101
|
Xu Q, Yang C, Du Y, Chen Y, Liu H, Deng M, Zhang H, Zhang L, Liu T, Liu Q, Wang L, Lou Z, Pei H. AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Res 2014; 42:5594-604. [PMID: 24692660 PMCID: PMC4027166 DOI: 10.1093/nar/gku236] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Histone H2B O-GlcNAcylation is an important post-translational modification of chromatin during gene transcription. However, how this epigenetic modification is regulated remains unclear. Here we found that the energy-sensing adenosine-monophosphate-activated protein kinase (AMPK) could suppress histone H2B O-GlcNAcylation. AMPK directly phosphorylates O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT). Although this phosphorylation does not regulate the enzymatic activity of OGT, it inhibits OGT-chromatin association, histone O-GlcNAcylation and gene transcription. Conversely, OGT also O-GlcNAcylates AMPK and positively regulates AMPK activity, creating a feedback loop. Taken together, these results reveal a crosstalk between the LKB1-AMPK and the hexosamine biosynthesis (HBP)-OGT pathways, which coordinate together for the sensing of nutrient state and regulation of gene transcription.
Collapse
Affiliation(s)
- Qiuran Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Caihong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Du
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yali Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hailong Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Min Deng
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Haoxing Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Lei Zhang
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Tongzheng Liu
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Liewei Wang
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Huadong Pei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
102
|
Koso H, Tsuhako A, Lyons E, Ward JM, Rust AG, Adams DJ, Jenkins NA, Copeland NG, Watanabe S. Identification of FoxR2 as an oncogene in medulloblastoma. Cancer Res 2014; 74:2351-61. [PMID: 24599127 DOI: 10.1158/0008-5472.can-13-1523] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Medulloblastoma is the most common pediatric brain tumor, and in ∼25% of cases, it is driven by aberrant activation of the Sonic Hedgehog (SHH) pathway in granule neuron precursor (GNP) cells. In this study, we identified novel medulloblastoma driver genes through a transposon mutagenesis screen in the developing brain of wild-type and Trp53 mutant mice. Twenty-six candidates were identified along with established driver genes such as Gli1 and Crebbp. The transcription factor FoxR2, the most frequent gene identified in the screen, is overexpressed in a small subset of human medulloblastoma of the SHH subtype. Tgif2 and Alx4, 2 new putative oncogenes identified in the screen, are strongly expressed in the SHH subtype of human medulloblastoma. Mutations in these two genes were mutually exclusive with mutations in Gli1 and tended to cooccur, consistent with involvement in the SHH pathway. Notably, Foxr2, Tgif2, and Alx4 activated Gli-binding sites in cooperation with Gli1, strengthening evidence that they function in SHH signaling. In support of an oncogenic function, Foxr2 overexpression transformed NIH3T3 cells and promoted proliferation of GNPs, the latter of which was also observed for Tgif2 and Alx4. These findings offer forward genetic and functional evidence associating Foxr2, Tgif2, and Alx4 with SHH subtype medulloblastoma.
Collapse
Affiliation(s)
- Hideto Koso
- Authors' Affiliations: Division of Molecular and Developmental Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Genetics and Genomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore; Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom; and Cancer Research Program, The Methodist Hospital Research Institute, Houston, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
SUPT6H controls estrogen receptor activity and cellular differentiation by multiple epigenomic mechanisms. Oncogene 2014; 34:465-73. [PMID: 24441044 DOI: 10.1038/onc.2013.558] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 12/18/2022]
Abstract
The estrogen receptor alpha (ERα) is the central transcriptional regulator of ductal mammary epithelial lineage specification and is an important prognostic marker in human breast cancer. Although antiestrogen therapies are initially highly effective at treating ERα-positive tumors, a large number of tumors progress to a refractory, more poorly differentiated phenotype accompanied by reduced survival. A better understanding of the molecular mechanisms involved in the progression from estrogen-dependent to hormone-resistant breast cancer may uncover new targets for treatment and the discovery of new predictive markers. Recent studies have uncovered an important role for transcriptional elongation and chromatin modifications in controlling ERα activity and estrogen responsiveness. The human Suppressor of Ty Homologue-6 (SUPT6H) is a histone chaperone that links transcriptional elongation to changes in chromatin structure. We show that SUPT6H is required for estrogen-regulated transcription and the maintenance of chromatin structure in breast cancer cells, possibly in part through interaction with RNF40 and regulation of histone H2B monoubiquitination (H2Bub1). Moreover, we demonstrate that SUPT6H protein levels decrease with malignancy in breast cancer. Consistently, SUPT6H, similar to H2Bub1, is required for cellular differentiation and suppression of the repressive histone mark H3K27me3 on lineage-specific genes. Together, these data identify SUPT6H as a new epigenetic regulator of ERα activity and cellular differentiation.
Collapse
|
104
|
Zhang X, Zhang H, Wang Y. Phosphorylation regulates VCIP135 function in Golgi membrane fusion during the cell cycle. J Cell Sci 2013; 127:172-81. [PMID: 24163436 DOI: 10.1242/jcs.134668] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Golgi apparatus in mammalian cells consists of stacks that are often laterally linked into a ribbon-like structure. During cell division, the Golgi disassembles into tubulovesicular structures in the early stages of mitosis and reforms in the two daughter cells by the end of mitosis. Valosin-containing protein p97-p47 complex-interacting protein, p135 (VCIP135), an essential factor involved in p97-mediated membrane fusion pathways, is required for postmitotic Golgi cisternae regrowth and Golgi structure maintenance in interphase. However, how VCIP135 function is regulated in the cell cycle remains unclear. Here, we report that VCIP135 depletion by RNA interference results in Golgi fragmentation. VCIP135 function requires membrane association and p97 interaction, both of which are inhibited in mitosis by VCIP135 phosphorylation. We found that wild-type VCIP135, but not its phosphomimetic mutants, rescues Golgi structure in VCIP135-depleted cells. Our results demonstrate that VCIP135 phosphorylation regulates its Golgi membrane association and p97 interaction, and thus contributes to the tight control of the Golgi disassembly and reassembly process during the cell cycle.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
105
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
106
|
Chan KM, Han J, Fang D, Gan H, Zhang Z. A lesson learned from the H3.3K27M mutation found in pediatric glioma: a new approach to the study of the function of histone modifications in vivo? Cell Cycle 2013; 12:2546-52. [PMID: 23907119 DOI: 10.4161/cc.25625] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in human. Recent studies on high-grade pediatric GBM have identified two recurrent mutations (K27M and G34R/V) in genes encoding histone H3 (H3F3A for H3.3 and HIST1H3B for H3.1). The two histone H3 mutations are mutually exclusive and give rise to tumors in different brain compartments. Recently, we and others have shown that the histone H3 K27M mutation specifically altered the di- and tri-methylation of endogenous histone H3 at Lys27. Genome-wide studies using ChIP-seq on H3.3K27M patient samples indicate a global reduction of H3K27me3 on chromatin. Remarkably, we also found a dramatic enrichment of H3K27me3 and EZH2 (the catalytic subunit H3K27 methyltransferase) at hundreds of gene loci in H3.3K27M patient cells. Here, we discuss potential mechanisms whereby H3K27me3 is enriched at chromatin loci in cells expressing the H3.3K27M mutation and report effects of Lys-to-Met mutations of other well-studied lysine residues of histone H3.1/H3.3 and H4 on the corresponding endogenous lysine methylation. We suggest that mutation(s) on histones may be found in a variety of human diseases, and the expression of mutant histones may help to address the function of histone lysine methylation and possibly other modifications in mammalian cells.
Collapse
Affiliation(s)
- Kui Ming Chan
- Department of Biochemistry and Molecular Biology, Epigenomic Developmental Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
107
|
Liu C, Wang D, Wu J, Keller J, Ma T, Yu X. RNF168 forms a functional complex with RAD6 during the DNA damage response. J Cell Sci 2013; 126:2042-51. [PMID: 23525009 DOI: 10.1242/jcs.122945] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein ubiquitination plays an important role in initiating the DNA damage response. Following DNA damage, E2 ubiquitin conjugating enzymes are crucial for catalyzing substrate ubiquitination that recruits downstream DNA repair factors to DNA lesions. To identify novel E2 conjugating enzymes important for initiating the DNA-damage-induced ubiquitination cascade, we screened most of the known E2 enzymes and found that RAD6A and RAD6B function together with RNF168 in the ionizing radiation (IR)-induced DNA damage response. Similarly to RNF168-deficient cells, RAD6A- or RAD6B-deficient cells exhibit a reduction in DNA-damage-induced protein ubiquitination. Correspondingly, DNA-damage-induced foci formation of DNA damage repair proteins, such as BRCA1 and 53BP1, is impaired in the absence of RAD6A or RAD6B. Moreover, the RNF168-RAD6 complex targeted histone H1.2 for ubiquitination in vitro and regulated DNA-damage-induced histone H1.2 ubiquitination in vivo. Collectively, these data demonstrate that RNF168, in complex with RAD6A or RAD6B, is activated in the DNA-damage-induced protein ubiquitination cascade.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | | | | | | | | | | |
Collapse
|
108
|
Hadwiger LA, Druffel K, Humann JL, Schroeder BK. Nuclease released by Verticillium dahliae is a signal for non-host resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 201-202:98-107. [PMID: 23352407 DOI: 10.1016/j.plantsci.2012.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 06/01/2023]
Abstract
A DNase released from the fungal pathogen of bean, Fusarium solani f. sp. phaseoli (Fsph), was previously shown to signal the activation of total disease resistance and activate pathogenesis-related (PR) genes in pea. Data in the current study which used the pea-endocarp model to research non-host resistance, indicated that DNase released by Verticillium dahliae (Vd), pathogenic on potato also has non-host resistance-inducing capabilities in peas. Other strains of Vd that release DNase are pathogenic on other plant species. DNase catalytic activity was also released from representative genera of other pathogenic fungi. Purified VdDNase induced pisatin and pea gene DRR49 (PR-10 gene) in pea endocarp tissue. VdDNase reduced the in vitro growth of Vd but completely inhibited that of F. solani f. sp. pisi (Fspi) and a Colletotrichum pathogen of potato. VdDNase (2 units) applied to pea endocarp tissue both broke resistance to Fsph and increased resistance to Fspi. Pea DNA damage generated both by the VdDNase enzyme and the intact Vd spores indicated that the host DNA alteration is a component of the non-host resistance response (innate immunity). These data support the previously reported inductive potential of fungal DNase and further implicate fungal DNases as signals in activating non-host resistance responses.
Collapse
Affiliation(s)
- Lee A Hadwiger
- Department of Plant Pathology, Washington State University, Pullman, WA 99164 6430, USA.
| | | | | | | |
Collapse
|
109
|
Adenovirus evasion of interferon-mediated innate immunity by direct antagonism of a cellular histone posttranslational modification. Cell Host Microbe 2012; 11:597-606. [PMID: 22704620 DOI: 10.1016/j.chom.2012.05.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 02/07/2012] [Accepted: 05/04/2012] [Indexed: 01/15/2023]
Abstract
Overcoming the cellular type I interferon (IFN) host defense response is critical for a virus to ensure successful infection. Investigating the effects of human adenovirus (HAdV) infection on global cellular histone posttranslational modification (hPTM), we discovered that virus infection-induced activation of IFN signaling triggers a global increase in the monoubiquitination of histone 2B (H2B) at lysine 120, which is a mark for transcriptionally active chromatin. This hPTM, catalyzed by the hBre1/RNF20 complex, is necessary for activation of the cellular IFN-stimulated gene (ISG) expression program in response to viruses. To establish effective infection, the HAdV E1A protein binds to and dissociates the hBre1 complex to block IFN-induced H2B monoubiquitination and associated ISG expression. Together, these data uncover a key role for H2B monoubiquitination in the type I IFN response and a viral mechanism of antagonizing this hPTM to evade the IFN response.
Collapse
|
110
|
Friedl AA, Mazurek B, Seiler DM. Radiation-induced alterations in histone modification patterns and their potential impact on short-term radiation effects. Front Oncol 2012; 2:117. [PMID: 23050241 PMCID: PMC3445916 DOI: 10.3389/fonc.2012.00117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/12/2022] Open
Abstract
Detection and repair of radiation-induced DNA damage occur in the context of chromatin. An intricate network of mechanisms defines chromatin structure, including DNA methylation, incorporation of histone variants, histone modifications, and chromatin remodeling. In the last years it became clear that the cellular response to radiation-induced DNA damage involves all of these mechanisms. Here we focus on the current knowledge on radiation-induced alterations in post-translational histone modification patterns and their effect on the chromatin accessibility, transcriptional regulation and chromosomal stability.
Collapse
Affiliation(s)
- Anna A Friedl
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Germany
| | | | | |
Collapse
|
111
|
Fuchs G, Shema E, Vesterman R, Kotler E, Wolchinsky Z, Wilder S, Golomb L, Pribluda A, Zhang F, Haj-Yahya M, Feldmesser E, Brik A, Yu X, Hanna J, Aberdam D, Domany E, Oren M. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol Cell 2012; 46:662-73. [PMID: 22681888 DOI: 10.1016/j.molcel.2012.05.023] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/06/2012] [Accepted: 05/17/2012] [Indexed: 11/17/2022]
Abstract
Embryonic stem cells (ESCs) maintain high genomic plasticity, which is essential for their capacity to enter diverse differentiation pathways. Posttranscriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2Bub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of relatively long genes during ESC differentiation. Furthermore, we identify the deubiquitinase USP44 as a negative regulator of H2B ubiquitylation, whose downregulation during ESC differentiation contributes to the increase in H2Bub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner.
Collapse
Affiliation(s)
- Gilad Fuchs
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Karpiuk O, Najafova Z, Kramer F, Hennion M, Galonska C, König A, Snaidero N, Vogel T, Shchebet A, Begus-Nahrmann Y, Kassem M, Simons M, Shcherbata H, Beissbarth T, Johnsen SA. The histone H2B monoubiquitination regulatory pathway is required for differentiation of multipotent stem cells. Mol Cell 2012; 46:705-13. [PMID: 22681891 DOI: 10.1016/j.molcel.2012.05.022] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/28/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022]
Abstract
Extensive changes in posttranslational histone modifications accompany the rewiring of the transcriptional program during stem cell differentiation. However, the mechanisms controlling the changes in specific chromatin modifications and their function during differentiation remain only poorly understood. We show that histone H2B monoubiquitination (H2Bub1) significantly increases during differentiation of human mesenchymal stem cells (hMSCs) and various lineage-committed precursor cells and in diverse organisms. Furthermore, the H2B ubiquitin ligase RNF40 is required for the induction of differentiation markers and transcriptional reprogramming of hMSCs. This function is dependent upon CDK9 and the WAC adaptor protein, which are required for H2B monoubiquitination. Finally, we show that RNF40 is required for the resolution of the H3K4me3/H3K27me3 bivalent poised state on lineage-specific genes during the transition from an inactive to an active chromatin conformation. Thus, these data indicate that H2Bub1 is required for maintaining multipotency of hMSCs and plays a central role in controlling stem cell differentiation.
Collapse
Affiliation(s)
- Oleksandra Karpiuk
- Department of Molecular Oncology, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Göttingen 37077, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
|
114
|
Sansó M, Lee KM, Viladevall L, Jacques PÉ, Pagé V, Nagy S, Racine A, St. Amour CV, Zhang C, Shokat KM, Schwer B, Robert F, Fisher RP, Tanny JC. A positive feedback loop links opposing functions of P-TEFb/Cdk9 and histone H2B ubiquitylation to regulate transcript elongation in fission yeast. PLoS Genet 2012; 8:e1002822. [PMID: 22876190 PMCID: PMC3410854 DOI: 10.1371/journal.pgen.1002822] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/24/2012] [Indexed: 11/25/2022] Open
Abstract
Transcript elongation by RNA polymerase II (RNAPII) is accompanied by conserved patterns of histone modification. Whereas histone modifications have established roles in transcription initiation, their functions during elongation are not understood. Mono-ubiquitylation of histone H2B (H2Bub1) plays a key role in coordinating co-transcriptional histone modification by promoting site-specific methylation of histone H3. H2Bub1 also regulates gene expression through an unidentified, methylation-independent mechanism. Here we reveal bidirectional communication between H2Bub1 and Cdk9, the ortholog of metazoan positive transcription elongation factor b (P-TEFb), in the fission yeast Schizosaccharomyces pombe. Chemical and classical genetic analyses indicate that lowering Cdk9 activity or preventing phosphorylation of its substrate, the transcription processivity factor Spt5, reduces H2Bub1 in vivo. Conversely, mutations in the H2Bub1 pathway impair Cdk9 recruitment to chromatin and decrease Spt5 phosphorylation. Moreover, an Spt5 phosphorylation-site mutation, combined with deletion of the histone H3 Lys4 methyltransferase Set1, phenocopies morphologic and growth defects due to H2Bub1 loss, suggesting independent, partially redundant roles for Cdk9 and Set1 downstream of H2Bub1. Surprisingly, mutation of the histone H2B ubiquitin-acceptor residue relaxes the Cdk9 activity requirement in vivo, and cdk9 mutations suppress cell-morphology defects in H2Bub1-deficient strains. Genome-wide analyses by chromatin immunoprecipitation also demonstrate opposing effects of Cdk9 and H2Bub1 on distribution of transcribing RNAPII. Therefore, whereas mutual dependence of H2Bub1 and Spt5 phosphorylation indicates positive feedback, mutual suppression by cdk9 and H2Bub1-pathway mutations suggests antagonistic functions that must be kept in balance to regulate elongation. Loss of H2Bub1 disrupts that balance and leads to deranged gene expression and aberrant cell morphologies, revealing a novel function of a conserved, co-transcriptional histone modification. Modification of histone proteins is an important transcriptional regulatory mechanism in eukaryotic cells. Although various histone modifications are found primarily within the coding regions of transcribed genes, how they influence transcription elongation remains unclear. Among these modifications is mono-ubiquitylation of histone H2B (H2Bub1), which is needed for co-transcriptional methylation of histone H3 at specific sites. Here we show that H2Bub1 and Cdk9, the kinase component of positive transcription elongation factor b (P-TEFb), are jointly regulated by a positive feedback loop: Cdk9 activity is needed for co-transcriptional H2Bub1, and H2Bub1 in turn stimulates Cdk9 activity toward one of its major substrates, the conserved elongation factor Spt5. We provide genetic evidence that the combined action of H2Bub1 on Spt5 phosphorylation and histone methylation accounts for the gene-regulatory effects of this modification. Surprisingly, our genetic and genome-wide studies indicate that P-TEFb and H2Bub1 act in opposition on elongating RNA polymerase. We suggest that the positive feedback linking P-TEFb and H2Bub1 helps to maintain a balance between their opposing actions. These results highlight a novel regulatory role for a conserved histone modification during transcription elongation.
Collapse
Affiliation(s)
- Miriam Sansó
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Karen M. Lee
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Laia Viladevall
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | | | - Viviane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Stephen Nagy
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Ariane Racine
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Courtney V. St. Amour
- Programs in Biochemistry, Cell and Molecular Biology, Weill Cornell Medical College, New York, New York, United States of America
| | - Chao Zhang
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Kevan M. Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - François Robert
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Robert P. Fisher
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail: (RPF); (JCT)
| | - Jason C. Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
- * E-mail: (RPF); (JCT)
| |
Collapse
|
115
|
A transposon-based analysis of gene mutations related to skin cancer development. J Invest Dermatol 2012; 133:239-48. [PMID: 22832494 DOI: 10.1038/jid.2012.245] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is by far the most frequent type of cancer in humans. NMSC includes several types of malignancies with different clinical outcomes, the most frequent being basal and squamous cell carcinomas. We have used the Sleeping Beauty transposon/transposase system to identify somatic mutations associated with NMSC. Transgenic mice bearing multiple copies of a mutagenic Sleeping Beauty transposon T2Onc2 and expressing the SB11 transposase under the transcriptional control of regulatory elements from the keratin K5 promoter were treated with TPA, either in wild-type or Ha-ras mutated backgrounds. After several weeks of treatment, mice with transposition developed more malignant tumors with decreased latency compared with control mice. Transposon/transposase animals also developed basal cell carcinomas. Genetic analysis of the transposon integration sites in the tumors identified several genes recurrently mutated in different tumor samples, which may represent novel candidate cancer genes. We observed alterations in the expression levels of some of these genes in human tumors. Our results show that inactivating mutations in Notch1 and Nsd1, among others, may have an important role in skin carcinogenesis.
Collapse
|
116
|
Abstract
Comment on: Shchebet A, et al. Cell Cycle 2012; 2122-7
Collapse
|
117
|
McKnight NC, Jefferies HBJ, Alemu EA, Saunders RE, Howell M, Johansen T, Tooze SA. Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC. EMBO J 2012; 31:1931-46. [PMID: 22354037 PMCID: PMC3343327 DOI: 10.1038/emboj.2012.36] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 01/23/2012] [Indexed: 01/10/2023] Open
Abstract
Autophagy is a catabolic process by which cytoplasmic components are sequestered and transported by autophagosomes to lysosomes for degradation, enabling recycling of these components and providing cells with amino acids during starvation. It is a highly regulated process and its deregulation contributes to multiple diseases. Despite its importance in cell homeostasis, autophagy is not fully understood. To find new proteins that modulate starvation-induced autophagy, we performed a genome-wide siRNA screen in a stable human cell line expressing GFP-LC3, the marker-protein for autophagosomes. Using stringent validation criteria, our screen identified nine novel autophagy regulators. Among the hits required for autophagosome formation are SCOC (short coiled-coil protein), a Golgi protein, which interacts with fasciculation and elongation protein zeta 1 (FEZ1), an ULK1-binding protein. SCOC forms a starvation-sensitive trimeric complex with UVRAG (UV radiation resistance associated gene) and FEZ1 and may regulate ULK1 and Beclin 1 complex activities. A second candidate WAC is required for starvation-induced autophagy but also acts as a potential negative regulator of the ubiquitin-proteasome system. The identification of these novel regulatory proteins with diverse functions in autophagy contributes towards a fuller understanding of autophagosome formation.
Collapse
Affiliation(s)
- Nicole C McKnight
- Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Harold B J Jefferies
- Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Endalkachew A Alemu
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Rebecca E Saunders
- High-Throughput Screening Lab, London Research Institute, Cancer Research UK, London, UK
| | - Michael Howell
- High-Throughput Screening Lab, London Research Institute, Cancer Research UK, London, UK
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Sharon A Tooze
- Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, UK
| |
Collapse
|
118
|
Johnsen SA. The enigmatic role of H2Bub1 in cancer. FEBS Lett 2012; 586:1592-601. [PMID: 22564770 DOI: 10.1016/j.febslet.2012.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 12/19/2022]
Abstract
The post-translational modification of histone proteins plays an important role in controlling cell fate by directing essentially all DNA-associated nuclear processes. Misregulation and mutation of histone modifying enzymes is a hallmark of tumorigenesis. However, how these different epigenetic modifications lead to tumor initiation and/or progression remains poorly understood. Recent studies have uncovered a potential tumor suppressor role for histone H2B monoubiquitination (H2Bub1). Like many other histone modifications, H2Bub1 has diverse functions and plays roles both in transcriptional activation and repression as well as in controlling mRNA processing and directing DNA repair processes. Notably, H2Bub1 has been linked to transcriptional elongation and is preferentially found in the transcribed region of active genes. Its activity is intimately connected to active transcription and the transcriptional elongation regulatory protein cyclin-dependent kinase-9 (CDK9) and the facilitates chromatin transcription (FACT) complex. This review provides an overview of the current understanding of H2Bub1 function in mammalian systems with a particular emphasis on its role in cancer and potential options for exploiting this knowledge for the treatment of cancer.
Collapse
Affiliation(s)
- Steven A Johnsen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
119
|
Abstract
Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription-from transcription initiation through to export of mRNA from the nucleus-is influenced by the UPS and that all major arms of the system--from the first step in ubiquitin (Ub) conjugation through to the proteasome-are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power.
Collapse
Affiliation(s)
- Fuqiang Geng
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8240, USA.
| | | | | |
Collapse
|
120
|
Dynamic loss of H2B ubiquitylation without corresponding changes in H3K4 trimethylation during myogenic differentiation. Mol Cell Biol 2012; 32:1044-55. [PMID: 22252316 DOI: 10.1128/mcb.06026-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitylation of H2B on lysine 120 (H2Bub) is associated with active transcriptional elongation. H2Bub has been implicated in histone cross talk and is generally regarded to be a prerequisite for trimethylation of histone 3 lysine 4 (H3K4me3) and H3K79 in both yeast and mammalian cells. We performed a genome-wide analysis of epigenetic marks during muscle differentiation, and strikingly, we observed a near-complete loss of H2Bub in the differentiated state. We examined the basis for global loss of this mark and found that the H2B ubiquitin E3 ligase, RNF20, was depleted from chromatin in differentiated myotubes, indicating that recruitment of this protein to genes substantially decreases upon differentiation. Remarkably, during the course of myogenic differentiation, we observed retention and acquisition of H3K4 trimethylation on a large number of genes in the absence of detectable H2Bub. The Set1 H3K4 trimethylase complex was efficiently recruited to a subset of genes in myotubes in the absence of detectable H2Bub, accounting in part for H3K4 trimethylation in myotubes. Our studies suggest that H3K4me3 deposition in the absence of detectable H2Bub in myotubes is mediated via Set1 and, perhaps, MLL complexes, whose recruitment does not require H2Bub. Thus, muscle cells represent a novel setting in which to explore mechanisms that regulate histone cross talk.
Collapse
|
121
|
Hahn MA, Dickson KA, Jackson S, Clarkson A, Gill AJ, Marsh DJ. The tumor suppressor CDC73 interacts with the ring finger proteins RNF20 and RNF40 and is required for the maintenance of histone 2B monoubiquitination. Hum Mol Genet 2011; 21:559-68. [PMID: 22021426 DOI: 10.1093/hmg/ddr490] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Monoubiquitination of histone H2B is a dynamic post-translational histone modification associated with transcriptional elongation and the DNA damage response. To date, dysregulation of histone monoubiquitination has not been linked to pathogenic mutations in genes encoding proteins, or co-factors, catalyzing this modification. The tumor suppressor cell division cycle 73 (CDC73) is mutated and/or down-regulated in parathyroid carcinoma, renal, breast, gastric and colorectal tumors, as well as in the germline of patients with the familial disorder-hyperparathyroidism jaw tumor syndrome. Using CDC73 as bait in a yeast two-hybrid assay, we identified the ring finger proteins RNF20 and RNF40 as binding partners of this tumor suppressor. These polypeptides constitute a heterodimeric complex that functions as the E3 ubiquitin ligase for monoubiquitination of histone H2B at lysine 120 (H2B-K120). We show that RNF20 and RNF40 bind to discrete, but closely located, residues on CDC73. Monoubiquitinated H2B-K120 was significantly reduced after loss of nuclear CDC73, both in vitro upon down-regulation of CDC73, and in CDC73 mutant parathyroid tumors. A second histone modification, trimethylation of histone 3 at lysine 4 (H3-K4me3), remained unchanged in the presence of mutant or down-regulated CDC73, suggesting that H3-K4me3 is not always tightly linked to H2B-K120 monoubiquitination for transcription as previously described. This is the first report of pathogenic mutations affecting histone monoubiquitination. We conclude that CDC73 is required for the maintenance of H2B-K120 monoubiquitination and propose that reduction in levels of monoubiquitinated H2B-K120 is a major mechanism whereby mutations in CDC73 exert their tumorigenic effect.
Collapse
Affiliation(s)
- Michael A Hahn
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW 2065, Australia
| | | | | | | | | | | |
Collapse
|
122
|
Hammond-Martel I, Yu H, Affar EB. Roles of ubiquitin signaling in transcription regulation. Cell Signal 2011; 24:410-421. [PMID: 22033037 DOI: 10.1016/j.cellsig.2011.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
Abstract
Rivaling or cooperating with other post-translational modifications, ubiquitination plays central roles in regulating numerous cellular processes. Not surprisingly, gain- or loss-of-function mutations in several components of the ubiquitin system are causally linked to human pathologies including cancer. The covalent attachment of ubiquitin to target proteins occurs in sequential steps and involves ubiquitin ligases (E3s) which are the most abundant enzymes of the ubiquitin system. Although often associated with proteasomal degradation, ubiquitination is also involved in regulatory events in a proteasome-independent manner. Moreover, ubiquitination is reversible and specific proteases, termed deubiquitinases (DUBs), remove ubiquitin from protein substrates. While we now appreciate the importance of ubiquitin signaling in coordinating a plethora of physio-pathological processes, the molecular mechanisms are not fully understood. This review summarizes current findings on the critical functions exerted by E3s and DUBs in transcriptional control, particularly chromatin remodeling and transcription initiation/elongation.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - Helen Yu
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada.
| |
Collapse
|
123
|
Wright DE, Wang CY, Kao CF. Flickin' the ubiquitin switch: the role of H2B ubiquitylation in development. Epigenetics 2011; 6:1165-75. [PMID: 21937884 DOI: 10.4161/epi.6.10.17745] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The reversible ubiquitylation of histone H2B has long been implicated in transcriptional activation and gene silencing. However, many questions regarding its regulation and effects on chromatin structure remain unanswered. In addition, while several studies have uncovered an involvement of this modification in the control of certain developmental processes, a more general understanding of its requirement is lacking. Herein, we present a broad overview of the pathways known to be regulated by H2B ubiquitylation, while drawing parallels between findings in disparate organisms, in order to facilitate continued delineation of its spatiotemporal role in development. Finally, we integrate the findings of recent studies into how H2B ubiquitylation affects chromatin, and cast an eye over emerging areas for future research.
Collapse
|
124
|
Shiloh Y, Shema E, Moyal L, Oren M. RNF20-RNF40: A ubiquitin-driven link between gene expression and the DNA damage response. FEBS Lett 2011; 585:2795-802. [PMID: 21827756 DOI: 10.1016/j.febslet.2011.07.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/25/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
The DNA damage response (DDR) is emerging as a vast signaling network that temporarily modulates numerous aspects of cellular metabolism in the face of DNA lesions, especially critical ones such as the double strand break (DSB). The DDR involves extensive dynamics of protein post-translational modifications, most notably phosphorylation and ubiquitylation. The DSB response is mobilized primarily by the ATM protein kinase, which phosphorylates a plethora of key players in its various branches. It is based on a core of proteins dedicated to the damage response, and a cadre of proteins borrowed temporarily from other cellular processes to help meet the challenge. A recently identified novel component of the DDR pathway - histone H2B monoubiquitylation - exemplifies this principle. In mammalian cells, H2B monoubiquitylation is driven primarily by an E3 ubiquitin ligase composed of the two RING finger proteins RNF20 and RNF40. Generation of monoubiquitylated histone H2B (H2Bub) has been known to be coupled to gene transcription, presumably modulating chromatin decondensation at transcribed regions. New evidence indicates that the regulatory function of H2Bub on gene expression can selectively enhance or suppress the expression of distinct subsets of genes through a mechanism involving the hPAF1 complex and the TFIIS protein. This delicate regulatory process specifically affects genes that control cell growth and genome stability, and places RNF20 and RNF40 in the realm of tumor suppressor proteins. In parallel, it was found that following DSB induction, the H2B monoubiquitylation module is recruited to damage sites where it induces local H2Bub, which in turn is required for timely recruitment of DSB repair protein and, subsequently, timely DSB repair. This pathway represents a crossroads of the DDR and chromatin organization, and is a typical example of how the DDR calls to action functional modules that in unprovoked cells regulate other processes.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
125
|
VCIP135 deubiquitinase and its binding protein, WAC, in p97ATPase-mediated membrane fusion. EMBO J 2011; 30:3581-93. [PMID: 21811234 DOI: 10.1038/emboj.2011.260] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 06/29/2011] [Indexed: 11/09/2022] Open
Abstract
Two distinct p97 membrane fusion pathways are required for Golgi biogenesis: the p97/p47 and p97/p37 pathways. VCIP135 is necessary for both pathways, while its deubiquitinating activity is required only for the p97/p47 pathway. We have now identified a novel VCIP135-binding protein, WAC. WAC localizes to the Golgi as well as the nucleus. In Golgi membranes, WAC is involved in a complex containing VCIP135 and p97. WAC directly binds to VCIP135 and increases its deubiquitinating activity. siRNA experiments revealed that WAC is required for Golgi biogenesis. In an in vitro Golgi reformation assay, WAC was necessary only for p97/p47-mediated Golgi reassembly, but not for p97/p37-mediated reassembly. WAC is hence thought to function in p97/p47-mediated Golgi membrane fusion by activating the deubiquitinating function of VCIP135. We also showed that the two p97 pathways function in ER membrane fusion as well. An in vitro ER reformation assay revealed that both pathways required VCIP135 but not its deubiquitinating activity for their ER membrane fusion. This was consistent with the finding that WAC is unnecessary for p97-mediated ER membrane fusion.
Collapse
|