Indexed: 01/21/2023] Open
Abstract
Genetic studies have identified common variants within the intergenic region (HBS1L-MYB) between GTP-binding elongation factor HBS1L and myeloblastosis oncogene MYB on chromosome 6q that are associated with elevated fetal hemoglobin (HbF) levels and alterations of other clinically important human erythroid traits. It is unclear how these noncoding sequence variants affect multiple erythrocyte characteristics. Here, we determined that several HBS1L-MYB intergenic variants affect regulatory elements that are occupied by key erythroid transcription factors within this region. These elements interact with MYB, a critical regulator of erythroid development and HbF levels. We found that several HBS1L-MYB intergenic variants reduce transcription factor binding, affecting long-range interactions with MYB and MYB expression levels. These data provide a functional explanation for the genetic association of HBS1L-MYB intergenic polymorphisms with human erythroid traits and HbF levels. Our results further designate MYB as a target for therapeutic induction of HbF to ameliorate sickle cell and β-thalassemia disease severity.
Collapse
|
110
|
Weng W, Sheng G. Five transcription factors and FGF pathway inhibition efficiently induce erythroid differentiation in the epiblast. Stem Cell Reports 2014; 2:262-70. [PMID: 24672750 PMCID: PMC3964278 DOI: 10.1016/j.stemcr.2014.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 02/04/2023] Open
Abstract
Primitive erythropoiesis follows a stereotypic developmental program of mesoderm ventralization and internalization, hemangioblast formation and migration, and erythroid lineage specification. Induction of erythropoiesis is inefficient in either ES/iPS cells in vitro or nonhemangioblast cell populations in vivo. Using the chick model, we report that epiblast cells can be directly and efficiently differentiated into the erythroid lineage by expressing five hematopoietic transcription regulators (SCL+LMO2+GATA2+LDB1+E2A) and inhibiting the FGF pathway. We show that these five genes are expressed with temporal specificity during normal erythropoiesis. Initiation of SCL and LMO2 expression requires FGF activity, whereas erythroid differentiation is enhanced by FGF inhibition. The lag between hematopoiesis and erythropoiesis is attributed to sequential coregulator expression and hemangioblast migration. Globin gene transcription can be ectopically and prematurely induced by manipulating the availability of these factors and the FGF pathway activity. We propose that similar approaches can be taken for efficient erythroid differentiation in vitro.
Collapse
Affiliation(s)
- Wei Weng
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Guojun Sheng
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
111
|
Ball AR, Chen YY, Yokomori K. Mechanisms of cohesin-mediated gene regulation and lessons learned from cohesinopathies. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:191-202. [PMID: 24269489 PMCID: PMC3951616 DOI: 10.1016/j.bbagrm.2013.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/09/2013] [Accepted: 11/14/2013] [Indexed: 12/16/2022]
Abstract
Cohesins are conserved and essential Structural Maintenance of Chromosomes (SMC) protein-containing complexes that physically interact with chromatin and modulate higher-order chromatin organization. Cohesins mediate sister chromatid cohesion and cellular long-distance chromatin interactions affecting genome maintenance and gene expression. Discoveries of mutations in cohesin's subunits and its regulator proteins in human developmental disorders, so-called "cohesinopathies," reveal crucial roles for cohesins in development and cellular growth and differentiation. In this review, we discuss the latest findings concerning cohesin's functions in higher-order chromatin architecture organization and gene regulation and new insight gained from studies of cohesinopathies. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Alexander R Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Yen-Yun Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA.
| |
Collapse
|
112
|
Wood AM, Garza-Gongora AG, Kosak ST. A Crowdsourced nucleus: understanding nuclear organization in terms of dynamically networked protein function. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:178-90. [PMID: 24412853 PMCID: PMC3954575 DOI: 10.1016/j.bbagrm.2014.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 01/14/2023]
Abstract
The spatial organization of the nucleus results in a compartmentalized structure that affects all aspects of nuclear function. This compartmentalization involves genome organization as well as the formation of nuclear bodies and plays a role in many functions, including gene regulation, genome stability, replication, and RNA processing. Here we review the recent findings associated with the spatial organization of the nucleus and reveal that a common theme for nuclear proteins is their ability to participate in a variety of functions and pathways. We consider this multiplicity of function in terms of Crowdsourcing, a recent phenomenon in the world of information technology, and suggest that this model provides a novel way to synthesize the many intersections between nuclear organization and function. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Ashley M Wood
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Arturo G Garza-Gongora
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
113
|
Williams RL, Starmer J, Mugford JW, Calabrese JM, Mieczkowski P, Yee D, Magnuson T. fourSig: a method for determining chromosomal interactions in 4C-Seq data. Nucleic Acids Res 2014; 42:e68. [PMID: 24561615 PMCID: PMC4005674 DOI: 10.1093/nar/gku156] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The ability to correlate chromosome conformation and gene expression gives a great deal of information regarding the strategies used by a cell to properly regulate gene activity. 4C-Seq is a relatively new and increasingly popular technology where the set of genomic interactions generated by a single point in the genome can be determined. 4C-Seq experiments generate large, complicated data sets and it is imperative that signal is properly distinguished from noise. Currently, there are a limited number of methods for analyzing 4C-Seq data. Here, we present a new method, fourSig, which in addition to being precise and simple to use also includes a new feature that prioritizes detected interactions. Our results demonstrate the efficacy of fourSig with previously published and novel 4C-Seq data sets and show that our significance prioritization correlates with the ability to reproducibly detect interactions among replicates.
Collapse
Affiliation(s)
- Rex L Williams
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Maksimenko O, Georgiev P. Mechanisms and proteins involved in long-distance interactions. Front Genet 2014; 5:28. [PMID: 24600469 PMCID: PMC3927085 DOI: 10.3389/fgene.2014.00028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/25/2014] [Indexed: 12/28/2022] Open
Abstract
Due to advances in genome-wide technologies, consistent distant interactions within chromosomes of higher eukaryotes have been revealed. In particular, it has been shown that enhancers can specifically and directly interact with promoters by looping out intervening sequences, which can be up to several hundred kilobases long. This review is focused on transcription factors that are supposed to be involved in long-range interactions. Available data are in agreement with the model that several known transcription factors and insulator proteins belong to an abundant but poorly studied class of proteins that are responsible for chromosomal architecture.
Collapse
Affiliation(s)
- Oksana Maksimenko
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
115
|
Barrow JJ, Li Y, Hossain M, Huang S, Bungert J. Dissecting the function of the adult β-globin downstream promoter region using an artificial zinc finger DNA-binding domain. Nucleic Acids Res 2014; 42:4363-74. [PMID: 24497190 PMCID: PMC3985677 DOI: 10.1093/nar/gku107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Developmental stage-specific expression of the β-type globin genes is regulated by many cis- and trans-acting components. The adult β-globin gene contains an E-box located 60 bp downstream of the transcription start site that has been shown to bind transcription factor upstream stimulatory factor (USF) and to contribute to efficient in vitro transcription. We expressed an artificial zinc finger DNA-binding domain (ZF-DBD) targeting this site (+60 ZF-DBD) in murine erythroleukemia cells. Expression of the +60 ZF-DBD reduced the recruitment and elongation of RNA polymerase II (Pol II) at the adult β-globin gene and at the same time increased the binding of Pol II at locus control region (LCR) element HS2, suggesting that Pol II is transferred from the LCR to the globin gene promoters. Expression of the +60 ZF-DBD also reduced the frequency of interactions between the LCR and the adult β-globin promoter. ChIP-exonuclease-sequencing revealed that the +60ZF-DBD was targeted to the adult β-globin downstream promoter and that the binding of the ZF-DBD caused alterations in the association of USF2 containing protein complexes. The data demonstrate that targeting a ZF-DBD to the adult β-globin downstream promoter region interferes with the LCR-mediated recruitment and activity of Pol II.
Collapse
Affiliation(s)
- Joeva J Barrow
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Shands Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, 32610, FL, USA
| | | | | | | | | |
Collapse
|
116
|
Patel B, Kang Y, Cui K, Litt M, Riberio MSJ, Deng C, Salz T, Casada S, Fu X, Qiu Y, Zhao K, Huang S. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia. Leukemia 2014; 28:349-61. [PMID: 23698277 PMCID: PMC10921969 DOI: 10.1038/leu.2013.158] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/09/2013] [Accepted: 05/16/2013] [Indexed: 01/21/2023]
Abstract
Long-range chromatin interactions control metazoan gene transcription. However, the involvement of intra- and interchromosomal interactions in development and oncogenesis remains unclear. TAL1/SCL is a critical transcription factor required for the development of all hematopoietic lineages; yet, aberrant TAL1 transcription often occurs in T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that oncogenic TAL1 expression is regulated by different intra- and interchromosomal loops in normal hematopoietic and leukemic cells, respectively. These intra- and interchromosomal loops alter the cell-type-specific enhancers that interact with the TAL1 promoter. We show that human SET1 (hSET1)-mediated H3K4 methylations promote a long-range chromatin loop, which brings the +51 enhancer in close proximity to TAL1 promoter 1 in erythroid cells. The CCCTC-binding factor (CTCF) facilitates this long-range enhancer/promoter interaction of the TAL1 locus in erythroid cells while blocking the same enhancer/promoter interaction of the TAL1 locus in human T-cell leukemia. In human T-ALL, a T-cell-specific transcription factor c-Maf-mediated interchromosomal interaction brings the TAL1 promoter into close proximity with a T-cell-specific regulatory element located on chromosome 16, activating aberrant TAL1 oncogene expression. Thus, our study reveals a novel molecular mechanism involving changes in three-dimensional chromatin interactions that activate the TAL1 oncogene in human T-cell leukemia.
Collapse
Affiliation(s)
- B Patel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- These authors contributed equally to this work
| | - Y Kang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- College of Life Science, Jilin University, Changchun, China
- These authors contributed equally to this work
| | - K Cui
- Center for System Biology, NHLBI, National Institute of Health, Bethesda, MD, USA
| | - M Litt
- Medical Education Center, Ball State University, Muncie, IN, USA
| | - MSJ Riberio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - C Deng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - T Salz
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - S Casada
- Medical Education Center, Ball State University, Muncie, IN, USA
| | - X Fu
- College of Life Science, Jilin University, Changchun, China
| | - Y Qiu
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Shands Cancer Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - K Zhao
- Center for System Biology, NHLBI, National Institute of Health, Bethesda, MD, USA
| | - S Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Shands Cancer Center, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
117
|
Yun WJ, Kim YW, Kang Y, Lee J, Dean A, Kim A. The hematopoietic regulator TAL1 is required for chromatin looping between the β-globin LCR and human γ-globin genes to activate transcription. Nucleic Acids Res 2014; 42:4283-93. [PMID: 24470145 PMCID: PMC3985645 DOI: 10.1093/nar/gku072] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
TAL1 is a key hematopoietic transcription factor that binds to regulatory regions of a large cohort of erythroid genes as part of a complex with GATA-1, LMO2 and Ldb1. The complex mediates long-range interaction between the β-globin locus control region (LCR) and active globin genes, and although TAL1 is one of the two DNA-binding complex members, its role is unclear. To explore the role of TAL1 in transcription activation of the human γ-globin genes, we reduced the expression of TAL1 in erythroid K562 cells using lentiviral short hairpin RNA, compromising its association in the β-globin locus. In the TAL1 knockdown cells, the γ-globin transcription was reduced to 35% and chromatin looping of the Gγ-globin gene with the LCR was disrupted with decreased occupancy of the complex member Ldb1 and LMO2 in the locus. However, GATA-1 binding, DNase I hypersensitive site formation and several histone modifications were largely maintained across the β-globin locus. In addition, overexpression of TAL1 increased the γ-globin transcription and increased interaction frequency between the Gγ-globin gene and LCR. These results indicate that TAL1 plays a critical role in chromatin loop formation between the γ-globin genes and LCR, which is a critical step for the transcription of the γ-globin genes.
Collapse
Affiliation(s)
- Won Ju Yun
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, Korea and Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
118
|
Love PE, Warzecha C, Li L. Ldb1 complexes: the new master regulators of erythroid gene transcription. Trends Genet 2013; 30:1-9. [PMID: 24290192 DOI: 10.1016/j.tig.2013.10.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
Abstract
Elucidation of the genetic pathways that control red blood cell development has been a central goal of erythropoiesis research over the past decade. Notably, data from several recent studies have provided new insights into the regulation of erythroid gene transcription. Transcription profiling demonstrates that erythropoiesis is mainly controlled by a small group of lineage-restricted transcription factors [Gata binding protein 1 (Gata1), T cell acute lymphocytic leukemia 1 protein (Tal1), and Erythroid Kruppel-like factor (EKLF; henceforth referred to as Klf1)]. Binding-site mapping using ChIP-Seq indicates that most DNA-bound Gata1 and Tal1 proteins are contained within higher order complexes (Ldb1 complexes) that include the nuclear adapters Ldb1 and Lmo2. Ldb1 complexes regulate Klf1, and Ldb1 complex-binding sites frequently colocalize with Klf1 at erythroid genes and cis-regulatory elements, indicating strong functional synergy between Gata1, Tal1, and Klf1. Together with new data demonstrating that Ldb1 can mediate long-range promoter-enhancer interactions, these findings provide a foundation for the first comprehensive models of the global regulation of erythroid gene transcription.
Collapse
Affiliation(s)
- Paul E Love
- Eunice Kennedy Shriver, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Claude Warzecha
- Eunice Kennedy Shriver, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - LiQi Li
- Eunice Kennedy Shriver, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
119
|
Transcriptional regulation of haematopoietic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:187-212. [PMID: 23696358 DOI: 10.1007/978-94-007-6621-1_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Haematopoietic stem cells (HSCs) are a rare cell population found in the bone marrow of adult mammals and are responsible for maintaining the entire haematopoietic system. Definitive HSCs are produced from mesoderm during embryonic development, from embryonic day 10 in the mouse. HSCs seed the foetal liver before migrating to the bone marrow around the time of birth. In the adult, HSCs are largely quiescent but have the ability to divide to self-renew and expand, or to proliferate and differentiate into any mature haematopoietic cell type. Both the specification of HSCs during development and their cellular choices once formed are tightly controlled at the level of transcription. Numerous transcriptional regulators of HSC specification, expansion, homeostasis and differentiation have been identified, primarily from analysis of mouse gene knockout experiments and transplantation assays. These include transcription factors, epigenetic modifiers and signalling pathway effectors. This chapter reviews the current knowledge of these HSC transcriptional regulators, predominantly focusing on the transcriptional regulation of mouse HSCs, although transcriptional regulation of human HSCs is also mentioned where relevant. Due to the breadth and maturity of this field, we have prioritised recently identified examples of HSC transcriptional regulators. We go on to highlight additional layers of control that regulate expression and activity of HSC transcriptional regulators and discuss how chromosomal translocations that result in fusion proteins of these HSC transcriptional regulators commonly drive leukaemias through transcriptional dysregulation.
Collapse
|
120
|
Katsumura KR, DeVilbiss AW, Pope NJ, Johnson KD, Bresnick EH. Transcriptional mechanisms underlying hemoglobin synthesis. Cold Spring Harb Perspect Med 2013; 3:a015412. [PMID: 23838521 PMCID: PMC3753722 DOI: 10.1101/cshperspect.a015412] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The physiological switch in expression of the embryonic, fetal, and adult β-like globin genes has garnered enormous attention from investigators interested in transcriptional mechanisms and the molecular basis of hemoglobinopathies. These efforts have led to the discovery of cell type-specific transcription factors, unprecedented mechanisms of transcriptional coregulator function, genome biology principles, unique contributions of nuclear organization to transcription and cell function, and promising therapeutic targets. Given the vast literature accrued on this topic, this article will focus on the master regulator of erythroid cell development and function GATA-1, its associated proteins, and its frontline role in controlling hemoglobin synthesis. GATA-1 is a crucial regulator of genes encoding hemoglobin subunits and heme biosynthetic enzymes. GATA-1-dependent mechanisms constitute an essential regulatory core that nucleates additional mechanisms to achieve the physiological control of hemoglobin synthesis.
Collapse
Affiliation(s)
- Koichi R Katsumura
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Wisconsin Institute for Medical Research, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | | | | | | | | |
Collapse
|
121
|
Gadd MS, Jacques DA, Nisevic I, Craig VJ, Kwan AH, Guss JM, Matthews JM. A structural basis for the regulation of the LIM-homeodomain protein islet 1 (Isl1) by intra- and intermolecular interactions. J Biol Chem 2013; 288:21924-35. [PMID: 23750000 DOI: 10.1074/jbc.m113.478586] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Islet 1 (Isl1) is a transcription factor of the LIM-homeodomain (LIM-HD) protein family and is essential for many developmental processes. LIM-HD proteins all contain two protein-interacting LIM domains, a DNA-binding homeodomain (HD), and a C-terminal region. In Isl1, the C-terminal region also contains the LIM homeobox 3 (Lhx3)-binding domain (LBD), which interacts with the LIM domains of Lhx3. The LIM domains of Isl1 have been implicated in inhibition of DNA binding potentially through an intramolecular interaction with or close to the HD. Here we investigate the LBD as a candidate intramolecular interaction domain. Competitive yeast-two hybrid experiments indicate that the LIM domains and LBD from Isl1 can interact with apparently low affinity, consistent with no detection of an intermolecular interaction in the same system. Nuclear magnetic resonance studies show that the interaction is specific, whereas substitution of the LBD with peptides of the same amino acid composition but different sequence is not specific. We solved the crystal structure of a similar but higher affinity complex between the LIM domains of Isl1 and the LIM interaction domain from the LIM-HD cofactor protein LIM domain-binding protein 1 (Ldb1) and used these coordinates to generate a homology model of the intramolecular interaction that indicates poorer complementarity for the weak intramolecular interaction. The intramolecular interaction in Isl1 may provide protection against aggregation, minimize unproductive DNA binding, and facilitate cofactor exchange within the cell.
Collapse
Affiliation(s)
- Morgan S Gadd
- School of Molecular Bioscience, Building G08, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
122
|
Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency. Cell Stem Cell 2013; 13:36-47. [PMID: 23747203 DOI: 10.1016/j.stem.2013.05.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/11/2013] [Accepted: 05/15/2013] [Indexed: 12/31/2022]
Abstract
Epigenetic mechanisms underlying somatic reprogramming have been extensively studied, but little is known about the nuclear architecture of pluripotent stem cells (PSCs). Using circular chromosome conformation capture with high-throughput sequencing (4C-seq) and fluorescence in situ hybridization (FISH), we identified chromosomal regions that colocalize frequently with the Oct4 locus in PSCs. These PSC-specific long-range interactions are established prior to transcriptional activation of endogenous Oct4 during reprogramming to induced PSCs and are facilitated by Klf4-mediated recruitment of cohesin. Depletion of Klf4 leads to unloading of cohesin at the Oct4 enhancer and disrupts long-range interactions prior to loss of Oct4 transcription and subsequent PSC differentiation, suggesting a causative role for Klf4 in facilitating long-range interactions independent of its transcriptional activity. Taken together, our results delineate the basic nuclear organization at the Oct4 locus in PSCs and suggest a functional role for Klf4-mediated higher-order chromatin structure in maintaining and inducing pluripotency.
Collapse
|
123
|
Thongjuea S, Stadhouders R, Grosveld FG, Soler E, Lenhard B. r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Res 2013; 41:e132. [PMID: 23671339 PMCID: PMC3711450 DOI: 10.1093/nar/gkt373] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The coupling of chromosome conformation capture (3C) with next-generation sequencing technologies enables the high-throughput detection of long-range genomic interactions, via the generation of ligation products between DNA sequences, which are closely juxtaposed in vivo. These interactions involve promoter regions, enhancers and other regulatory and structural elements of chromosomes and can reveal key details of the regulation of gene expression. 3C-seq is a variant of the method for the detection of interactions between one chosen genomic element (viewpoint) and the rest of the genome. We present r3Cseq, an R/Bioconductor package designed to perform 3C-seq data analysis in a number of different experimental designs. The package reads a common aligned read input format, provides data normalization, allows the visualization of candidate interaction regions and detects statistically significant chromatin interactions, thus greatly facilitating hypothesis generation and the interpretation of experimental results. We further demonstrate its use on a series of real-world applications.
Collapse
Affiliation(s)
- Supat Thongjuea
- Computational Biology Unit, Uni Computing, Uni Research AS, N-5020 Bergen, Norway
| | | | | | | | | |
Collapse
|
124
|
Razin SV, Gavrilov AA, Ioudinkova ES, Iarovaia OV. Communication of genome regulatory elements in a folded chromosome. FEBS Lett 2013; 587:1840-7. [PMID: 23651551 DOI: 10.1016/j.febslet.2013.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
The most popular model of gene activation by remote enhancers postulates that the enhancers interact directly with target promoters via the looping of intervening DNA fragments. This interaction is thought to be necessary for the stabilization of the Pol II pre-initiation complex and/or for the transfer of transcription factors and Pol II, which are initially accumulated at the enhancer, to the promoter. The direct interaction of enhancer(s) and promoter(s) is only possible when these elements are located in close proximity within the nuclear space. Here, we discuss the molecular mechanisms for maintaining the close proximity of the remote regulatory elements of the eukaryotic genome. The models of an active chromatin hub (ACH) and an active nuclear compartment are considered, focusing on the role of chromatin folding in juxtaposing remote DNA sequences. The interconnection between the functionally dependent architecture of the interphase chromosome and nuclear compartmentalization is also discussed.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia.
| | | | | | | |
Collapse
|
125
|
Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation. Blood 2013; 121:4575-85. [PMID: 23610375 DOI: 10.1182/blood-2013-01-479451] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythropoiesis is dependent on the lineage-specific transcription factors Gata1, Tal1, and Klf1. Several erythroid genes have been shown to require all 3 factors for their expression, suggesting that they function synergistically; however, there is little direct evidence for widespread cooperation. Gata1 and Tal1 can assemble within higher-order protein complexes (Ldb1 complexes) that include the adapter molecules Lmo2 and Ldb1. Ldb1 proteins are capable of coassociation, and long-range Ldb1-mediated oligomerization of enhancer- and promoter-bound Ldb1 complexes has been shown to be required for β-globin gene expression. In this study, we generated a genomewide map of Ldb1 complex binding sites that revealed widespread binding at erythroid genes and at known erythroid enhancer elements. Ldb1 complex binding sites frequently colocalized with Klf1 binding sites and with consensus binding motifs for other erythroid transcription factors. Transcriptomic analysis demonstrated a strong correlation between Ldb1 complex binding and Ldb1 dependency for gene expression and identified a large cohort of genes coregulated by Ldb1 complexes and Klf1. Together, these results provide a foundation for defining the mechanism and scope of Ldb1 complex activity during erythropoiesis.
Collapse
|
126
|
Regulatory elements associated with paternally-expressed genes in the imprinted murine Angelman/Prader-Willi syndrome domain. PLoS One 2013; 8:e52390. [PMID: 23390487 PMCID: PMC3563663 DOI: 10.1371/journal.pone.0052390] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022] Open
Abstract
The Angelman/Prader-Willi syndrome (AS/PWS) domain contains at least 8 imprinted genes regulated by a bipartite imprinting center (IC) associated with the SNRPN gene. One component of the IC, the PWS-IC, governs the paternal epigenotype and expression of paternal genes. The mechanisms by which imprinting and expression of paternal genes within the AS/PWS domain – such as MKRN3 and NDN – are regulated by the PWS-IC are unclear. The syntenic region in the mouse is organized and imprinted similarly to the human domain with the murine PWS-IC defined by a 6 kb interval within the Snrpn locus that includes the promoter. To identify regulatory elements that may mediate PWS-IC function, we mapped the location and allele-specificity of DNase I hypersensitive (DH) sites within the PWS-IC in brain cells, then identified transcription factor binding sites within a subset of these DH sites. Six major paternal-specific DH sites were detected in the Snrpn gene, five of which map within the 6 kb PWS-IC. We postulate these five DH sites represent functional components of the murine PWS-IC. Analysis of transcription factor binding within multiple DH sites detected nuclear respiratory factors (NRF's) and YY1 specifically on the paternal allele. NRF's and YY1 were also detected in the paternal promoter region of the murine Mrkn3 and Ndn genes. These results suggest that NRF's and YY1 may facilitate PWS-IC function and coordinately regulate expression of paternal genes. The presence of NRF's also suggests a link between transcriptional regulation within the AS/PWS domain and regulation of respiration. 3C analyses indicated Mkrn3 lies in close proximity to the PWS-IC on the paternal chromosome, evidence that the PWS-IC functions by allele-specific interaction with its distal target genes. This could occur by allele-specific co-localization of the PWS-IC and its target genes to transcription factories containing NRF's and YY1.
Collapse
|
127
|
Abstract
LIM-domain proteins are a large family of proteins that are emerging as key molecules in a wide variety of human cancers. In particular, all members of the human LIM-domain-only (LMO) proteins, LMO1-4, which are required for many developmental processes, are implicated in the onset or the progression of several cancers, including T cell leukaemia, breast cancer and neuroblastoma. These small proteins contain two protein-interacting LIM domains but little additional sequence, and they seem to function by nucleating the formation of new transcriptional complexes and/or by disrupting existing transcriptional complexes to modulate gene expression programmes. Through these activities, the LMO proteins have important cellular roles in processes that are relevant to cancer such as self-renewal, cell cycle regulation and metastasis. These functions highlight the therapeutic potential of targeting these proteins in cancer.
Collapse
Affiliation(s)
- Jacqueline M Matthews
- School of Molecular Bioscience, The University of Sydney, New South Wales 2006, Australia. jacqui.matthews@ sydney.edu.au
| | | | | | | |
Collapse
|
128
|
Matthews JM, Potts JR. The tandem β-zipper: Modular binding of tandem domains and linear motifs. FEBS Lett 2013; 587:1164-71. [DOI: 10.1016/j.febslet.2013.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 11/17/2022]
|
129
|
Noordermeer D, Duboule D. Chromatin looping and organization at developmentally regulated gene loci. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:615-30. [PMID: 24014450 DOI: 10.1002/wdev.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Developmentally regulated genes are often controlled by distant enhancers, silencers and insulators, to implement their correct transcriptional programs. In recent years, the development of 3C and derived techniques (4C, 5C, HiC, ChIA-PET, etc.) has confirmed that chromatin looping is an important mechanism for the transfer of regulatory information in mammalian cells. At many developmentally regulated gene loci, transcriptional activation is indeed accompanied by the formation of chromatin loops between genes and distant enhancers. Similarly, dynamic looping between insulator elements and changes in local 3D organization may be observed upon variation in transcriptional activity. Chromatin looping also occurs at silent gene loci, where its function remains less understood. In lineage-committed cells, partial 3D configurations are detected at loci that are activated at later stages. However, these partial configurations usually lack promoter-enhancer loops that accompany transcriptional activation, suggesting they have structural functions. Definitive evidence for a repressive role of chromatin looping is still lacking. Chromatin loops have been reported at repressed loci but, alternatively, they may act as a distraction for active loops. Together, these mechanisms allow fine-tuning of regulatory programs, thus providing further diversity in the transcriptional control of developmentally regulated gene loci.
Collapse
Affiliation(s)
- Daan Noordermeer
- National Research Centre Frontiers in Genetics, School of Life Sciences, Ecole Polytechnique Frale (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
130
|
Upstream distal regulatory elements contact the Lmo2 promoter in mouse erythroid cells. PLoS One 2012; 7:e52880. [PMID: 23285212 PMCID: PMC3528669 DOI: 10.1371/journal.pone.0052880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/22/2012] [Indexed: 01/06/2023] Open
Abstract
The Lim domain only 2 (Lmo2) gene encodes a transcriptional cofactor critical for the development of hematopoietic stem cells. Several distal regulatory elements have been identified upstream of the Lmo2 gene in the human and mouse genomes that are capable of enhancing reporter gene expression in erythroid cells and may be responsible for the high level transcription of Lmo2 in the erythroid lineage. In this study we investigate how these elements regulate transcription of Lmo2 and whether or not they function cooperatively in the endogenous context. Chromosome conformation capture (3C) experiments show that chromatin-chromatin interactions exist between upstream regulatory elements and the Lmo2 promoter in erythroid cells but that these interactions are absent from kidney where Lmo2 is transcribed at twelve fold lower levels. Specifically, long range chromatin-chromatin interactions occur between the Lmo2 proximal promoter and two broad regions, 3–31 and 66–105 kb upstream of Lmo2, which we term the proximal and distal control regions for Lmo2 (pCR and dCR respectively). Each of these regions is bound by several transcription factors suggesting that multiple regulatory elements cooperate in regulating high level transcription of Lmo2 in erythroid cells. Binding of CTCF and cohesin which support chromatin loops at other loci were also found within the dCR and at the Lmo2 proximal promoter. Intergenic transcription occurs throughout the dCR in erythroid cells but not in kidney suggesting a role for these intergenic transcripts in regulating Lmo2, similar to the broad domain of intergenic transcription observed at the human β-globin locus control region. Our data supports a model in which the dCR functions through a chromatin looping mechanism to contact and enhance Lmo2 transcription specifically in erythroid cells. Furthermore, these chromatin loops are supported by the cohesin complex recruited to both CTCF and transcription factor bound regions.
Collapse
|
131
|
Li Y, Deng C, Hu X, Patel B, Fu X, Qiu Y, Brand M, Zhao K, Huang S. Dynamic interaction between TAL1 oncoprotein and LSD1 regulates TAL1 function in hematopoiesis and leukemogenesis. Oncogene 2012; 31:5007-18. [PMID: 22310283 PMCID: PMC3510314 DOI: 10.1038/onc.2012.8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/15/2011] [Accepted: 12/30/2011] [Indexed: 12/29/2022]
Abstract
TAL1/SCL is a hematopoietic-specific oncogene and its activity is regulated by associated transcriptional co-activators and corepressors. Dysregulation of TAL1 activity has been associated with T-cell leukemogenesis. However, it remains unclear how the interactions between TAL1 and corepressors versus co-activators are properly regulated. Here, we reported that protein kinase A (PKA)-mediated phosphorylation regulates TAL1 interaction with the lysine-specific demethylase (LSD1) that removes methyl group from methylated Lys 4 on histone H3 tails. Phosphorylation of serine 172 in TAL1 specifically destabilizes the TAL1-LSD1 interaction leading to promoter H3K4 hypermethylation and activation of target genes that have been suppressed in normal and malignant hematopoiesis. Knockdown of TAL1 or LSD1 led to a derepression of the TAL1 target genes in T-cell acute lymphoblast leukemia (T-ALL) Jurkat cells, which is accompanied by elevating promoter H3K4 methylation. Similarly, treatment of PKA activator forskolin resulted in derepression of target genes by reducing its interaction with LSD1 while PKA inhibitor H89 represses them by suppressing H3K4 methylation levels. Consistent with the dual roles of TAL1 in transcription, TAL1-associated LSD1 is decreased while recruitment of hSET1 is increased at the TAL1 targets during erythroid differentiation. This process is accompanied by a dramatic increase in H3K4 methylation. Thus, our data revealed a novel interplay between PKA phosphorylation and TAL1-mediated epigenetic regulation that regulates hematopoietic transcription and differentiation programs during hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Ying Li
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
- College of Life Science, Jilin University, Changchun 130023, China
| | - Changwang Deng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
| | - Xin Hu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
- College of Life Science, Jilin University, Changchun 130023, China
| | - Bhavita Patel
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
| | - Xueqi Fu
- College of Life Science, Jilin University, Changchun 130023, China
| | - Yi Qiu
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610
- Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Keji Zhao
- Laboratory of Molecular Immunology, NHLBI, NIH, Bethesda, MD
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610
- Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
132
|
Marsman J, Horsfield JA. Long distance relationships: enhancer-promoter communication and dynamic gene transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1217-27. [PMID: 23124110 DOI: 10.1016/j.bbagrm.2012.10.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 11/27/2022]
Abstract
The three-dimensional regulation of gene transcription involves loop formation between enhancer and promoter elements, controlling spatiotemporal gene expression in multicellular organisms. Enhancers are usually located in non-coding DNA and can activate gene transcription by recruiting transcription factors, chromatin remodeling factors and RNA Polymerase II. Research over the last few years has revealed that enhancers have tell-tale characteristics that facilitate their detection by several approaches, although the hallmarks of enhancers are not always uniform. Enhancers likely play an important role in the activation of genes by functioning as a primary point of contact for transcriptional activators, and by making physical contact with gene promoters often by means of a chromatin loop. Although numerous transcriptional regulators participate in the formation of chromatin loops that bring enhancers into proximity with promoters, the mechanism(s) of enhancer-promoter connectivity remain enigmatic. Here we discuss enhancer function, review some of the many proteins shown to be involved in establishing enhancer-promoter loops, and describe the dynamics of enhancer-promoter contacts during development, differentiation and in specific cell types.
Collapse
Affiliation(s)
- Judith Marsman
- Department of Pathology, The University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
133
|
Holwerda S, de Laat W. Chromatin loops, gene positioning, and gene expression. Front Genet 2012; 3:217. [PMID: 23087710 PMCID: PMC3473233 DOI: 10.3389/fgene.2012.00217] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/01/2012] [Indexed: 01/09/2023] Open
Abstract
Technological developments and intense research over the last years have led to a better understanding of the 3D structure of the genome and its influence on genome function inside the cell nucleus. We will summarize topological studies performed on four model gene loci: the α- and β-globin gene loci, the antigen receptor loci, the imprinted H19-Igf2 locus and the Hox gene clusters. Collectively, these studies show that regulatory DNA sequences physically contact genes to control their transcription. Proteins set up the 3D configuration of the genome and we will discuss the roles of the key structural organizers CTCF and cohesin, the nuclear lamina and the transcription machinery. Finally, genes adopt non-random positions in the nuclear interior. We will review studies on gene positioning and propose that cell-specific genome conformations can juxtapose a regulatory sequence on one chromosome to a responsive gene on another chromosome to cause altered gene expression in subpopulations of cells.
Collapse
Affiliation(s)
- Sjoerd Holwerda
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht Utrecht, Netherlands
| | | |
Collapse
|
134
|
Palstra RJ, Grosveld F. Transcription factor binding at enhancers: shaping a genomic regulatory landscape in flux. Front Genet 2012; 3:195. [PMID: 23060900 PMCID: PMC3460357 DOI: 10.3389/fgene.2012.00195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/12/2012] [Indexed: 12/26/2022] Open
Abstract
The mammalian genome is packed tightly in the nucleus of the cell. This packing is primarily facilitated by histone proteins and results in an ordered organization of the genome in chromosome territories that can be roughly divided in heterochromatic and euchromatic domains. On top of this organization several distinct gene regulatory elements on the same chromosome or other chromosomes are thought to dynamically communicate via chromatin looping. Advances in genome-wide technologies have revealed the existence of a plethora of these regulatory elements in various eukaryotic genomes. These regulatory elements are defined by particular in vitro assays as promoters, enhancers, insulators, and boundary elements. However, recent studies indicate that the in vivo distinction between these elements is often less strict. Regulatory elements are bound by a mixture of common and lineage-specific transcription factors which mediate the long-range interactions between these elements. Inappropriate modulation of the binding of these transcription factors can alter the interactions between regulatory elements, which in turn leads to aberrant gene expression with disease as an ultimate consequence. Here we discuss the bi-modal behavior of regulatory elements that act in cis (with a focus on enhancers), how their activity is modulated by transcription factor binding and the effect this has on gene regulation.
Collapse
Affiliation(s)
- Robert-Jan Palstra
- Department of Cell Biology, Erasmus MC University Medical Center Rotterdam, Netherlands
| | | |
Collapse
|
135
|
Rogers H, Wang L, Yu X, Alnaeeli M, Cui K, Zhao K, Bieker JJ, Prchal J, Huang S, Weksler B, Noguchi CT. T-cell acute leukemia 1 (TAL1) regulation of erythropoietin receptor and association with excessive erythrocytosis. J Biol Chem 2012; 287:36720-31. [PMID: 22982397 DOI: 10.1074/jbc.m112.378398] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During erythropoiesis, erythropoietin stimulates induction of erythroid transcription factors that activate expression of erythroid genes including the erythropoietin receptor (EPO-R) that results in increased sensitivity to erythropoietin. DNA binding of the basic helix-loop-helix transcription factor, TAL1/SCL, is required for normal erythropoiesis. A link between elevated TAL1 and excessive erythrocytosis is suggested by erythroid progenitor cells from a patient that exhibits unusually high sensitivity to erythropoietin with concomitantly elevated TAL1 and EPO-R expression. We found that TAL1 regulates EPO-R expression mediated via three conserved E-box binding motifs (CAGCTG) in the EPO-R 5' untranslated transcribed region. TAL1 increases association of the GATA-1·TAL1·LMO2·LDB1 transcription activation complex to the region that includes the transcription start site and the 5' GATA and 3' E-box motifs flanking the EPO-R transcription start site suggesting that TAL1 promotes accessibility of this region. Nucleosome shifting has been demonstrated to facilitate TAL1 but not GATA-1 binding to regulate target gene expression. Accordingly, we observed that with induced expression of EPO-R in hemotopoietic progenitor cells, nucleosome phasing shifts to increase the linker region containing the EPO-R transcription start site and TAL1 binds to the flanking 5' GATA and 3' E-box regions of the promoter. These data suggest that TAL1 binds to the EPO-R promoter to activate EPO-R expression and provides a potential link to elevated EPO-R expression leading to hypersensitivity to erythropoietin and the resultant excessive erythrocytosis.
Collapse
Affiliation(s)
- Heather Rogers
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1822, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Deng W, Lee J, Wang H, Miller J, Reik A, Gregory PD, Dean A, Blobel GA. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 2012; 149:1233-44. [PMID: 22682246 DOI: 10.1016/j.cell.2012.03.051] [Citation(s) in RCA: 536] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/05/2012] [Accepted: 03/30/2012] [Indexed: 11/19/2022]
Abstract
Chromatin loops juxtapose distal enhancers with active promoters, but their molecular architecture and relationship with transcription remain unclear. In erythroid cells, the locus control region (LCR) and β-globin promoter form a chromatin loop that requires transcription factor GATA1 and the associated molecule Ldb1. We employed artificial zinc fingers (ZF) to tether Ldb1 to the β-globin promoter in GATA1 null erythroblasts, in which the β-globin locus is relaxed and inactive. Remarkably, targeting Ldb1 or only its self-association domain to the β-globin promoter substantially activated β-globin transcription in the absence of GATA1. Promoter-tethered Ldb1 interacted with endogenous Ldb1 complexes at the LCR to form a chromatin loop, causing recruitment and phosphorylation of RNA polymerase II. ZF-Ldb1 proteins were inactive at alleles lacking the LCR, demonstrating that their activities depend on long-range interactions. Our findings establish Ldb1 as a critical effector of GATA1-mediated loop formation and indicate that chromatin looping causally underlies gene regulation.
Collapse
Affiliation(s)
- Wulan Deng
- Division of Hematology, The Children's Hospital of Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Song SH, Kim A, Dale R, Dean A. Ldb1 regulates carbonic anhydrase 1 during erythroid differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:885-91. [PMID: 22609543 PMCID: PMC3720789 DOI: 10.1016/j.bbagrm.2012.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 01/13/2023]
Abstract
Carbonic anhydrase 1 (Car1), an early specific marker of the erythroid differentiation, has been used to distinguish fetal and adult erythroid cells since its production closely follows the γ- to β-globin transition, but the molecular mechanism underlying transcriptional regulation of Car1 is unclear. Here, we show that Car1 mRNA decreases significantly when erythroid differentiation is induced in MEL cells. The Ldb1 protein complex including GATA1/SCL/LMO2 binds to the Car1 promoter in uninduced cells and reduced enrichment of the complex during differentiation correlates with loss of Car1 expression. Knockdown of Ldb1 results in a reduction of Ser2 phosphorylated RNA Pol II and Cdk9 at the Car1 promoter region, suggesting that Ldb1 is required for recruitment of Pol II as well as the transcription regulator P-TEFb to enhance elongation of Car1 transcripts. Taken together, these data show that Ldb1 forms a regulatory complex to maintain Car1 expression in erythroid cells.
Collapse
Affiliation(s)
- Sang-Hyun Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | | | | | | |
Collapse
|
138
|
Stadhouders R, van den Heuvel A, Kolovos P, Jorna R, Leslie K, Grosveld F, Soler E. Transcription regulation by distal enhancers: who's in the loop? Transcription 2012; 3:181-6. [PMID: 22771987 DOI: 10.4161/trns.20720] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genome-wide chromatin profiling efforts have shown that enhancers are often located at large distances from gene promoters within the noncoding genome. Whereas enhancers can stimulate transcription initiation by communicating with promoters via chromatin looping mechanisms, we propose that enhancers may also stimulate transcription elongation by physical interactions with intronic elements. We review here recent findings derived from the study of the hematopoietic system.
Collapse
Affiliation(s)
- Ralph Stadhouders
- Department of Cell Biology; Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
139
|
Kim A, Dean A. Chromatin loop formation in the β-globin locus and its role in globin gene transcription. Mol Cells 2012; 34:1-5. [PMID: 22610406 PMCID: PMC3887778 DOI: 10.1007/s10059-012-0048-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 01/13/2023] Open
Abstract
Although linearly distant along mouse chromosome 7 and human chromosome 11, the mammalian β-globin gene is located in close proximity to the upstream locus control region enhancer when it is actively transcribed in the nuclear chromatin environment of erythroid cells. This organization is thought to generate a chromatin loop between the LCR, a powerful enhancer, and active globin genes by extruding intervening regions containing inactive genes. Loop formation in the β-globin locus requires erythroid specific transcriptional activators, co-factors and insulator-related factors. Chromatin structural features such as histone modifications and DNase I hypersensitive site formation as well as nuclear localization are all involved in loop formation in the locus through diverse mechanisms. Current models envision the formation of the loop as a necessary step in globin gene transcription activation, but this has not been definitively established and many questions remain about what is necessary to achieve globin gene transcription activation.
Collapse
Affiliation(s)
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892,
USA
| |
Collapse
|
140
|
Junier I, Dale RK, Hou C, Képès F, Dean A. CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the β-globin locus. Nucleic Acids Res 2012; 40:7718-27. [PMID: 22705794 PMCID: PMC3439919 DOI: 10.1093/nar/gks536] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The principles underlying the architectural landscape of chromatin beyond the nucleosome level in living cells remains largely unknown despite its potential to play a role in mammalian gene regulation. We investigated the three-dimensional folding of a 1 Mbp region of human chromosome 11 containing the β-globin genes by integrating looping interactions of the CCCTC-binding insulator protein CTCF determined comprehensively by chromosome conformation capture (3C) into a polymer model of chromatin. We find that CTCF-mediated cell type-specific interactions in erythroid cells are organized to favor contacts known to occur in vivo between the β-globin locus control region (LCR) and genes. In these cells, the modeled β-globin domain folds into a globule with the LCR and the active globin genes on the periphery. In contrast, in non-erythroid cells, the globule is less compact with few but dominant CTCF interactions driving the genes away from the LCR. This leads to a decrease in contact frequencies that can exceed 1000-fold depending on the stiffness of the chromatin and the exact position of the genes. Our findings show that an ensemble of CTCF contacts functionally affects spatial distances between control elements and target genes contributing to chromosomal organization required for transcription.
Collapse
Affiliation(s)
- Ivan Junier
- Epigenomics Project and institute of Systems and Synthetic Biology, Genopole®, CNRS, University of Evry, 5 rue Henri Desbrueres, Evry F-91030, Institute of Complex Systems, Paris, France.
| | | | | | | | | |
Collapse
|
141
|
Krivega I, Dean A. Enhancer and promoter interactions-long distance calls. Curr Opin Genet Dev 2012; 22:79-85. [PMID: 22169023 PMCID: PMC3342482 DOI: 10.1016/j.gde.2011.11.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022]
Abstract
In metazoans, enhancers of gene transcription must often exert their effects over tens of kilobases of DNA. Over the past decade it has become clear that to do this, enhancers come into close proximity with target promoters with the looping away of intervening sequences. In a few cases proteins that are involved in the establishment or maintenance of these loops have been revealed but how the proper gene target is selected remains mysterious. Chromatin insulators had been appreciated as elements that play a role in enhancer fidelity through their enhancer blocking or barrier activity. However, recent work suggests more direct participation of insulators in enhancer-gene interactions. The emerging view begins to incorporate transcription activation by distant enhancers with large scale nuclear architecture and subnuclear movement.
Collapse
Affiliation(s)
- Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20982
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20982
| |
Collapse
|
142
|
Abstract
The specific self-association of proteins to form homodimers and higher order oligomers is an extremely common event in biological systems. In this chapter we review the prevalence of protein oligomerization and discuss the likely origins of this phenomenon. We also outline many of the functional advantages conferred by the dimerization or oligomerization of a wide range of different proteins and in a variety of biological roles, that are likely to have placed a selective pressure on biological systems to evolve and maintain homodimerization/oligomerization interfaces.
Collapse
|
143
|
Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development. EMBO J 2011; 31:986-99. [PMID: 22157820 PMCID: PMC3280550 DOI: 10.1038/emboj.2011.450] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 11/16/2011] [Indexed: 12/31/2022] Open
Abstract
The key haematopoietic regulator Myb is essential for coordinating proliferation and differentiation. ChIP-Sequencing and Chromosome Conformation Capture (3C)-Sequencing were used to characterize the structural and protein-binding dynamics of the Myb locus during erythroid differentiation. In proliferating cells expressing Myb, enhancers within the Myb-Hbs1l intergenic region were shown to form an active chromatin hub (ACH) containing the Myb promoter and first intron. This first intron was found to harbour the transition site from transcription initiation to elongation, which takes place around a conserved CTCF site. Upon erythroid differentiation, Myb expression is downregulated and the ACH destabilized. We propose a model for Myb activation by distal enhancers dynamically bound by KLF1 and the GATA1/TAL1/LDB1 complex, which primarily function as a transcription elongation element through chromatin looping.
Collapse
|
144
|
Throwing transcription for a loop: expression of the genome in the 3D nucleus. Chromosoma 2011; 121:107-16. [PMID: 22094989 DOI: 10.1007/s00412-011-0352-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
Abstract
The functional output of the genome is closely dependent on its organization within the nucleus, which ranges from the 10-nm chromatin fiber to the three-dimensional arrangement of this fiber in the nuclear space. Recent observations suggest that intra- and inter-chromosomal interactions between distant sequences underlie several aspects of transcription regulatory processes. These contacts can bring enhancers close to their target genes or prevent inappropriate interactions between regulatory sequences via insulators. In addition, intra- and inter-chromosomal interactions can bring co-activated or co-repressed genes to the same nuclear location. Recent technological advances have made it possible to map long-range cis and trans interactions at relatively high resolution. This information is being used to develop three-dimensional maps of the arrangement of the genome in the nucleus and to understand causal relationships between nuclear structure and function.
Collapse
|
145
|
Distinct Ldb1/NLI complexes orchestrate γ-globin repression and reactivation through ETO2 in human adult erythroid cells. Blood 2011; 118:6200-8. [PMID: 22010104 DOI: 10.1182/blood-2011-06-363101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Ldb1/GATA-1/TAL1/LMO2 complex mediates long-range interaction between the β-globin locus control region (LCR) and gene in adult mouse erythroid cells, but whether this complex mediates chromatin interactions at other developmental stages or in human cells is unknown. We investigated NLI (Ldb1 homolog) complex occupancy and chromatin conformation of the β-globin locus in human erythroid cells. In addition to the LCR, we found robust NLI complex occupancy at a site downstream of the (A)γ-globin gene within sequences of BGL3, an intergenic RNA transcript. In cells primarily transcribing β-globin, BGL3 is not transcribed and BGL3 sequences are occupied by NLI core complex members, together with corepressor ETO2 and by γ-globin repressor BCL11A. The LCR and β-globin gene establish proximity in these cells. In contrast, when γ-globin transcription is reactivated in these cells, ETO2 participation in the NLI complex at BGL3 is diminished, as is BCL11A occupancy, and both BGL3 and γ-globin are transcribed. In these cells, proximity between the BGL3/γ-globin region and the LCR is established. We conclude that alternative NLI complexes mediate γ-globin transcription or silencing through long-range LCR interactions involving an intergenic site of noncoding RNA transcription and that ETO2 is critical to this process.
Collapse
|
146
|
Structural basis of simultaneous recruitment of the transcriptional regulators LMO2 and FOG1/ZFPM1 by the transcription factor GATA1. Proc Natl Acad Sci U S A 2011; 108:14443-8. [PMID: 21844373 DOI: 10.1073/pnas.1105898108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The control of red blood cell and megakaryocyte development by the regulatory protein GATA1 is a paradigm for transcriptional regulation of gene expression in cell lineage differentiation and maturation. Most GATA1-regulated events require GATA1 to bind FOG1, and essentially all GATA1-activated genes are cooccupied by a TAL1/E2A/LMO2/LDB1 complex; however, it is not known whether FOG1 and TAL1/E2A/LMO2/LDB1 are simultaneously recruited by GATA1. Our structural data reveal that the FOG1-binding domain of GATA1, the N finger, can also directly contact LMO2 and show that, despite the small size (< 50 residues) of the GATA1 N finger, both FOG1 and LMO2 can simultaneously bind this domain. LMO2 in turn can simultaneously contact both GATA1 and the DNA-binding protein TAL1/E2A at bipartite E-box/WGATAR sites. Taken together, our data provide the first structural snapshot of multiprotein complex formation at GATA1-dependent genes and support a model in which FOG1 and TAL1/E2A/LMO2/LDB1 can cooccupy E-box/WGATAR sites to facilitate GATA1-mediated activation of gene activation.
Collapse
|
147
|
Physical nuclear organization: loops and entropy. Curr Opin Cell Biol 2011; 23:332-7. [DOI: 10.1016/j.ceb.2011.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 01/07/2023]
|
148
|
Abstract
Erythroid cells and megakaryocytes are derived from a common precursor, the megakaryocyte-erythroid progenitor. Although these 2 closely related hematopoietic cell types share many transcription factors, there are several key differences in their regulatory networks that lead to differential gene expression downstream of the megakaryocyte-erythroid progenitor. With the advent of next-generation sequencing and our ability to precisely define transcription factor chromatin occupancy in vivo on a global scale, we are much closer to understanding how these 2 lineages are specified and in general how transcription factor complexes govern hematopoiesis.
Collapse
|
149
|
Woon Kim Y, Kim S, Geun Kim C, Kim A. The distinctive roles of erythroid specific activator GATA-1 and NF-E2 in transcription of the human fetal γ-globin genes. Nucleic Acids Res 2011; 39:6944-55. [PMID: 21609963 PMCID: PMC3167640 DOI: 10.1093/nar/gkr253] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
GATA-1 and NF-E2 are erythroid specific activators that bind to the β-globin locus. To explore the roles of these activators in transcription of the human fetal stage specific γ-globin genes, we reduced GATA-1 and p45/NF-E2 using shRNA in erythroid K562 cells. GATA-1 or p45/NF-E2 knockdown inhibited the transcription of the γ-globin genes, hypersensitive site (HS) formation in the LCR and chromatin loop formation of the β-globin locus, but histone acetylation across the locus was decreased only in the case of GATA-1 knockdown. In p45/NF-E2 knockdown cells, GATA-1 binding was maintained at the LCR HSs and γ-globin promoter, but NF-E2 binding at the LCR HSs was reduced by GATA-1 knockdown regardless of the amount of p45/NF-E2 in K562 cells. These results indicate that histone acetylation is dependent on GATA-1 binding, but the binding of GATA-1 is not sufficient for the γ-globin transcription, HS formation and chromatin loop formation and NF-E2 is required. This idea is supported by the distinctive binding pattern of CBP and Brg1 in the β-globin locus. Furthermore GATA-1-dependent loop formation between HS5 and 3′HS1 suggests correlation between histone modifications and chromatin looping.
Collapse
Affiliation(s)
- Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, Korea
| | | | | | | |
Collapse
|
150
|
Chien R, Zeng W, Kawauchi S, Bender MA, Santos R, Gregson HC, Schmiesing JA, Newkirk DA, Kong X, Ball AR, Calof AL, Lander AD, Groudine MT, Yokomori K. Cohesin mediates chromatin interactions that regulate mammalian β-globin expression. J Biol Chem 2011; 286:17870-8. [PMID: 21454523 PMCID: PMC3093862 DOI: 10.1074/jbc.m110.207365] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/17/2011] [Indexed: 11/06/2022] Open
Abstract
The β-globin locus undergoes dynamic chromatin interaction changes in differentiating erythroid cells that are thought to be important for proper globin gene expression. However, the underlying mechanisms are unclear. The CCCTC-binding factor, CTCF, binds to the insulator elements at the 5' and 3' boundaries of the locus, but these sites were shown to be dispensable for globin gene activation. We found that, upon induction of differentiation, cohesin and the cohesin loading factor Nipped-B-like (Nipbl) bind to the locus control region (LCR) at the CTCF insulator and distal enhancer regions as well as at the specific target globin gene that undergoes activation upon differentiation. Nipbl-dependent cohesin binding is critical for long-range chromatin interactions, both between the CTCF insulator elements and between the LCR distal enhancer and the target gene. We show that the latter interaction is important for globin gene expression in vivo and in vitro. Furthermore, the results indicate that such cohesin-mediated chromatin interactions associated with gene regulation are sensitive to the partial reduction of Nipbl caused by heterozygous mutation. This provides the first direct evidence that Nipbl haploinsufficiency affects cohesin-mediated chromatin interactions and gene expression. Our results reveal that dynamic Nipbl/cohesin binding is critical for developmental chromatin organization and the gene activation function of the LCR in mammalian cells.
Collapse
Affiliation(s)
| | | | | | - M. A. Bender
- the Department of Pediatrics, University of Washington, Seattle, Washington 98195, and
| | | | | | | | | | | | | | - Anne L. Calof
- Department of Anatomy and Neurobiology, School of Medicine
| | - Arthur D. Lander
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92697-1700
| | - Mark T. Groudine
- the Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | | |
Collapse
|