101
|
Abstract
The cell nucleus is an intricate organelle that coordinates multiple activities that are associated with DNA replication and gene expression. In all eukaryotes, it stores the genetic information and the machineries that control the production of mature and export-competent messenger ribonucleoproteins (mRNPs), a multistep process that is regulated in a spatial and temporal manner. Recent studies suggest that post-translational modifications play a part in coordinating the co-transcriptional assembly, remodelling and export of mRNP complexes through nuclear pores, adding a new level of regulation to the process of gene expression.
Collapse
|
102
|
Histone occupancy in vivo at the 601 nucleosome binding element is determined by transcriptional history. Mol Cell Biol 2011; 31:3485-96. [PMID: 21690290 DOI: 10.1128/mcb.05599-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We report in vivo analysis of histone and RNA polymerase II (pol II) occupancy at the 601 element, which functions as a strong in vitro nucleosome-positioning element and transcriptional pause site. Surprisingly, nucleosomes were not strongly positioned over the 601 element inserted either within a yeast chromosomal open reading frame (ORF) (GAL1-YLR454W) or in an intergenic region. In fact 601 within GAL1-YLR454W was actually depleted of histones relative to flanking sequences and did not cause pol II pausing. Upstream of an inserted 601 element within GAL1-YLR454W, a positioned nucleosome was formed whose location depended on transcriptional history; it shifted after a round of activation and repression. Transcriptional activation caused histone eviction throughout the GAL1-YLR454W ORF, except at 601, where there was no loss and some net histone deposition. In contrast, a second round of activation after glucose shutoff caused histone eviction both at 601 and elsewhere in the ORF. We conclude that the intrinsic high-affinity histone-DNA interactions at 601 do not necessarily play a dominant role in establishing nucleosomes or pol II pause sites within a coding region in vivo and that transcriptional history can have an important influence on histone occupancy flanking this sequence.
Collapse
|
103
|
Chanarat S, Seizl M, Strässer K. The Prp19 complex is a novel transcription elongation factor required for TREX occupancy at transcribed genes. Genes Dev 2011; 25:1147-58. [PMID: 21576257 DOI: 10.1101/gad.623411] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Different steps in gene expression are intimately linked. In Saccharomyces cerevisiae, the conserved TREX complex couples transcription to nuclear messenger RNA (mRNA) export. However, it is unknown how TREX is recruited to actively transcribed genes. Here, we show that the Prp19 splicing complex functions in transcription elongation. The Prp19 complex is recruited to transcribed genes, interacts with RNA polymerase II (RNAPII) and TREX, and is absolutely required for TREX occupancy at transcribed genes. Importantly, the Prp19 complex is necessary for full transcriptional activity. Taken together, we identify the Prp19 splicing complex as a novel transcription elongation factor that is essential for TREX occupancy at transcribed genes and that thus provides a novel link between transcription and messenger ribonucleoprotein (mRNP) formation.
Collapse
Affiliation(s)
- Sittinan Chanarat
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-University Munich, Germany
| | | | | |
Collapse
|
104
|
Rodríguez-Navarro S, Hurt E. Linking gene regulation to mRNA production and export. Curr Opin Cell Biol 2011; 23:302-9. [PMID: 21227675 DOI: 10.1016/j.ceb.2010.12.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 01/30/2023]
Abstract
Regulation of gene expression can occur at many different levels. One important step in the gene expression process is the transport of mRNA from the nucleus to the cytoplasm. In recent years, studies have described how nuclear mRNA export depends on the steps preceding and following transport through nuclear pore complexes. These include gene activation, transcription, mRNA processing and mRNP assembly and disassembly. In this review, we summarise recent insights into the links between these steps in the gene expression cascade.
Collapse
|
105
|
Nucleocytoplasmic mRNP export is an integral part of mRNP biogenesis. Chromosoma 2010; 120:23-38. [PMID: 21079985 PMCID: PMC3028071 DOI: 10.1007/s00412-010-0298-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 01/16/2023]
Abstract
Nucleocytoplasmic export and biogenesis of mRNPs are closely coupled. At the gene, concomitant with synthesis of the pre-mRNA, the transcription machinery, hnRNP proteins, processing, quality control and export machineries cooperate to release processed and export competent mRNPs. After diffusion through the interchromatin space, the mRNPs are translocated through the nuclear pore complex and released into the cytoplasm. At the nuclear pore complex, defined compositional and conformational changes are triggered, but specific cotranscriptionally added components are retained in the mRNP and subsequently influence the cytoplasmic fate of the mRNP. Processes taking place at the gene locus and at the nuclear pore complex are crucial for integrating export as an essential part of gene expression. Spatial, temporal and structural aspects of these events have been highlighted in analyses of the Balbiani ring genes.
Collapse
|
106
|
Dufu K, Livingstone MJ, Seebacher J, Gygi SP, Wilson SA, Reed R. ATP is required for interactions between UAP56 and two conserved mRNA export proteins, Aly and CIP29, to assemble the TREX complex. Genes Dev 2010; 24:2043-53. [PMID: 20844015 DOI: 10.1101/gad.1898610] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The conserved TREX mRNA export complex is known to contain UAP56, Aly, Tex1, and the THO complex. Here, we carried out proteomic analysis of immunopurified human TREX complex and identified the protein CIP29 as the only new component with a clear yeast relative (known as Tho1). Tho1 is known to function in mRNA export, and we provide evidence that CIP29 likewise functions in this process. Like the known TREX components, a portion of CIP29 localizes in nuclear speckle domains, and its efficient recruitment to mRNA is both splicing- and cap-dependent. We show that UAP56 mediates an ATP-dependent interaction between the THO complex and both CIP29 and Aly, indicating that TREX assembly is ATP-dependent. Using recombinant proteins expressed in Escherichia coli, we show that UAP56, Aly, and CIP29 form an ATP-dependent trimeric complex, and UAP56 bridges the interaction between CIP29 and Aly. We conclude that the interaction of two conserved export proteins, CIP29 and Aly, with UAP56 is strictly regulated by ATP during assembly of the TREX complex.
Collapse
Affiliation(s)
- Kobina Dufu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
107
|
Chan S, Choi EA, Shi Y. Pre-mRNA 3'-end processing complex assembly and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:321-35. [PMID: 21957020 DOI: 10.1002/wrna.54] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The 3'-ends of almost all eukaryotic mRNAs are formed in a two-step process, an endonucleolytic cleavage followed by polyadenylation (the addition of a poly-adenosine or poly(A) tail). These reactions take place in the pre-mRNA 3' processing complex, a macromolecular machinery that consists of more than 20 proteins. A general framework for how the pre-mRNA 3' processing complex assembles and functions has emerged from extensive studies over the past several decades using biochemical, genetic, computational, and structural approaches. In this article, we review what we have learned about this important cellular machine and discuss the remaining questions and future challenges.
Collapse
Affiliation(s)
- Serena Chan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
108
|
The mitogen-activated protein kinase Slt2 regulates nuclear retention of non-heat shock mRNAs during heat shock-induced stress. Mol Cell Biol 2010; 30:5168-79. [PMID: 20823268 DOI: 10.1128/mcb.00735-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cellular adaptation to environmental stress conditions requires rapid and specific changes in gene expression. During heat shock, most polyadenylated mRNAs are retained in the nucleus, whereas the export of heat shock-induced mRNAs is allowed. Although essential mRNA export factors are known, the precise mechanism for regulating transport is not fully understood. Here we find that during heat shock in Saccharomyces cerevisiae, the mRNA-binding protein Nab2 is phosphorylated on threonine 178 and serine 180 by the mitogen-activated protein (MAP) kinase Slt2/Mpk1. Slt2 is required for nuclear poly(A(+)) mRNA accumulation upon heat shock, and thermotolerance is decreased in a nup42 nab2-T178A/S180A mutant. Coincident with phosphorylation, Nab2 and Yra1 colocalize in nuclear foci with Mlp1, a protein involved in mRNA retention. Nab2 nuclear focus formation and Nab2 phosphorylation are independent, suggesting that heat shock induces multiple cellular alterations that impinge upon transport efficiency. Under normal conditions, we find that the mRNA export receptor Mex67 and Nab2 directly interact. However, upon heat shock stress, Mex67 does not localize to the Mlp1 nuclear foci, and its association with Nab2 complexes is reduced. These results reveal a novel mechanism by which the MAP kinase Slt2 and Mlp1 control mRNA export factors during heat shock stress.
Collapse
|
109
|
Nuclear export of mRNA. Trends Biochem Sci 2010; 35:609-17. [PMID: 20719516 DOI: 10.1016/j.tibs.2010.07.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 01/19/2023]
Abstract
The nuclear export of mRNA, in which Mex67-Mtr2 mediates movement of mature transcripts through nuclear pores, represents the culmination of the nuclear portion of the gene expression pathway. Nuclear export is closely integrated with transcription and processing, and is based on forming a messenger ribonucleoprotein (mRNP) export complex in the nucleus that is able to diffuse back and forth through the pores. Directionality is imposed by remodelling of the mRNP in the cytoplasm, thereby removing key transport-related proteins and preventing its return to the nucleus. The nuclear and cytoplasmic steps of this pathway, in which Mex67-Mtr2 and Nab2 are added and removed, are crucial, and both involve remodelling of the mRNP, which is mediated by DEAD-box helicases together with adaptor and accessory proteins. Recent structural and cell biology results provide key information that should enable development of a detailed understanding of this central cellular process at a molecular level.
Collapse
|
110
|
The interface between transcription and mRNP export: from THO to THSC/TREX-2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:533-8. [PMID: 20601280 DOI: 10.1016/j.bbagrm.2010.06.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 11/20/2022]
Abstract
Eukaryotic gene expression is a multilayer process covering transcription to post-translational protein modifications. As the nascent pre-mRNA emerges from the RNA polymerase II (RNAPII), it is packed in a messenger ribonucleoparticle (mRNP) whose optimal configuration is critical for the normal pre-mRNA processing and mRNA export, mRNA integrity as well as for transcription elongation efficiency. The interplay between transcription and mRNP formation feeds forward and backward and involves a number of conserved factors, from THO to THSC/TREX-2, which in addition have a unique impact on transcription-dependent genome instability. Here we review our actual knowledge of the role that these factors play at the interface between transcription and mRNA export in the model organism Saccharomyces cerevisiae.
Collapse
|
111
|
Dieppois G, Stutz F. Connecting the transcription site to the nuclear pore: a multi-tether process that regulates gene expression. J Cell Sci 2010; 123:1989-99. [DOI: 10.1242/jcs.053694] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is now well established that the position of a gene within the nucleus can influence the level of its activity. So far, special emphasis has been placed on the nuclear envelope (NE) as a transcriptionally silent nuclear sub-domain. Recent work, however, indicates that peripheral localization is not always associated with repression, but rather fulfills a dual function in gene expression. In particular, in the yeast Saccharomyces cerevisiae, a large number of highly expressed genes and activated inducible genes preferentially associate with nuclear pore complexes (NPCs), a process that is mediated by transient interactions between the transcribed locus and the NPC. Recent studies aimed at unraveling the molecular basis of this mechanism have revealed that maintenance of genes at the NPC involves multiple tethers at different steps of gene expression. These observations are consistent with tight interconnections between transcription, mRNA processing and export into the cytoplasm, and highlight a role for the NPC in promoting and orchestrating the gene expression process. In this Commentary, we discuss the factors involved in active gene anchoring to the NPC and the diverse emerging roles of the NPC environment in promoting gene expression, focusing on yeast as a model organism.
Collapse
Affiliation(s)
- Guennaëlle Dieppois
- Department of Cell Biology and Frontiers in Genetics, University of Geneva, Sciences III, 30 Quai E. Ansermet, Geneva 4, 1211, Switzerland
| | - Françoise Stutz
- Department of Cell Biology and Frontiers in Genetics, University of Geneva, Sciences III, 30 Quai E. Ansermet, Geneva 4, 1211, Switzerland
| |
Collapse
|
112
|
Abstract
The mRNA export adaptors provide an important link between multiple nuclear mRNA processing events and the mRNA export receptor TAP/NXF1/Mex67p. They are recruited to mRNA through transcriptional and post-transcriptional events, integrating this information to licence mRNA for export. Subsequently they hand mRNA over to TAP and switch TAP to a higher-affinity RNA-binding state, ensuring its stable association with mRNA destined for export. Here we discuss the structure and function of adaptors and how they are recruited to mRNA.
Collapse
|
113
|
Hung ML, Hautbergue GM, Snijders APL, Dickman MJ, Wilson SA. Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1. Nucleic Acids Res 2010; 38:3351-61. [PMID: 20129943 PMCID: PMC2879514 DOI: 10.1093/nar/gkq033] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA–protein interaction can be readily disrupted by export factors further down the pathway.
Collapse
Affiliation(s)
- Ming-Lung Hung
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|
114
|
Perales R, Bentley D. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 2009; 36:178-91. [PMID: 19854129 DOI: 10.1016/j.molcel.2009.09.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/07/2009] [Accepted: 08/06/2009] [Indexed: 12/27/2022]
Abstract
Much of the complex process of RNP biogenesis takes place at the gene cotranscriptionally. The target for RNA binding and processing factors is, therefore, not a solitary RNA molecule but, rather, a transcription elongation complex (TEC) comprising the growing nascent RNA and RNA polymerase traversing a chromatin template with associated passenger proteins. RNA maturation factors are not the only nuclear machines whose work is organized cotranscriptionally around the TEC scaffold. Additionally, DNA repair, covalent chromatin modification, "gene gating" at the nuclear pore, Ig gene hypermutation, and sister chromosome cohesion have all been demonstrated or suggested to involve a cotranscriptional component. From this perspective, TECs can be viewed as potent "community organizers" within the nucleus.
Collapse
Affiliation(s)
- Roberto Perales
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC, MS8101, P.O. Box 6511, Aurora CO, 80045, USA
| | | |
Collapse
|
115
|
Assembly of an export-competent mRNP is needed for efficient release of the 3'-end processing complex after polyadenylation. Mol Cell Biol 2009; 29:5327-38. [PMID: 19635808 DOI: 10.1128/mcb.00468-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Before polyadenylated mRNA is exported from the nucleus, the 3'-end processing complex is removed by a poorly described mechanism. In this study, we asked whether factors involved in mRNP maturation and export are also required for disassembly of the cleavage and polyadenylation complex. An RNA immunoprecipitation assay monitoring the amount of the cleavage factor (CF) IA component Rna15p associated with poly(A)(+) RNA reveals defective removal of Rna15p in mutants of the nuclear export receptor Mex67p as well as other factors important for assembly of an export-competent mRNP. In contrast, Rna15p is not retained in mutants of export factors that function primarily on the cytoplasmic side of the nuclear pore. Consistent with a functional interaction between Mex67p and the 3'-end processing complex, a mex67 mutant accumulates unprocessed SSA4 transcripts and exhibits a severe growth defect when this mutation is combined with mutation of Rna15p or another CF IA subunit, Rna14p. RNAs that become processed in a mex67 mutant have longer poly(A) tails both in vivo and in vitro. This influence of Mex67p on 3'-end processing is conserved, as depletion of its human homolog, TAP/NXF1, triggers mRNA hyperadenylation. Our results indicate a function for nuclear mRNP assembly factors in releasing the 3'-end processing complex once polyadenylation is complete.
Collapse
|
116
|
Kelly SM, Corbett AH. Messenger RNA export from the nucleus: a series of molecular wardrobe changes. Traffic 2009; 10:1199-208. [PMID: 19552647 DOI: 10.1111/j.1600-0854.2009.00944.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The advent of the nucleus during the evolutionary development of the eukaryotic cell necessitated the development of a transport system to convey messenger RNA (mRNA) from the site of transcription in the nucleus to ribosomes in the cytoplasm. In this review, we highlight components of each step in mRNA biogenesis, from transcription to processing, that are coupled with mRNA export from the nucleus. We also review the mechanism by which proteins from one step in the mRNA assembly line are replaced by those required for the next. These 'molecular wardrobe changes' appear to be key steps in facilitating the rapid and efficient nuclear export of mRNA transcripts.
Collapse
Affiliation(s)
- Seth M Kelly
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
117
|
Abstract
In mammals, imprinted genes are clustered and at least one gene in each imprinted cluster is a long i.e., macro non-coding (nc) RNA. Most genes in a cluster show concordant parental-specific expression but the ncRNA is the odd one out, and is expressed from the opposite parental chromosome. While reciprocal expression between imprinted macro non-coding RNAs and flanking mRNA genes is indicative of a functional role, only two of three tested macro ncRNAs have been shown to induce imprinted gene expression. The two known functional imprinted macro non-coding RNAs are both RNAPII transcripts with unusual transcriptional properties that may be functionally relevant and their analysis may shed light on the function of non-coding RNAs that have been shown to comprise the majority of the mammalian transcriptome.
Collapse
Affiliation(s)
- Paulina A Latos
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | | |
Collapse
|
118
|
Abstract
In this issue of Molecular Cell, Johnson et al. (2009) reveal a physical link between the yeast Pcf11p and Yra1p proteins, providing insights into the coupling of mRNA 3' end formation and export.
Collapse
Affiliation(s)
- Cyril Saguez
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, Aarhus University, Aarhus C., Denmark
| | | |
Collapse
|