101
|
Schenkelberger M, Shanak S, Finkler M, Worst EG, Noireaux V, Helms V, Ott A. Expression regulation by a methyl-CpG binding domain in anE. colibased, cell-free TX-TL system. Phys Biol 2017; 14:026002. [DOI: 10.1088/1478-3975/aa5d37] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
102
|
Claveria-Gimeno R, Lanuza PM, Morales-Chueca I, Jorge-Torres OC, Vega S, Abian O, Esteller M, Velazquez-Campoy A. The intervening domain from MeCP2 enhances the DNA affinity of the methyl binding domain and provides an independent DNA interaction site. Sci Rep 2017; 7:41635. [PMID: 28139759 PMCID: PMC5282554 DOI: 10.1038/srep41635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/22/2016] [Indexed: 01/09/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities.
Collapse
Affiliation(s)
- Rafael Claveria-Gimeno
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, 50009, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain
| | - Pilar M Lanuza
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain.,Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Ignacio Morales-Chueca
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, 50009, Spain
| | - Olga C Jorge-Torres
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, 50009, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain.,Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, 50009, Spain.,Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, 08908, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, 08907, Spain.,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, 08010, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain.,Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, 50009, Spain.,Fundacion ARAID, Government of Aragon, Zaragoza, 50018, Spain
| |
Collapse
|
103
|
Cramer JM, Pohlmann D, Gomez F, Mark L, Kornegay B, Hall C, Siraliev-Perez E, Walavalkar NM, Sperlazza MJ, Bilinovich S, Prokop JW, Hill AL, Williams Jr. DC. Methylation specific targeting of a chromatin remodeling complex from sponges to humans. Sci Rep 2017; 7:40674. [PMID: 28094816 PMCID: PMC5240623 DOI: 10.1038/srep40674] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/09/2016] [Indexed: 12/31/2022] Open
Abstract
DNA cytosine methylation and methyl-cytosine binding domain (MBD) containing proteins are found throughout all vertebrate species studied to date. However, both the presence of DNA methylation and pattern of methylation varies among invertebrate species. Invertebrates generally have only a single MBD protein, MBD2/3, that does not always contain appropriate residues for selectively binding methylated DNA. Therefore, we sought to determine whether sponges, one of the most ancient extant metazoan lineages, possess an MBD2/3 capable of recognizing methylated DNA and recruiting the associated nucleosome remodeling and deacetylase (NuRD) complex. We find that Ephydatia muelleri has genes for each of the NuRD core components including an EmMBD2/3 that selectively binds methylated DNA. NMR analyses reveal a remarkably conserved binding mode, showing almost identical chemical shift changes between binding to methylated and unmethylated CpG dinucleotides. In addition, we find that EmMBD2/3 and EmGATAD2A/B proteins form a coiled-coil interaction known to be critical for the formation of NuRD. Finally, we show that knockdown of EmMBD2/3 expression disrupts normal cellular architecture and development of E. muelleri. These data support a model in which the MBD2/3 methylation-dependent functional role emerged with the earliest multicellular organisms and has been maintained to varying degrees across animal evolution.
Collapse
Affiliation(s)
- Jason M. Cramer
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Deborah Pohlmann
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Fernando Gomez
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Leslie Mark
- Department of Biology, University of Richmond, Richmond, VA, USA
| | | | - Chelsea Hall
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Edhriz Siraliev-Perez
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ninad M. Walavalkar
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M. Jeannette Sperlazza
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie Bilinovich
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - April L. Hill
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - David C. Williams Jr.
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
104
|
MeCP2, A Modulator of Neuronal Chromatin Organization Involved in Rett Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:3-21. [PMID: 28523538 DOI: 10.1007/978-3-319-53889-1_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
From an epigenetic perspective, the genomic chromatin organization of neurons exhibits unique features when compared to somatic cells. Methyl CpG binding protein 2 (MeCP2), through its ability to bind to methylated DNA, seems to be a major player in regulating such unusual organization. An important contribution to this uniqueness stems from the intrinsically disordered nature of this highly abundant chromosomal protein in neurons. Upon its binding to methylated/hydroxymethylated DNA, MeCP2 is able to recruit a plethora of interacting protein and RNA partners. The final outcome is a highly specialized chromatin organization wherein linker histones (histones of the H1 family) and MeCP2 share an organizational role that dynamically changes during neuronal development and that it is still poorly understood. MeCP2 mutations alter its chromatin-binding dynamics and/or impair the ability of the protein to interact with some of its partners, resulting in Rett syndrome (RTT). Therefore, deciphering the molecular details involved in the MeCP2 neuronal chromatin arrangement is critical for our understanding of the proper and altered functionality of these cells.
Collapse
|
105
|
From Function to Phenotype: Impaired DNA Binding and Clustering Correlates with Clinical Severity in Males with Missense Mutations in MECP2. Sci Rep 2016; 6:38590. [PMID: 27929079 PMCID: PMC5144150 DOI: 10.1038/srep38590] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations in the MECP2 gene cause Rett syndrome (RTT). MeCP2 binds to chromocentric DNA through its methyl CpG-binding domain (MBD) to regulate gene expression. In heterozygous females the variable phenotypic severity is modulated by non-random X-inactivation, thus making genotype-phenotype comparisons unreliable. However, genotype-phenotype correlations in males with hemizygousMECP2 mutations can provide more accurate insights in to the true biological effect of specific mutations. Here, we compared chromatin organization and binding dynamics for twelve MeCP2 missense mutations (including two novel and the five most common MBD missense RTT mutations) and identifiedacorrelation with phenotype in hemizygous males. We observed impaired interaction of MeCP2-DNA for mutations around the MBD-DNA binding interface, and defective chromatin clustering for distal MBD mutations. Furthermore, binding and mobility dynamics show a gradient of impairment depending on the amino acid properties and tertiary structure within the MBD. Interestingly, a wide range of phenotypic/clinical severity, ranging from neonatal encephalopathy to mild psychiatric abnormalities were observed and all are consistent with our functional/molecular results. Overall, clinical severity showed a direct correlation with the functional impairment of MeCP2. These mechanistic and phenotypic correlations of MeCP2 mutations will enable improved and individualized diagnostics, and may lead to personalized therapeutic interventions.
Collapse
|
106
|
Ubiquitination of Lysine 867 of the Human SETDB1 Protein Upregulates Its Histone H3 Lysine 9 (H3K9) Methyltransferase Activity. PLoS One 2016; 11:e0165766. [PMID: 27798683 PMCID: PMC5087952 DOI: 10.1371/journal.pone.0165766] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 10/17/2016] [Indexed: 11/22/2022] Open
Abstract
Posttranslational modifications (PTMs) of proteins play a crucial role in regulating protein-protein interactions, enzyme activity, subcellular localization, and stability of the protein. SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that regulates the methylation of histone H3 on lysine 9 (H3K9), gene silencing, and transcriptional repression. The C-terminal region of SETDB1 is a key site for PTMs, and is essential for its enzyme activity in mammalian and insect cells. In this study, we aimed to evaluate more precisely the effect of PTMs on the H3K9 methyltransferase activity of SETDB1. Using mass spectrometry analysis, we show that the C-terminal region of human SETDB1 purified from insect cells is ubiquitinated. We also demonstrate that the ubiquitination of lysine 867 of the human SETDB1 is necessary for full H3K9 methyltransferase activity in mammalian cells. Finally, we show that SETDB1 ubiquitination regulates the expression of its target gene, serpin peptidase inhibitor, clade E, member 1 (SERPINE1) by methylating H3K9. These results suggest that the ubiquitination of SETDB1 at lysine 867 controls the expression of its target gene by activating its H3K9 methyltransferase activity.
Collapse
|
107
|
Yang Y, Kucukkal TG, Li J, Alexov E, Cao W. Binding Analysis of Methyl-CpG Binding Domain of MeCP2 and Rett Syndrome Mutations. ACS Chem Biol 2016; 11:2706-2715. [PMID: 27356039 PMCID: PMC9860374 DOI: 10.1021/acschembio.6b00450] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Methyl-CpG binding protein 2 (MeCP2) binds to methylated cytosine in CpG island through its methyl-CpG binding domain (MBD). Here, the effects of the Rett syndrome-causing missense mutations on binding affinity of MBD to cytosine (C), methylcytosine (mC), hydroxymethylcytosine (hmC), formylcytosine (fC), and carboxylcytosine (caC) in CpG dinucleotide are investigated. MeCP2-MBD binds to mC-containing variants of double stranded CpG stronger than any other cytosine modified CpG with the strongest affinity to mC/mC. Thirteen MBD missense mutations show reduced binding affinity for mC/mC ranging with a 2-fold decrease for T158M to 88-fold for R111G. The binding affinities of these mutants to C/C are also reduced to various degrees except for T158M. Consistent with free energy perturbation analysis, correlation of binding affinity with protein unfolding allows for grouping mutations into three clusters. Correlation of the first cluster includes mutations that have a higher tendency to unfold and have lesser affinity to mC/mC and C/C. Mutations in the second cluster have similar structural stability but various affinities to mC/mC and C/C. R111G and A140V belong to the third cluster in which the loss of protein flexibility may underlie their reduction in binding affinity to mC/mC and C/C. Most notably, R111 emerges as the key structural element that modulates the specific contacts with mCpG. Implications of the results for the mCpG binding mechanism of MeCP2-MBD are discussed. These analyses provide new insights on the structure and function relationships in MeCP2-MBD and offer new clues to their roles in the pathology of Rett syndrome.
Collapse
Affiliation(s)
- Ye Yang
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Tugba G. Kucukkal
- Department of Physics, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA
| | - Jing Li
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Emil Alexov
- Department of Physics, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA,Corresponding Author: ; Tel.: (864) 656-4176; ; Tel.: 864-908-4796
| | - Weiguo Cao
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA,Corresponding Author: ; Tel.: (864) 656-4176; ; Tel.: 864-908-4796
| |
Collapse
|
108
|
Claveria-Gimeno R, Abian O, Velazquez-Campoy A, Ausió J. MeCP2… Nature’s Wonder Protein or Medicine’s Most Feared One? CURRENT GENETIC MEDICINE REPORTS 2016. [DOI: 10.1007/s40142-016-0107-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
109
|
A/T Run Geometry of B-form DNA Is Independent of Bound Methyl-CpG Binding Domain, Cytosine Methylation and Flanking Sequence. Sci Rep 2016; 6:31210. [PMID: 27502833 PMCID: PMC4977486 DOI: 10.1038/srep31210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/04/2016] [Indexed: 11/08/2022] Open
Abstract
DNA methylation in a CpG context can be recognised by methyl-CpG binding protein 2 (MeCP2) via its methyl-CpG binding domain (MBD). An A/T run next to a methyl-CpG maximises the binding of MeCP2 to the methylated DNA. The A/T run characteristics are reported here with an X-ray structure of MBD A140V in complex with methylated DNA. The A/T run geometry was found to be strongly stabilised by a string of conserved water molecules regardless of its flanking nucleotide sequences, DNA methylation and bound MBD. New water molecules were found to stabilise the Rett syndrome-related E137, whose carboxylate group is salt bridged to R133. A structural comparison showed no difference between the wild type and MBD A140V. However, differential scanning calorimetry showed that the melting temperature of A140V constructs in complex with methylated DNA was reduced by ~7 °C, although circular dichroism showed no changes in the secondary structure content for A140V. A band shift analysis demonstrated that the larger fragment of MeCP2 (A140V) containing the transcriptional repression domain (TRD) destabilises the DNA binding. These results suggest that the solution structure of MBD A140V may differ from the wild-type MBD although no changes in the biochemical properties of X-ray A140V were observed.
Collapse
|
110
|
Lyst MJ, Connelly J, Merusi C, Bird A. Sequence-specific DNA binding by AT-hook motifs in MeCP2. FEBS Lett 2016; 590:2927-33. [PMID: 27461740 PMCID: PMC5028900 DOI: 10.1002/1873-3468.12328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 11/11/2022]
Abstract
MeCP2 is a chromatin‐associated protein that is mutated in Rett syndrome. Its methyl‐CpG‐binding domain interacts with DNA containing methylated cytosine, but other modes of recruitment to the genome have also been proposed. Here, we use in vitro and in vivo assays to investigate the DNA binding specificity of two AT‐hook motifs in MeCP2. One exhibits robust sequence‐specific DNA binding, whereas the other is a much weaker AT‐hook. Our data indicate that these motifs are secondary contributors to DNA binding by MeCP2, and this view is supported by the absence of disease‐causing missense mutations at these sites.
Collapse
Affiliation(s)
- Matthew J Lyst
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - John Connelly
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Cara Merusi
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Adrian Bird
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
111
|
Khrapunov S, Tao Y, Cheng H, Padlan C, Harris R, Galanopoulou AS, Greally JM, Girvin ME, Brenowitz M. MeCP2 Binding Cooperativity Inhibits DNA Modification-Specific Recognition. Biochemistry 2016; 55:4275-85. [PMID: 27420643 DOI: 10.1021/acs.biochem.6b00451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a multifunctional protein that guides neuronal development through its binding to DNA, recognition of sites of methyl-CpG (mCpG) DNA modification, and interaction with other regulatory proteins. Our study explores the relationship between mCpG and hydroxymethyl-CpG (hmCpG) recognition mediated by its mCpG binding domain (MBD) and binding cooperativity mediated by its C-terminal polypeptide. Previous study of the isolated MBD of MeCP2 documented an unusual mechanism by which ion uptake is required for discrimination of mCpG and hmCpG from CpG. MeCP2 binding cooperativity suppresses discrimination of modified DNA and is highly sensitive to both the total ion concentration and the type of counterions. Higher than physiological total ion concentrations completely suppress MeCP2 binding cooperativity, indicating a dominant electrostatic component to the interaction. Substitution of SO4(2-) for Cl(-) at physiological total ion concentrations also suppresses MeCP2 binding cooperativity, This effect is of particular note as the intracellular Cl(-) concentration changes during neuronal development. A related effect is that the protein-stabilizing solutes, TMAO and glutamate, reduce MeCP2 (but not isolated MBD) binding affinity by 2 orders of magnitude without affecting the apparent binding cooperativity. These observations suggest that polypeptide flexibility facilitates DNA binding by MeCP2. Consistent with this view, nuclear magnetic resonance (NMR) analyses show that ions have discrete effects on the structure of MeCP2, both MBD and the C-terminal domains. Notably, anion substitution results in changes in the NMR chemical shifts of residues, including some whose mutation causes the autism spectrum disorder Rett syndrome. Binding cooperativity makes MeCP2 an effective competitor with histone H1 for accessible DNA sites. The relationship between MeCP2 binding specificity and cooperativity is discussed in the context of chromatin binding, neuronal function, and neuronal development.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Yisong Tao
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Huiyong Cheng
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Camille Padlan
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Richard Harris
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Aristea S Galanopoulou
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John M Greally
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Mark E Girvin
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Michael Brenowitz
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
112
|
Pedretti A, Granito C, Mazzolari A, Vistoli G. Structural Effects of Some Relevant Missense Mutations on the MECP2-DNA Binding: A MD Study Analyzed by Rescore+, a Versatile Rescoring Tool of the VEGA ZZ Program. Mol Inform 2016; 35:424-33. [PMID: 27546046 DOI: 10.1002/minf.201501030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/03/2016] [Indexed: 01/22/2023]
Abstract
DNA methylation plays key roles in mammalian cells and is modulated by a set of proteins which recognize symmetrically methylated nucleotides. Among them, the protein MECP2 shows multifunctional roles repressing and/or activating genes by binding to both methylated and unmethylated regions of the genome. The interest for this protein markedly increased from the observation that its mutations are the primary cause of Rett syndrome, a neurodevelopmental disorder which causes mental retardation in young females. Thus, the present study is aimed to investigate the effects of some of these known pathogenic missense mutations (i.e. R106Q, R106W, R111G, R133C and R133H) on the MECP2 folding and DNA binding by molecular dynamics simulations. The effects of the simulated mutations are also parameterized by using a here proposed new tool, named Rescore+, implemented in the VEGA ZZ suite of programs, which calculates a set of scoring functions on all frames of a trajectory or on all complexes contained in a database thus allowing an easy rescoring of results coming from MD or docking simulations. The obtained results revealed that the reported loss of the MECP2 function induced by the simulated mutations can be ascribed to both stabilizing and destabilizing effect on DNA binding. The study confirms that MD simulations are particularly useful to rationalize and predict the mutation effects offering insightful information for diagnostics and drug design.
Collapse
Affiliation(s)
- Alessandro Pedretti
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Facoltà di Farmacia, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133, Milano, Italy
| | - Cinzia Granito
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Facoltà di Farmacia, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133, Milano, Italy
| | - Angelica Mazzolari
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Facoltà di Farmacia, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133, Milano, Italy
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche "Pietro Pratesi", Facoltà di Farmacia, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133, Milano, Italy.
| |
Collapse
|
113
|
Jin J, Lian T, Gu C, Yu K, Gao YQ, Su XD. The effects of cytosine methylation on general transcription factors. Sci Rep 2016; 6:29119. [PMID: 27385050 PMCID: PMC4935894 DOI: 10.1038/srep29119] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/15/2016] [Indexed: 12/24/2022] Open
Abstract
DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs.
Collapse
Affiliation(s)
- Jianshi Jin
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Tengfei Lian
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Chan Gu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kai Yu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Yi Qin Gao
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiao-Dong Su
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| |
Collapse
|
114
|
Brain phosphorylation of MeCP2 at serine 164 is developmentally regulated and globally alters its chromatin association. Sci Rep 2016; 6:28295. [PMID: 27323888 PMCID: PMC4915018 DOI: 10.1038/srep28295] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
MeCP2 is a transcriptional regulator whose functional alterations are responsible for several autism spectrum and mental disorders. Post-translational modifications (PTMs), and particularly differential phosphorylation, modulate MeCP2 function in response to diverse stimuli. Understanding the detailed role of MeCP2 phosphorylation is thus instrumental to ascertain how MeCP2 integrates the environmental signals and directs its adaptive transcriptional responses. The evolutionarily conserved serine 164 (S164) was found phosphorylated in rodent brain but its functional role has remained uncharacterized. We show here that phosphorylation of S164 in brain is dynamically regulated during neuronal maturation. S164 phosphorylation highly impairs MeCP2 binding to DNA in vitro and largely affects its nucleosome binding and chromatin affinity in vivo. Strikingly, the chromatin-binding properties of the global MeCP2 appear also extensively altered during the course of brain maturation. Functional assays reveal that proper temporal regulation of S164 phosphorylation controls the ability of MeCP2 to regulate neuronal morphology. Altogether, our results support the hypothesis of a complex PTM-mediated functional regulation of MeCP2 potentially involving a still poorly characterized epigenetic code. Furthermore, they demonstrate the relevance of the Intervening Domain of MeCP2 for binding to DNA.
Collapse
|
115
|
Features of the interactions between the methyl-CpG motif and the arginine residues on the surface of MBD proteins. Struct Chem 2016. [DOI: 10.1007/s11224-016-0783-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
116
|
Ausió J. MeCP2 and the enigmatic organization of brain chromatin. Implications for depression and cocaine addiction. Clin Epigenetics 2016; 8:58. [PMID: 27213019 PMCID: PMC4875624 DOI: 10.1186/s13148-016-0214-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is a highly abundant chromosomal protein within the brain. It is hence not surprising that perturbations in its genome-wide distribution, and at particular loci within this tissue, can result in widespread neurological disorders that transcend the early implications of this protein in Rett syndrome (RTT). Yet, the details of its role and involvement in chromatin organization are still poorly understood. This paper focuses on what is known to date about all of this with special emphasis on the relation to different epigenetic modifications (DNA methylation, histone acetylation/ubiquitination, MeCP2 phosphorylation and miRNA). We showcase all of the above in two particular important neurological functional alterations in the brain: depression (major depressive disorder [MDD]) and cocaine addiction, both of which affect the MeCP2 homeostasis and result in significant changes in the overall levels of these epigenetic marks.
Collapse
Affiliation(s)
- Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6 Canada
| |
Collapse
|
117
|
Patel DJ. A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks. Cold Spring Harb Perspect Biol 2016; 8:a018754. [PMID: 26931326 DOI: 10.1101/cshperspect.a018754] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article outlines the protein modules that target methylated lysine histone marks and 5mC DNA marks, and the molecular principles underlying recognition. The article focuses on the structural basis underlying readout of isolated marks by single reader molecules, as well as multivalent readout of multiple marks by linked reader cassettes at the histone tail and nucleosome level. Additional topics addressed include the role of histone mimics, cross talk between histone marks, technological developments at the genome-wide level, advances using chemical biology approaches, the linkage between histone and DNA methylation, the role for regulatory lncRNAs, and the promise of chromatin-based therapeutic modalities.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Department, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
118
|
Patel A, Hashimoto H, Zhang X, Cheng X. Characterization of How DNA Modifications Affect DNA Binding by C2H2 Zinc Finger Proteins. Methods Enzymol 2016; 573:387-401. [PMID: 27372763 DOI: 10.1016/bs.mie.2016.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Much is known about vertebrate DNA methylation and oxidation; however, much less is known about how modified cytosine residues within particular sequences are recognized. Among the known methylated DNA-binding domains, the Cys2-His2 zinc finger (ZnF) protein superfamily is the largest with hundreds of members, each containing tandem ZnFs ranging from 3 to >30 fingers. We have begun to biochemically and structurally characterize these ZnFs not only on their sequence specificity but also on their sensitivity to various DNA modifications. Rather than following published methods of refolding insoluble ZnF arrays, we have expressed and purified soluble forms of ZnFs, ranging in size from a tandem array of two to six ZnFs, from seven different proteins. We also describe a fluorescence polarization assay to measure ZnFs affinity with oligonucleotides containing various modifications and our approaches for cocrystallization of ZnFs with oligonucleotides.
Collapse
Affiliation(s)
- A Patel
- Emory University School of Medicine, Atlanta, GA, United States
| | - H Hashimoto
- Emory University School of Medicine, Atlanta, GA, United States
| | - X Zhang
- Emory University School of Medicine, Atlanta, GA, United States.
| | - X Cheng
- Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
119
|
Shimbo T, Wade PA. Proteins That Read DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:303-320. [PMID: 27826844 DOI: 10.1007/978-3-319-43624-1_13] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent modification of DNA via deposition of a methyl group at the 5' position on cytosine residues alters the chemical groups available for interaction in the major groove of DNA. The information content inherent in this modification alters the affinity and the specificity of DNA binding; some proteins favor interaction with methylated DNA, and others disfavor it. Molecular recognition of cytosine methylation by proteins often initiates sequential regulatory events which impact gene expression and chromatin structure. The known methyl-DNA-binding proteins have unique domains responsible for DNA methylation recognition: (1) the methyl-CpG-binding domain (MBD), (2) the C2H2 zinc finger domain, and (3) the SET- and RING finger-associated (SRA) domain. Structural analyses have revealed that each domain has a characteristic methylated DNA-binding pattern, and this difference in the recognition mechanism renders the DNA methylation mark able to transmit complicated biological information. Recent genetic and genomic studies have revealed novel functions of methyl-DNA-binding proteins. These emerging data have also provided glimpses into how methyl-DNA-binding proteins possess unique features and, presumably, functions. In this review, we summarize structural and biochemical analyses elucidating the mechanism for recognition of DNA methylation and correlate this information with emerging genomic and functional data.
Collapse
Affiliation(s)
- Takashi Shimbo
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
120
|
Brown K, Selfridge J, Lagger S, Connelly J, De Sousa D, Kerr A, Webb S, Guy J, Merusi C, Koerner MV, Bird A. The molecular basis of variable phenotypic severity among common missense mutations causing Rett syndrome. Hum Mol Genet 2015; 25:558-70. [PMID: 26647311 PMCID: PMC4731022 DOI: 10.1093/hmg/ddv496] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/30/2015] [Indexed: 11/18/2022] Open
Abstract
Rett syndrome is caused by mutations in the X-linked MECP2 gene, which encodes a chromosomal protein that binds to methylated DNA. Mouse models mirror the human disorder and therefore allow investigation of phenotypes at a molecular level. We describe an Mecp2 allelic series representing the three most common missense Rett syndrome (RTT) mutations, including first reports of Mecp2[R133C] and Mecp2[T158M] knock-in mice, in addition to Mecp2[R306C] mutant mice. Together these three alleles comprise ∼25% of all RTT mutations in humans, but they vary significantly in average severity. This spectrum is mimicked in the mouse models; R133C being least severe, T158M most severe and R306C of intermediate severity. Both R133C and T158M mutations cause compound phenotypes at the molecular level, combining compromised DNA binding with reduced stability, the destabilizing effect of T158M being more severe. Our findings contradict the hypothesis that the R133C mutation exclusively abolishes binding to hydroxymethylated DNA, as interactions with DNA containing methyl-CG, methyl-CA and hydroxymethyl-CA are all reduced in vivo. We find that MeCP2[T158M] is significantly less stable than MeCP2[R133C], which may account for the divergent clinical impact of the mutations. Overall, this allelic series recapitulates human RTT severity, reveals compound molecular aetiologies and provides a valuable resource in the search for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Kyla Brown
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Jim Selfridge
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sabine Lagger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - John Connelly
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Dina De Sousa
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Alastair Kerr
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Jacky Guy
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Cara Merusi
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Martha V Koerner
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
121
|
Van Roey K, Davey NE. Motif co-regulation and co-operativity are common mechanisms in transcriptional, post-transcriptional and post-translational regulation. Cell Commun Signal 2015; 13:45. [PMID: 26626130 PMCID: PMC4666095 DOI: 10.1186/s12964-015-0123-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
A substantial portion of the regulatory interactions in the higher eukaryotic cell are mediated by simple sequence motifs in the regulatory segments of genes and (pre-)mRNAs, and in the intrinsically disordered regions of proteins. Although these regulatory modules are physicochemically distinct, they share an evolutionary plasticity that has facilitated a rapid growth of their use and resulted in their ubiquity in complex organisms. The ease of motif acquisition simplifies access to basal housekeeping functions, facilitates the co-regulation of multiple biomolecules allowing them to respond in a coordinated manner to changes in the cell state, and supports the integration of multiple signals for combinatorial decision-making. Consequently, motifs are indispensable for temporal, spatial, conditional and basal regulation at the transcriptional, post-transcriptional and post-translational level. In this review, we highlight that many of the key regulatory pathways of the cell are recruited by motifs and that the ease of motif acquisition has resulted in large networks of co-regulated biomolecules. We discuss how co-operativity allows simple static motifs to perform the conditional regulation that underlies decision-making in higher eukaryotic biological systems. We observe that each gene and its products have a unique set of DNA, RNA or protein motifs that encode a regulatory program to define the logical circuitry that guides the life cycle of these biomolecules, from transcription to degradation. Finally, we contrast the regulatory properties of protein motifs and the regulatory elements of DNA and (pre-)mRNAs, advocating that co-regulation, co-operativity, and motif-driven regulatory programs are common mechanisms that emerge from the use of simple, evolutionarily plastic regulatory modules.
Collapse
Affiliation(s)
- Kim Van Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany.
- Health Services Research Unit, Operational Direction Public Health and Surveillance, Scientific Institute of Public Health (WIV-ISP), 1050, Brussels, Belgium.
| | - Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
122
|
Heimer BW, Tam BE, Sikes HD. Characterization and directed evolution of a methyl-binding domain protein for high-sensitivity DNA methylation analysis. Protein Eng Des Sel 2015; 28:543-51. [PMID: 26384511 PMCID: PMC4646160 DOI: 10.1093/protein/gzv046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/06/2015] [Accepted: 08/14/2015] [Indexed: 01/10/2023] Open
Abstract
Methyl-binding domain (MBD) family proteins specifically bind double-stranded, methylated DNA which makes them useful for DNA methylation analysis. We displayed three of the core members MBD1, MBD2 and MBD4 on the surface of Saccharomyces cerevisiae cells. Using the yeast display platform, we determined the equilibrium dissociation constant of human MBD2 (hMBD2) to be 5.9 ± 1.3 nM for binding to singly methylated DNA. The measured affinity for DNA with two methylated sites varied with the distance between the sites. We further used the yeast display platform to evolve the hMBD2 protein for improved binding affinity. Affecting five amino acid substitutions doubled the affinity of the wild-type protein to 3.1 ± 1.0 nM. The most prevalent of these mutations, K161R, occurs away from the DNA-binding site and bridges the N- and C-termini of the protein by forming a new hydrogen bond. The F208Y and L170R mutations added new non-covalent interactions with the bound DNA strand. We finally concatenated the high-affinity MBD variant and expressed it in Escherichia coli as a green fluorescent protein fusion. Concatenating the protein from 1× to 3× improved binding 6-fold for an interfacial binding application.
Collapse
Affiliation(s)
- Brandon W Heimer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Building E19-502C, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Brooke E Tam
- Department of Chemical Engineering, Massachusetts Institute of Technology, Building E19-502C, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Building E19-502C, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
123
|
Kucukkal TG, Yang Y, Uvarov O, Cao W, Alexov E. Impact of Rett Syndrome Mutations on MeCP2 MBD Stability. Biochemistry 2015; 54:6357-68. [PMID: 26418480 PMCID: PMC9871983 DOI: 10.1021/acs.biochem.5b00790] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rett syndrome causing missense mutations in the methyl-CpG-binding domain (MBD) of methyl CpG-binding protein 2 (MeCP2) were investigated both in silico and in vitro to reveal their effect on protein stability. It is demonstrated that the vast majority of frequently occurring mutations in the human population indeed alter the MBD folding free energy by a fraction of a kcal/mol up to more than 1 kcal/mol. While the absolute magnitude of the change of the free energy is small, the effect on the MBD functionality may be substantial since the folding free energy of MBD is about 2 kcal/mol only. Thus, it is emphasized that the effect of mutations on protein integrity should be evaluated with respect to the wild-type folding free energy but not with the absolute value of the folding free energy change. Furthermore, it was observed that the magnitude of the effect is correlated neither with the burial of the mutation sites nor with the basic amino acid physicochemical property change. Mutations that strongly perturb the immediate structural features were found to have little effect on folding free energy, while very conservative mutations resulted in large changes of the MBD stability. This observation was attributed to the protein's ability to structurally relax and reorganize to reduce the effect of mutation. Comparison between in silico and in vitro results indicated that some Web servers perform relatively well, while the free energy perturbation approach frequently overpredicts the magnitude of the free energy change especially when a charged amino acid is involved.
Collapse
Affiliation(s)
- Tugba G Kucukkal
- Department of Physics, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, 049 Life Sciences Facility, Clemson, SC 29634, USA
| | - Olga Uvarov
- Department of Genetics and Biochemistry, Clemson University, 049 Life Sciences Facility, Clemson, SC 29634, USA
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, 049 Life Sciences Facility, Clemson, SC 29634, USA,Weiguo Cao: , Tel: 864-656-4176; Fax: 864-656-6879, Alexov: , Tel: 864-908-4796, Fax: 864-656-0805
| | - Emil Alexov
- Department of Physics, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA,Weiguo Cao: , Tel: 864-656-4176; Fax: 864-656-6879, Alexov: , Tel: 864-908-4796, Fax: 864-656-0805
| |
Collapse
|
124
|
Abstract
Two severe, progressive neurological disorders characterized by intellectual disability, autism, and developmental regression, Rett syndrome and MECP2 duplication syndrome, result from loss and gain of function, respectively, of the same critical gene, methyl-CpG-binding protein 2 (MECP2). Neurons acutely require the appropriate dose of MECP2 to function properly but do not die in its absence or overexpression. Instead, neuronal dysfunction can be reversed in a Rett syndrome mouse model if MeCP2 function is restored. Thus, MECP2 disorders provide a unique window into the delicate balance of neuronal health, the power of mouse models, and the importance of chromatin regulation in mature neurons. In this Review, we will discuss the clinical profiles of MECP2 disorders, the knowledge acquired from mouse models of the syndromes, and how that knowledge is informing current and future clinical studies.
Collapse
|
125
|
Hashimoto H, Zhang X, Vertino PM, Cheng X. The Mechanisms of Generation, Recognition, and Erasure of DNA 5-Methylcytosine and Thymine Oxidations. J Biol Chem 2015; 290:20723-20733. [PMID: 26152719 DOI: 10.1074/jbc.r115.656884] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
One of the most fundamental questions in the control of gene expression in mammals is how the patterns of epigenetic modifications of DNA are generated, recognized, and erased. This includes covalent cytosine methylation of DNA and its associated oxidation states. An array of AdoMet-dependent methyltransferases, Fe(II)- and α-ketoglutarate-dependent dioxygenases, base excision glycosylases, and sequence-specific transcription factors is responsible for changing, maintaining, and interpreting the modification status of specific regions of chromatin. This review focuses on recent developments in characterizing the functional and structural links between the modification status of two DNA bases 5-methylcytosine and thymine (5-methyluracil).
Collapse
Affiliation(s)
- Hideharu Hashimoto
- Departments of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Xing Zhang
- Departments of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Paula M Vertino
- Departments of Radiation Oncology, Emory University School of Medicine, Emory University, Atlanta, Georgia 30322; Winship Cancer Institute, Emory University, Atlanta, Georgia 30322
| | - Xiaodong Cheng
- Departments of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia 30322; Winship Cancer Institute, Emory University, Atlanta, Georgia 30322.
| |
Collapse
|
126
|
Torchy MP, Hamiche A, Klaholz BP. Structure and function insights into the NuRD chromatin remodeling complex. Cell Mol Life Sci 2015; 72:2491-507. [PMID: 25796366 PMCID: PMC11114056 DOI: 10.1007/s00018-015-1880-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 01/09/2023]
Abstract
Transcription regulation through chromatin compaction and decompaction is regulated through various chromatin-remodeling complexes such as nucleosome remodeling and histone deacetylation (NuRD) complex. NuRD is a 1 MDa multi-subunit protein complex which comprises many different subunits, among which histone deacetylases HDAC1/2, ATP-dependent remodeling enzymes CHD3/4, histone chaperones RbAp46/48, CpG-binding proteins MBD2/3, the GATAD2a (p66α) and/or GATAD2b (p66β) and specific DNA-binding proteins MTA1/2/3. Here, we review the currently known crystal and NMR structures of these subunits, the functional data and their relevance for biomedical research considering the implication of NuRD subunits in cancer and various other diseases. The complexity of this macromolecular assembly, and its poorly understood mode of interaction with the nucleosome, the repeating unit of chromatin, illustrate that this complex is a major challenge for structure-function relationship studies which will be tackled best by an integrated biology approach.
Collapse
Affiliation(s)
- Morgan P. Torchy
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Ali Hamiche
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Bruno P. Klaholz
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
127
|
Zandarashvili L, White MA, Esadze A, Iwahara J. Structural impact of complete CpG methylation within target DNA on specific complex formation of the inducible transcription factor Egr-1. FEBS Lett 2015; 589:1748-53. [PMID: 25999311 DOI: 10.1016/j.febslet.2015.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/05/2015] [Indexed: 12/11/2022]
Abstract
The inducible transcription factor Egr-1 binds specifically to 9-bp target sequences containing two CpG sites that can potentially be methylated at four cytosine bases. Although it appears that complete CpG methylation would make an unfavorable steric clash in the previous crystal structures of the complexes with unmethylated or partially methylated DNA, our affinity data suggest that DNA recognition by Egr-1 is insensitive to CpG methylation. We have determined, at a 1.4-Å resolution, the crystal structure of the Egr-1 zinc-finger complex with completely methylated target DNA. Structural comparison of the three different methylation states reveals why Egr-1 can recognize the target sequences regardless of CpG methylation.
Collapse
Affiliation(s)
- Levani Zandarashvili
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Mark A White
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Alexandre Esadze
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA.
| |
Collapse
|
128
|
Anosova I, Melnik S, Tripsianes K, Kateb F, Grummt I, Sattler M. A novel RNA binding surface of the TAM domain of TIP5/BAZ2A mediates epigenetic regulation of rRNA genes. Nucleic Acids Res 2015; 43:5208-20. [PMID: 25916849 PMCID: PMC4446428 DOI: 10.1093/nar/gkv365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/03/2015] [Indexed: 12/11/2022] Open
Abstract
The chromatin remodeling complex NoRC, comprising the subunits SNF2h and TIP5/BAZ2A, mediates heterochromatin formation at major clusters of repetitive elements, including rRNA genes, centromeres and telomeres. Association with chromatin requires the interaction of the TAM (TIP5/ARBP/MBD) domain of TIP5 with noncoding RNA, which targets NoRC to specific genomic loci. Here, we show that the NMR structure of the TAM domain of TIP5 resembles the fold of the MBD domain, found in methyl-CpG binding proteins. However, the TAM domain exhibits an extended MBD fold with unique C-terminal extensions that constitute a novel surface for RNA binding. Mutation of critical amino acids within this surface abolishes RNA binding in vitro and in vivo. Our results explain the distinct binding specificities of TAM and MBD domains to RNA and methylated DNA, respectively, and reveal structural features for the interaction of NoRC with non-coding RNA.
Collapse
Affiliation(s)
- Irina Anosova
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg D-85764, Germany Biomolecular NMR and Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching D-85747, Germany
| | - Svitlana Melnik
- Division of Molecular Biology of the Cell II, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg D-69120, Germany
| | - Konstantinos Tripsianes
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg D-85764, Germany Biomolecular NMR and Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching D-85747, Germany
| | - Fatiha Kateb
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg D-85764, Germany Biomolecular NMR and Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching D-85747, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg D-69120, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg D-85764, Germany Biomolecular NMR and Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Garching D-85747, Germany
| |
Collapse
|
129
|
Ariyoshi M, Otani J, Shirakawa M. [Structure basis of versatile base recognition of MBD4]. YAKUGAKU ZASSHI 2015; 135:3-9. [PMID: 25743892 DOI: 10.1248/yakushi.14-00202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA methylation is one of the major epigenetic marks in the mammalian genome to define chromatin higher-order structure, and plays essential roles in various developmental processes. In the mammalian genome, DNA methylation mainly occurs at the 5th position of cytosine bases in a palindromic 5'-CG-3'dinucleotide sequence. Methyl CpG binding domain (MBD) proteins recognize symmetrically methylated CpG sites (5mCG/5mCG) through a conserved MBD, and recruit transcriptional repressors or chromatin modifiers. One of the MBD proteins, MBD4, uniquely contains a C-terminal glycosylation domain together with an N-terminal MBD, and functions as a mismatch DNA repair enzyme specific for T/G or U/G mismatch bases generated by spontaneous deamination of 5-methylcytosine. The base excision activity of MBD4 is also implicated in active DNA demethylation initiated by the conversion of 5-methylcytosine to thymine by deaminases. Unlike other MBD proteins, MBD4 recognizes not only 5mCG/5mCG but also T/G mismatched sites generated by spontaneous deamination of 5-methylcytosine (5mCG/TG). In addition, our biochemical data demonstrate that MBD also binds to intermediates in DNA demethylation pathways, such as 5-hydroxymethyl-cytosine (hmC), 5-carboxyl-cytosine and 5-hydroxy-uracil. The crystal structures of MBDMBD4 in complex with 5mCG/TG, 5mCG/5mCG or 5mCG/hmCG provide new structural insights into the versatility of base recognition by MBD4. A DNA interface of MBD4 has flexible structural features, in which an extensive hydration water network supports the versatile base specificity of MBD4. The versatile base recognition by MBDMBD4 implies multi-functional roles of MBD4 in the regulation of dynamic DNA methylation patterns.
Collapse
Affiliation(s)
- Mariko Ariyoshi
- Institute for Integrated Cells-Material Sciences, Kyoto University
| | | | | |
Collapse
|
130
|
Zimmermann CA, Hoffmann A, Raabe F, Spengler D. Role of mecp2 in experience-dependent epigenetic programming. Genes (Basel) 2015; 6:60-86. [PMID: 25756305 PMCID: PMC4377834 DOI: 10.3390/genes6010060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 12/28/2022] Open
Abstract
Mutations in the X-linked gene MECP2, the founding member of a family of proteins recognizing and binding to methylated DNA, are the genetic cause of a devastating neurodevelopmental disorder in humans, called Rett syndrome. Available evidence suggests that MECP2 protein has a critical role in activity-dependent neuronal plasticity and transcription during brain development. Moreover, recent studies in mice show that various posttranslational modifications, notably phosphorylation, regulate Mecp2’s functions in learning and memory, drug addiction, depression-like behavior, and the response to antidepressant treatment. The hypothalamic-pituitary-adrenal (HPA) axis drives the stress response and its deregulation increases the risk for a variety of mental disorders. Early-life stress (ELS) typically results in sustained HPA-axis deregulation and is a major risk factor for stress related diseases, in particular major depression. Interestingly, Mecp2 protein has been shown to contribute to ELS-dependent epigenetic programming of Crh, Avp, and Pomc, all of these genes enhance HPA-axis activity. Hereby ELS regulates Mecp2 phosphorylation, DNA binding, and transcriptional activities in a tissue-specific and temporospatial manner. Overall, these findings suggest MECP2 proteins are so far underestimated and have a more dynamic role in the mediation of the gene-environment dialog and epigenetic programming of the neuroendocrine stress system in health and disease.
Collapse
Affiliation(s)
- Christoph A Zimmermann
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstr. 2-10, Munich 80804, Germany.
| | - Anke Hoffmann
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstr. 2-10, Munich 80804, Germany.
| | - Florian Raabe
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstr. 2-10, Munich 80804, Germany.
| | - Dietmar Spengler
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstr. 2-10, Munich 80804, Germany.
| |
Collapse
|
131
|
Abstract
Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Two decades of research have fostered the view that MeCP2 is a multifunctional chromatin protein that integrates diverse aspects of neuronal biology. More recently, studies have focused on specific RTT-associated mutations within the protein. This work has yielded molecular insights into the critical functions of MeCP2 that promise to simplify our understanding of RTT pathology.
Collapse
Affiliation(s)
- Matthew J Lyst
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Adrian Bird
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| |
Collapse
|
132
|
Bianchi C, Zangi R. Molecular dynamics study of the recognition of dimethylated CpG sites by MBD1 protein. J Chem Inf Model 2015; 55:636-44. [PMID: 25658035 DOI: 10.1021/ci500657d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell is able to regulate which genes to express via chemical marks on the DNA and on the histone proteins. In all vertebrates, the modification on the DNA is methylation at position 5 of the two cytosines present in the dinucleotide sequence CpG. The information encoded by these chemical marks on the DNA is processed by a family of protein factors containing a conserved methyl-CpG binding domain (MBD). Essential to their function, the MBD proteins are able to bind DNA containing dimethylated CpG sites, whereas binding to unmethylated sites is not observed. In this paper, we perform molecular dynamics simulations to investigate the mechanism by which the mCpG binding domain of MBD1 is able to bind specifically dimethylated CpG sites. We find that the binding affinity of MBD1 to a DNA containing dimethylated CpG site is stronger by 26.4 kJ/mol relative to binding the same DNA but with an unmethylated CpG site. The contribution of each of the methyl groups to the change in free energy is very similar and additive. Therefore, this binding affinity (to a dimethylated DNA) is halved when considered relative to binding a hemimethylated DNA, a result that is also supported by experimental observations. Despite their equal contributions, the two methyl groups are recognized differently by MBD1. In one case, demethylation induces conformational changes in which the hydrophobic patch formed by the conserved residues Val20, Arg22, and Tyr34 moves away from the (methyl)cytosine, weakening the DNA-protein interactions. This is accompanied by an intrusion of a bulk water into the binding site at the protein-DNA interface. As a consequence, there is a reduction and rearrangements of the protein-DNA hydrogen bonds including a loss of a crucial hydrogen bond between Tyr34 and the (methyl)cytosine. The methylcytosine on the opposite strand is recognized by conformational changes of the surrounding conserved hydrophobic residues, Arg44 and Ser45, in which Arg44 participate in the 5mC-Arg-G triad. More specifically, the hydrogens of the methyl group form weak hydrogen bonds with the guanidino group and backbone carbonyl of the conserved Arg44, interactions that are absent when the cytosine is unmethylated. The results presented in this paper contribute to our knowledge of the different ways the chemical mark on the DNA is recognized by the epigenetic machinery.
Collapse
Affiliation(s)
- Caterina Bianchi
- †Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 San Sebastian, Guipúzcoa, Spain
| | - Ronen Zangi
- †Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 San Sebastian, Guipúzcoa, Spain.,‡IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| |
Collapse
|
133
|
Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 2015; 520:702-5. [DOI: 10.1038/nature14138] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 12/03/2014] [Indexed: 12/18/2022]
|
134
|
Structural, Dynamical, and Energetical Consequences of Rett Syndrome Mutation R133C in MeCP2. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:746157. [PMID: 26064184 PMCID: PMC4431600 DOI: 10.1155/2015/746157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/11/2015] [Indexed: 12/25/2022]
Abstract
Rett Syndrome (RTT) is a progressive neurodevelopmental disease affecting females. RTT is caused by mutations in the MECP2 gene and various amino acid substitutions have been identified clinically in different domains of the multifunctional MeCP2 protein encoded by this gene. The R133C variant in the methylated-CpG-binding domain (MBD) of MeCP2 is the second most common disease-causing mutation in the MBD. Comparative molecular dynamics simulations of R133C mutant and wild-type MBD have been performed to understand the impact of the mutation on structure, dynamics, and interactions of the protein and subsequently understand the disease mechanism. Two salt bridges within the protein and two critical hydrogen bonds between the protein and DNA are lost upon the R133C mutation. The mutation was found to weaken the interaction with DNA and also cause loss of helicity within the 141-144 region. The structural, dynamical, and energetical consequences of R133C mutation were investigated in detail at the atomic resolution. Several important implications of this have been shown regarding protein stability and hydration dynamics as well as its interaction with DNA. The results are in agreement with previous experimental studies and further provide atomic level understanding of the molecular origin of RTT associated with R133C variant.
Collapse
|
135
|
Dantas Machado AC, Zhou T, Rao S, Goel P, Rastogi C, Lazarovici A, Bussemaker HJ, Rohs R. Evolving insights on how cytosine methylation affects protein-DNA binding. Brief Funct Genomics 2015; 14:61-73. [PMID: 25319759 PMCID: PMC4303714 DOI: 10.1093/bfgp/elu040] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many anecdotal observations exist of a regulatory effect of DNA methylation on gene expression. However, in general, the underlying mechanisms of this effect are poorly understood. In this review, we summarize what is currently known about how this important, but mysterious, epigenetic mark impacts cellular functions. Cytosine methylation can abrogate or enhance interactions with DNA-binding proteins, or it may have no effect, depending on the context. Despite being only a small chemical change, the addition of a methyl group to cytosine can affect base readout via hydrophobic contacts in the major groove and shape readout via electrostatic contacts in the minor groove. We discuss the recent discovery that CpG methylation increases DNase I cleavage at adjacent positions by an order of magnitude through altering the local 3D DNA shape and the possible implications of this structural insight for understanding the methylation sensitivity of transcription factors (TFs). Additionally, 5-methylcytosines change the stability of nucleosomes and, thus, affect the local chromatin structure and access of TFs to genomic DNA. Given these complexities, it seems unlikely that the influence of DNA methylation on protein-DNA binding can be captured in a small set of general rules. Hence, data-driven approaches may be essential to gain a better understanding of these mechanisms.
Collapse
|
136
|
Zagorskaitė E, Sasnauskas G. Chemical display of pyrimidine bases flipped out by modification-dependent restriction endonucleases of MspJI and PvuRts1I families. PLoS One 2014; 9:e114580. [PMID: 25486533 PMCID: PMC4259335 DOI: 10.1371/journal.pone.0114580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023] Open
Abstract
The epigenetic DNA modifications 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in eukaryotes are recognized either in the context of double-stranded DNA (e.g., by the methyl-CpG binding domain of MeCP2), or in the flipped-out state (e.g., by the SRA domain of UHRF1). The SRA-like domains and the base-flipping mechanism for 5(h)mC recognition are also shared by the recently discovered prokaryotic modification-dependent endonucleases of the MspJI and PvuRts1I families. Since the mechanism of modified cytosine recognition by many potential eukaryotic and prokaryotic 5(h)mC “readers” is still unknown, a fast solution based method for the detection of extrahelical 5(h)mC would be very useful. In the present study we tested base-flipping by MspJI- and PvuRts1I-like restriction enzymes using several solution-based methods, including fluorescence measurements of the cytosine analog pyrrolocytosine and chemical modification of extrahelical pyrimidines with chloroacetaldehyde and KMnO4. We find that only KMnO4 proved an efficient probe for the positive display of flipped out pyrimidines, albeit the method required either non-physiological pH (4.3) or a substitution of the target cytosine with thymine. Our results imply that DNA recognition mechanism of 5(h)mC binding proteins should be tested using a combination of all available methods, as the lack of a positive signal in some assays does not exclude the base flipping mechanism.
Collapse
Affiliation(s)
- Evelina Zagorskaitė
- Department of Protein–DNA Interactions, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Department of Protein–DNA Interactions, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
- * E-mail:
| |
Collapse
|
137
|
Day JJ, Kennedy AJ, Sweatt JD. DNA methylation and its implications and accessibility for neuropsychiatric therapeutics. Annu Rev Pharmacol Toxicol 2014; 55:591-611. [PMID: 25340930 DOI: 10.1146/annurev-pharmtox-010814-124527] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this review, we discuss the potential pharmacological targeting of a set of powerful epigenetic mechanisms: DNA methylation control systems in the central nervous system (CNS). Specifically, we focus on the possible use of these targets for novel future treatments for learning and memory disorders. We first describe several unique pharmacological attributes of epigenetic mechanisms, especially DNA cytosine methylation, as potential drug targets. We then present an overview of the existing literature regarding DNA methylation control pathways and enzymes in the nervous system, particularly as related to synaptic function, plasticity, learning and memory. Lastly, we speculate upon potential categories of CNS cognitive disorders that might be amenable to methylomic targeting.
Collapse
Affiliation(s)
- Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294; , ,
| | | | | |
Collapse
|
138
|
Walavalkar NM, Cramer JM, Buchwald WA, Scarsdale JN, Williams DC. Solution structure and intramolecular exchange of methyl-cytosine binding domain protein 4 (MBD4) on DNA suggests a mechanism to scan for mCpG/TpG mismatches. Nucleic Acids Res 2014; 42:11218-32. [PMID: 25183517 PMCID: PMC4176167 DOI: 10.1093/nar/gku782] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Unlike other members of the methyl-cytosine binding domain (MBD) family, MBD4 serves as a potent DNA glycosylase in DNA mismatch repair specifically targeting mCpG/TpG mismatches arising from spontaneous deamination of methyl-cytosine. The protein contains an N-terminal MBD (MBD4MBD) and a C-terminal glycosylase domain (MBD4GD) separated by a long linker. This arrangement suggests that the MBD4MBD either directly augments enzymatic catalysis by the MBD4GD or targets the protein to regions enriched for mCpG/TpG mismatches. Here we present structural and dynamic studies of MBD4MBD bound to dsDNA. We show that MBD4MBD binds with a modest preference formCpG as compared to mismatch, unmethylated and hydroxymethylated DNA. We find that while MBD4MBD exhibits slow exchange between molecules of DNA (intermolecular exchange), the domain exhibits fast exchange between two sites in the same molecule of dsDNA (intramolecular exchange). Introducing a single-strand defect between binding sites does not greatly reduce the intramolecular exchange rate, consistent with a local hopping mechanism for moving along the DNA. These results support a model in which the MBD4MBD4 targets the intact protein to mCpG islands and promotes scanning by rapidly exchanging between successive mCpG sites which facilitates repair of nearby mCpG/TpG mismatches by the glycosylase domain.
Collapse
Affiliation(s)
- Ninad M Walavalkar
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason M Cramer
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - William A Buchwald
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Neel Scarsdale
- Institute of Structural Biology and Drug Discovery, Center for the Study of Biological Complexity and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
139
|
Ausió J, Paz AMD, Esteller M. MeCP2: the long trip from a chromatin protein to neurological disorders. Trends Mol Med 2014; 20:487-98. [DOI: 10.1016/j.molmed.2014.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
|
140
|
Bellini E, Pavesi G, Barbiero I, Bergo A, Chandola C, Nawaz MS, Rusconi L, Stefanelli G, Strollo M, Valente MM, Kilstrup-Nielsen C, Landsberger N. MeCP2 post-translational modifications: a mechanism to control its involvement in synaptic plasticity and homeostasis? Front Cell Neurosci 2014; 8:236. [PMID: 25165434 PMCID: PMC4131190 DOI: 10.3389/fncel.2014.00236] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/27/2014] [Indexed: 12/02/2022] Open
Abstract
Although Rett syndrome (RTT) represents one of the most frequent forms of severe intellectual disability in females worldwide, we still have an inadequate knowledge of the many roles played by MeCP2 (whose mutations are responsible for most cases of RTT) and their relevance for RTT pathobiology. Several studies support a role of MeCP2 in the regulation of synaptic plasticity and homeostasis. At the molecular level, MeCP2 is described as a repressor capable of inhibiting gene transcription through chromatin compaction. Indeed, it interacts with several chromatin remodeling factors, such as HDAC-containing complexes and ATRX. Other studies have inferred that MeCP2 functions also as an activator; a role in regulating mRNA splicing and in modulating protein synthesis has also been proposed. Further, MeCP2 avidly binds both 5-methyl- and 5-hydroxymethyl-cytosine. Recent evidence suggests that it is the highly disorganized structure of MeCP2, together with its post-translational modifications (PTMs) that generate and regulate this functional versatility. Indeed, several reports have demonstrated that differential phosphorylation of MeCP2 is a key mechanism by which the methyl binding protein modulates its affinity for its partners, gene expression and cellular adaptations to stimuli and neuronal plasticity. As logic consequence, generation of phospho-defective Mecp2 knock-in mice has permitted associating alterations in neuronal morphology, circuit formation, and mouse behavioral phenotypes with specific phosphorylation events. MeCP2 undergoes various other PTMs, including acetylation, ubiquitination and sumoylation, whose functional roles remain largely unexplored. These results, together with the genome-wide distribution of MeCP2 and its capability to substitute histone H1, recall the complex regulation of histones and suggest the relevance of quickly gaining a deeper comprehension of MeCP2 PTMs, the respective writers and readers and the consequent functional outcomes.
Collapse
Affiliation(s)
- Elisa Bellini
- Division of Neuroscience, San Raffaele Rett Research Center, San Raffaele Scientific Institute Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milan Milan, Italy
| | - Isabella Barbiero
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Anna Bergo
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Chetan Chandola
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Mohammad S Nawaz
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Laura Rusconi
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Gilda Stefanelli
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Marta Strollo
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Maria M Valente
- Division of Neuroscience, San Raffaele Rett Research Center, San Raffaele Scientific Institute Milan, Italy
| | - Charlotte Kilstrup-Nielsen
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Nicoletta Landsberger
- Division of Neuroscience, San Raffaele Rett Research Center, San Raffaele Scientific Institute Milan, Italy ; Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| |
Collapse
|
141
|
Wyhs N, Walker D, Giovinazzo H, Yegnasubramanian S, Nelson WG. Time-Resolved Fluorescence Resonance Energy Transfer Assay for Discovery of Small-Molecule Inhibitors of Methyl-CpG Binding Domain Protein 2. JOURNAL OF BIOMOLECULAR SCREENING 2014; 19:1060-9. [PMID: 24608100 PMCID: PMC4183726 DOI: 10.1177/1087057114526433] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/10/2014] [Indexed: 01/23/2023]
Abstract
Methylated DNA binding proteins such as Methyl-CpG Binding Domain Protein 2 (MBD2) can transduce DNA methylation alterations into a repressive signal by recruiting transcriptional co-repressor complexes. Interfering with MBD2 could lead to reactivation of tumor suppressor genes and therefore represents an attractive strategy for epigenetic therapy. We developed and compared fluorescence polarization (FP) and time-resolved fluorescence resonance energy transfer (TR-FRET)-based high-throughput screening (HTS) assays to identify small-molecule inhibitors of the interaction between the methyl binding domain of MBD2 (MBD2-MBD) and methylated DNA. Although both assays performed well in 96-well format, the TR-FRET assay (Z' factor = 0.58) emerged as a superior screening strategy compared with FP (Z' factor = 0.08) when evaluated in an HTS 384-well plate format. Using TR-FRET, we screened the Sigma LOPAC library for MBD2-MBD inhibitors and identified four compounds that also validated in a dose-response series. This included two known DNA intercalators (mitoxantrone and idarubicin) among two other inhibitory compounds (NF449 and aurintricarboxylic acid). All four compounds also inhibited the binding of SP-1, a transcription factor with a GC-rich binding sequence, to a methylated oligonucleotide, demonstrating that the activity was nonspecific. Our results provide proof of principle for using TR-FRET-based HTS to identify small-molecule inhibitors of MBD2 and other DNA-protein interactions.
Collapse
Affiliation(s)
- Nicolas Wyhs
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Walker
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hugh Giovinazzo
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - William G Nelson
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
142
|
Mierzejewska K, Siwek W, Czapinska H, Kaus-Drobek M, Radlinska M, Skowronek K, Bujnicki JM, Dadlez M, Bochtler M. Structural basis of the methylation specificity of R.DpnI. Nucleic Acids Res 2014; 42:8745-54. [PMID: 24966351 PMCID: PMC4117772 DOI: 10.1093/nar/gku546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
R.DpnI consists of N-terminal catalytic and C-terminal winged helix domains that are separately specific for the Gm6ATC sequences in Dam-methylated DNA. Here we present a crystal structure of R.DpnI with oligoduplexes bound to the catalytic and winged helix domains and identify the catalytic domain residues that are involved in interactions with the substrate methyl groups. We show that these methyl groups in the Gm6ATC target sequence are positioned very close to each other. We further show that the presence of the two methyl groups requires a deviation from B-DNA conformation to avoid steric conflict. The methylation compatible DNA conformation is complementary with binding sites of both R.DpnI domains. This indirect readout of methylation adds to the specificity mediated by direct favorable interactions with the methyl groups and solvation/desolvation effects. We also present hydrogen/deuterium exchange data that support ‘crosstalk’ between the two domains in the identification of methylated DNA, which should further enhance R.DpnI methylation specificity.
Collapse
Affiliation(s)
- Karolina Mierzejewska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Wojciech Siwek
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | - Monika Radlinska
- Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Krzysztof Skowronek
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
143
|
Khrapunov S, Warren C, Cheng H, Berko E, Greally JM, Brenowitz M. Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry 2014; 53:3379-91. [PMID: 24828757 PMCID: PMC4045320 DOI: 10.1021/bi500424z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/08/2014] [Indexed: 02/04/2023]
Abstract
The protein MeCP2 mediates epigenetic regulation by binding methyl-CpG (mCpG) sites on chromatin. MeCP2 consists of six domains of which one, the methyl binding domain (MBD), binds mCpG sites in duplex DNA. We show that solution conditions with physiological or greater salt concentrations or the presence of nonspecific competitor DNA is necessary for the MBD to discriminate mCpG from CpG with high specificity. The specificity for mCpG over CpG is >100-fold under these solution conditions. In contrast, the MBD does not discriminate hydroxymethyl-CpG from CpG. The MBD is unusual among site-specific DNA binding proteins in that (i) specificity is not conferred by the enhanced affinity for the specific site but rather by suppression of its affinity for generic DNA, (ii) its specific binding to mCpG is highly electrostatic, and (iii) it takes up as well as displaces monovalent cations upon DNA binding. The MBD displays an unusually high affinity for single-stranded DNA independent of modification or sequence. In addition, the MBD forms a discrete dimer on DNA via a noncooperative binding pathway. Because the affinity of the second monomer is 1 order of magnitude greater than that of nonspecific binding, the MBD dimer is a unique molecular complex. The significance of these results in the context of neuronal function and development and MeCP2-related developmental disorders such as Rett syndrome is discussed.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Christopher Warren
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Huiyong Cheng
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Esther
R. Berko
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - John M. Greally
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| | - Michael Brenowitz
- Department of Biochemistry and Department of
Genetics, Albert Einstein College of Medicine
of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United
States
| |
Collapse
|
144
|
Damen D, Heumann R. MeCP2 phosphorylation in the brain: from transcription to behavior. Biol Chem 2014; 394:1595-605. [PMID: 23912219 DOI: 10.1515/hsz-2013-0193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 07/30/2013] [Indexed: 11/15/2022]
Abstract
Methyl-CpG binding protein 2 (MeCP2), a nuclear protein highly expressed in neurons, was identified because of its ability to bind methylated DNA. In association with the transcriptional corepressor proteins Sin3a and histone deacetylases, it represses gene transcription. However, it has since become clear that MeCP2 is a multifunctional protein involved not only in transcriptional silencing but also in transcriptional activation, chromatin remodeling, and RNA splicing. Especially, its involvement in the X-linked neurologic disorder Rett syndrome emphasizes the importance of MeCP2 for normal development and maturation of the central nervous system. A number of animal models with complete or partial lack of MeCP2 functions have been generated to correlate the clinical phenotype of Rett syndrome, and studies involving different mutations of MeCP2 have shown similar effects. Animal model studies have further demonstrated that even the loss of a specific phosphorylation site of MeCP2 (S80, S421, and S424) disturbs normal maturation of the mammalian brain. This review covers recent findings regarding MeCP2 functions and its regulation by posttranslational modification, particularly MeCP2 phosphorylation and its effects on mammalian brain maturation, learning, and plasticity.
Collapse
|
145
|
Kazrani AA, Kowalska M, Czapinska H, Bochtler M. Crystal structure of the 5hmC specific endonuclease PvuRts1I. Nucleic Acids Res 2014; 42:5929-36. [PMID: 24634440 PMCID: PMC4027163 DOI: 10.1093/nar/gku186] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/26/2022] Open
Abstract
PvuRts1I is a prototype for a larger family of restriction endonucleases that cleave DNA containing 5-hydroxymethylcytosine (5hmC) or 5-glucosylhydroxymethylcytosine (5ghmC), but not 5-methylcytosine (5mC) or cytosine. Here, we report a crystal structure of the enzyme at 2.35 Å resolution. Although the protein has been crystallized in the absence of DNA, the structure is very informative. It shows that PvuRts1I consists of an N-terminal, atypical PD-(D/E)XK catalytic domain and a C-terminal SRA domain that might accommodate a flipped 5hmC or 5ghmC base. Changes to predicted catalytic residues of the PD-(D/E)XK domain or to the putative pocket for a flipped base abolish catalytic activity. Surprisingly, fluorescence changes indicative of base flipping are not observed when PvuRts1I is added to DNA substrates containing pyrrolocytosine in place of 5hmC (5ghmC). Despite this caveat, the structure suggests a model for PvuRts1I activity and presents opportunities for protein engineering to alter the enzyme properties for biotechnological applications.
Collapse
Affiliation(s)
- Asgar Abbas Kazrani
- International Institute of Molecular and Cell Biology, Trojdena 4, 02109 Warsaw, Poland
| | - Monika Kowalska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02109 Warsaw, Poland
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02109 Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02109 Warsaw, Poland Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02106 Warsaw, Poland
| |
Collapse
|
146
|
Abstract
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Collapse
|
147
|
Bissonnette JM, Schaevitz LR, Knopp SJ, Zhou Z. Respiratory phenotypes are distinctly affected in mice with common Rett syndrome mutations MeCP2 T158A and R168X. Neuroscience 2014; 267:166-76. [PMID: 24626160 DOI: 10.1016/j.neuroscience.2014.02.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/16/2022]
Abstract
Respiratory disturbances are a primary phenotype of the neurological disorder, Rett syndrome (RTT), caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Mouse models generated with null mutations in Mecp2 mimic respiratory abnormalities in RTT girls. Large deletions, however, are seen in only ∼10% of affected human individuals. Here we characterized respiration in heterozygous females from two mouse models that genetically mimic common RTT point mutations, a missense mutation T158A (Mecp2(T158A/)(+)) or a nonsense mutation R168X (Mecp2(R168X/+)). MeCP2 T158A shows decreased binding to methylated DNA, while MeCP2 R168X retains the capacity to bind methylated DNA but lacks the ability to recruit complexes required for transcriptional repression. We found that both Mecp2(T158A/+) and Mecp2(R168X/+) heterozygotes display augmented hypoxic ventilatory responses and depressed hypercapnic responses, compared to wild-type controls. Interestingly, the incidence of apnea was much greater in Mecp2(R168X/+) heterozygotes, 189 per hour, than Mecp2(T158A/+) heterozygotes, 41 per hour. These results demonstrate that different RTT mutations lead to distinct respiratory phenotypes, suggesting that characterization of the respiratory phenotype may reveal functional differences between MeCP2 mutations and provide insights into the pathophysiology of RTT.
Collapse
Affiliation(s)
- J M Bissonnette
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA; Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, USA.
| | - L R Schaevitz
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - S J Knopp
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Z Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
148
|
Bedogni F, Rossi RL, Galli F, Cobolli Gigli C, Gandaglia A, Kilstrup-Nielsen C, Landsberger N. Rett syndrome and the urge of novel approaches to study MeCP2 functions and mechanisms of action. Neurosci Biobehav Rev 2014; 46 Pt 2:187-201. [PMID: 24594195 DOI: 10.1016/j.neubiorev.2014.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/25/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Rett syndrome (RTT) is a devastating genetic disorder that worldwide represents the most common genetic cause of severe intellectual disability in females. Most cases are caused by mutations in the X-linked MECP2 gene. Several recent studies have demonstrated that RTT mimicking animal models do not develop an irreversible condition and phenotypic rescue is possible. However, no cure for RTT has been identified so far, and patients are only given symptomatic and supportive treatments. The development of clinical applications imposes a more comprehensive knowledge of MeCP2 functional role(s) and their relevance for RTT pathobiology. Herein, we thoroughly survey the knowledge about MeCP2 structure and functions, highlighting the necessity of identifying more functional domains and the value of molecular genetics. Given that, in our opinion, RTT ultimately is generated by perturbations in gene transcription and so far no genes/pathways have been consistently linked to a dysfunctional MeCP2, we have used higher-level bioinformatic analyses to identify commonly deregulated mechanisms in MeCP2-defective samples. In this review we present our results and discuss the possible value of the utilized approach.
Collapse
Affiliation(s)
- Francesco Bedogni
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Riccardo L Rossi
- Fondazione Istituto Nazionale Genetica Molecolare, Milan 20122, Italy
| | - Francesco Galli
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Clementina Cobolli Gigli
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Anna Gandaglia
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Charlotte Kilstrup-Nielsen
- Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Nicoletta Landsberger
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy.
| |
Collapse
|
149
|
Cramer JM, Scarsdale JN, Walavalkar NM, Buchwald WA, Ginder GD, Williams DC. Probing the dynamic distribution of bound states for methylcytosine-binding domains on DNA. J Biol Chem 2013; 289:1294-302. [PMID: 24307175 DOI: 10.1074/jbc.m113.512236] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although highly homologous to other methylcytosine-binding domain (MBD) proteins, MBD3 does not selectively bind methylated DNA, and thus the functional role of MBD3 remains in question. To explore the structural basis of its binding properties and potential function, we characterized the solution structure and binding distribution of the MBD3 MBD on hydroxymethylated, methylated, and unmethylated DNA. The overall fold of this domain is very similar to other MBDs, yet a key loop involved in DNA binding is more disordered than previously observed. Specific recognition of methylated DNA constrains the structure of this loop and results in large chemical shift changes in NMR spectra. Based on these spectral changes, we show that MBD3 preferentially localizes to methylated and, to a lesser degree, unmethylated cytosine-guanosine dinucleotides (CpGs), yet does not distinguish between hydroxymethylated and unmethylated sites. Measuring residual dipolar couplings for the different bound states clearly shows that the MBD3 structure does not change between methylation-specific and nonspecific binding modes. Furthermore, residual dipolar couplings measured for MBD3 bound to methylated DNA can be described by a linear combination of those for the methylation and nonspecific binding modes, confirming the preferential localization to methylated sites. The highly homologous MBD2 protein shows similar but much stronger localization to methylated as well as unmethylated CpGs. Together, these data establish the structural basis for the relative distribution of MBD2 and MBD3 on genomic DNA and their observed occupancy at active and inactive CpG-rich promoters.
Collapse
Affiliation(s)
- Jason M Cramer
- From the Department of Biochemistry and Molecular Biology
| | | | | | | | | | | |
Collapse
|
150
|
Varela MA, Roberts TC, Wood MJA. Epigenetics and ncRNAs in brain function and disease: mechanisms and prospects for therapy. Neurotherapeutics 2013; 10:621-31. [PMID: 24068583 PMCID: PMC3805859 DOI: 10.1007/s13311-013-0212-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The most fundamental roles of non-coding RNAs (ncRNAs) and epigenetic mechanisms are the guidance of cellular differentiation in development and the regulation of gene expression in adult tissues. In brain, both ncRNAs and the various epigenetic gene regulatory mechanisms play a fundamental role in neurogenesis and normal neuronal function. Thus, epigenetic chromatin remodelling can render coding sites transcriptionally inactive by DNA methylation, histone modifications or antisense RNA interactions. On the other hand, microRNAs (miRNAs) are ncRNA molecules that can regulate the expression of hundreds of genes post-transcriptionally, typically recognising binding sites in the 3' untranslated region (UTR) of mRNA transcripts. Furthermore, there are a myriad of interactions in the interface of miRNAs and epigenetics. For example, epigenetic mechanisms can silence miRNA coding sites, and miRNAs can be the effectors of transcriptional gene silencing, targeting complementary promoters or silencing the expression of epigenetic modifier genes like MECP2 and EZH2 leading to global changes in the epigenome. Alterations in this regulatory machinery play a key role in the pathology of complex disorders including cancer and neurological diseases. For example, miRNA genes are frequently inactivated by epimutations in gliomas. Here we describe the interactions between epigenetic and ncRNA regulatory systems and discuss therapeutic potential, with an emphasis on tumors, cognitive disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel A. Varela
- />Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Thomas C. Roberts
- />Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- />Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - Matthew J. A. Wood
- />Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| |
Collapse
|