101
|
Abstract
The integrity of our genetic material is under constant attack from numerous endogenous and exogenous agents. The consequences of a defective DNA damage response are well studied in proliferating cells, especially with regards to the development of cancer, yet its precise roles in the nervous system are relatively poorly understood. Here we attempt to provide a comprehensive overview of the consequences of genomic instability in the nervous system. We highlight the neuropathology of congenital syndromes that result from mutations in DNA repair factors and underscore the importance of the DNA damage response in neural development. In addition, we describe the findings of recent studies, which reveal that a robust DNA damage response is also intimately connected to aging and the manifestation of age-related neurodegenerative disorders such as Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ram Madabhushi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ling Pan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
102
|
Rossetto D, Cramet M, Wang AY, Steunou AL, Lacoste N, Schulze JM, Côté V, Monnet-Saksouk J, Piquet S, Nourani A, Kobor MS, Côté J. Eaf5/7/3 form a functionally independent NuA4 submodule linked to RNA polymerase II-coupled nucleosome recycling. EMBO J 2014; 33:1397-415. [PMID: 24843044 DOI: 10.15252/embj.201386433] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The NuA4 histone acetyltransferase complex is required for gene regulation, cell cycle progression, and DNA repair. Dissection of the 13-subunit complex reveals that the Eaf7 subunit bridges Eaf5 with Eaf3, a H3K36me3-binding chromodomain protein, and this Eaf5/7/3 trimer is anchored to NuA4 through Eaf5. This trimeric subcomplex represents a functional module, and a large portion exists in a native form outside the NuA4 complex. Gene-specific and genome-wide location analyses indicate that Eaf5/7/3 correlates with transcription activity and is enriched over the coding region. In agreement with a role in transcription elongation, the Eaf5/7/3 trimer interacts with phosphorylated RNA polymerase II and helps its progression. Loss of Eaf5/7/3 partially suppresses intragenic cryptic transcription arising in set2 mutants, supporting a role in nucleosome destabilization. On the other hand, loss of the trimer leads to an increase of replication-independent histone exchange over the coding region of transcribed genes. Taken together, these results lead to a model where Eaf5/7/3 associates with elongating polymerase to promote the disruption of nucleosomes in its path, but also their refolding in its wake.
Collapse
Affiliation(s)
- Dorine Rossetto
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Myriam Cramet
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Alice Y Wang
- Center for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada
| | - Anne-Lise Steunou
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Nicolas Lacoste
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Julia M Schulze
- Center for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada
| | - Valérie Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Julie Monnet-Saksouk
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Sandra Piquet
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Amine Nourani
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Michael S Kobor
- Center for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| |
Collapse
|
103
|
Machida S, Takaku M, Ikura M, Sun J, Suzuki H, Kobayashi W, Kinomura A, Osakabe A, Tachiwana H, Horikoshi Y, Fukuto A, Matsuda R, Ura K, Tashiro S, Ikura T, Kurumizaka H. Nap1 stimulates homologous recombination by RAD51 and RAD54 in higher-ordered chromatin containing histone H1. Sci Rep 2014; 4:4863. [PMID: 24798879 PMCID: PMC4010968 DOI: 10.1038/srep04863] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/15/2014] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination plays essential roles in mitotic DNA double strand break (DSB) repair and meiotic genetic recombination. In eukaryotes, RAD51 promotes the central homologous-pairing step during homologous recombination, but is not sufficient to overcome the reaction barrier imposed by nucleosomes. RAD54, a member of the ATP-dependent nucleosome remodeling factor family, is required to promote the RAD51-mediated homologous pairing in nucleosomal DNA. In higher eukaryotes, most nucleosomes form higher-ordered chromatin containing the linker histone H1. However, the mechanism by which RAD51/RAD54-mediated homologous pairing occurs in higher-ordered chromatin has not been elucidated. In this study, we found that a histone chaperone, Nap1, accumulates on DSB sites in human cells, and DSB repair is substantially decreased in Nap1-knockdown cells. We determined that Nap1 binds to RAD54, enhances the RAD54-mediated nucleosome remodeling by evicting histone H1, and eventually stimulates the RAD51-mediated homologous pairing in higher-ordered chromatin containing histone H1.
Collapse
Affiliation(s)
- Shinichi Machida
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- These authors contributed equally to this work
| | - Motoki Takaku
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- These authors contributed equally to this work
| | - Masae Ikura
- Department of Mutagenesis, Division of Chromatin Regulatory Network, Radiation Biology Center, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jiying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hidekazu Suzuki
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Wataru Kobayashi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Aiko Kinomura
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Akihisa Osakabe
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroaki Tachiwana
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Atsuhiko Fukuto
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ryo Matsuda
- Department of Mutagenesis, Division of Chromatin Regulatory Network, Radiation Biology Center, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kiyoe Ura
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tsuyoshi Ikura
- Department of Mutagenesis, Division of Chromatin Regulatory Network, Radiation Biology Center, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
104
|
Bedi U, Mishra VK, Wasilewski D, Scheel C, Johnsen SA. Epigenetic plasticity: a central regulator of epithelial-to-mesenchymal transition in cancer. Oncotarget 2014; 5:2016-29. [PMID: 24840099 PMCID: PMC4039141 DOI: 10.18632/oncotarget.1875] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 03/27/2014] [Indexed: 12/20/2022] Open
Abstract
Tumor metastasis is the major cause of mortality and morbidity in most solid cancers. A growing body of evidence suggests that the epithelial-to-mesenchymal transition (EMT) plays a central role during tumor metastasis and frequently imparts a stem cell-like phenotype and therapeutic resistance to tumor cells. The induction of EMT is accompanied by a dynamic reprogramming of the epigenome involving changes in DNA methylation and several post-translational histone modifications. These changes in turn promote the expression of mesenchymal genes or repress those associated with an epithelial phenotype. Importantly, in order for metastatic colonization and the formation of macrometastases to occur, tumor cells frequently undergo a reversal of EMT referred to as the mesenchymal-to-epithelial transition (MET). Thus, a high degree of epigenetic plasticity is required in order to induce and reverse EMT during tumor progression. In this review, we describe various epigenetic regulatory mechanisms employed by tumor cells during EMT and elaborate on the importance of the histone code in controlling both the expression and activity of EMT-associated transcription factors. We propose that a more thorough understanding of the epigenetic mechanisms controlling EMT may provide new opportunities which may be harnessed for improved and individualized cancer therapy based on defined molecular mechanisms.
Collapse
Affiliation(s)
- Upasana Bedi
- Department of Molecular Oncology, Göttingen Center for Molecular Biosciences, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | - Steven A Johnsen
- ²Department of Tumor Biology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
105
|
Blevins T, Pontvianne F, Cocklin R, Podicheti R, Chandrasekhara C, Yerneni S, Braun C, Lee B, Rusch D, Mockaitis K, Tang H, Pikaard CS. A two-step process for epigenetic inheritance in Arabidopsis. Mol Cell 2014; 54:30-42. [PMID: 24657166 DOI: 10.1016/j.molcel.2014.02.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/08/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
In Arabidopsis, multisubunit RNA polymerases IV and V orchestrate RNA-directed DNA methylation (RdDM) and transcriptional silencing, but what identifies the loci to be silenced is unclear. We show that heritable silent locus identity at a specific subset of RdDM targets requires HISTONE DEACETYLASE 6 (HDA6) acting upstream of Pol IV recruitment and siRNA biogenesis. At these loci, epigenetic memory conferring silent locus identity is erased in hda6 mutants such that restoration of HDA6 activity cannot restore siRNA biogenesis or silencing. Silent locus identity is similarly lost in mutants for the cytosine maintenance methyltransferase, MET1. By contrast, pol IV or pol V mutants disrupt silencing without erasing silent locus identity, allowing restoration of Pol IV or Pol V function to restore silencing. Collectively, these observations indicate that silent locus specification and silencing are separable steps that together account for epigenetic inheritance of the silenced state.
Collapse
Affiliation(s)
- Todd Blevins
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA; Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Frédéric Pontvianne
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Ross Cocklin
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA; School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Chinmayi Chandrasekhara
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Satwica Yerneni
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Chris Braun
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Brandon Lee
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Doug Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Keithanne Mockaitis
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA; Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Haixu Tang
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA; School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Craig S Pikaard
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA; Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
106
|
Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:627-43. [PMID: 24631868 DOI: 10.1016/j.bbagrm.2014.03.001] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 03/04/2014] [Indexed: 01/10/2023]
Abstract
A major mechanism regulating the accessibility and function of eukaryotic genomes are the covalent modifications to DNA and histone proteins that dependably package our genetic information inside the nucleus of every cell. Formally postulated over a decade ago, it is becoming increasingly clear that post-translational modifications (PTMs) on histones act singly and in combination to form a language or 'code' that is read by specialized proteins to facilitate downstream functions in chromatin. Underappreciated at the time was the level of complexity harbored both within histone PTMs and their combinations, as well as within the proteins that read and interpret the language. In addition to histone PTMs, newly-identified DNA modifications that can recruit specific effector proteins have raised further awareness that histone PTMs operate within a broader language of epigenetic modifications to orchestrate the dynamic functions associated with chromatin. Here, we highlight key recent advances in our understanding of the epigenetic language encompassing histone and DNA modifications and foreshadow challenges that lie ahead as we continue our quest to decipher the fundamental mechanisms of chromatin regulation. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Scott B Rothbart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian D Strahl
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
107
|
Billon P, Côté J. Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:290-302. [PMID: 24459731 DOI: 10.1016/j.bbagrm.2011.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone variant H2A.Z is essential in higher eukaryotes and has different functions in the cell. Several studies indicate that H2A.Z is found at specific loci in the genome such as regulatory-gene regions, where it poises genes for transcription. Itsdeposition creates chromatin regions with particular structural characteristics which could favor rapid transcription activation. This review focuses on the highly regulated mechanism of H2A.Z deposition in chromatin which is essential for genome integrity. Chaperones escort H2A.Z to large ATP-dependent chromatin remodeling enzymes which are responsible for its deposition/eviction. Over the last ten years, biochemical, genetic and genomic studies helped us understand the precise role of these complexes in this process. It hasbeen suggested that a cooperation occurs between histone acetyltransferase and chromatin remodeling activities to incorporate H2A.Z in chromatin. Its regulated deposition near centromeres and telomeres also shows its implication in chromosomal structure integrity and parallels a role in DNA damage response. Thedynamics of H2A.Z deposition/eviction at specific loci was shown to be critical for genome expression andmaintenance, thus cell fate. Altogether, recent findings reassert the importance of the regulated depositionof this histone variant. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
108
|
Amin AD, Vishnoi N, Prochasson P. A global requirement for the HIR complex in the assembly of chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:264-276. [PMID: 24459729 DOI: 10.1016/j.bbagrm.2011.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Due to its extensive length, DNA is packaged into a protective chromatin structure known as the nucleosome. In order to carry out various cellular functions, nucleosomes must be disassembled, allowing access to the underlying DNA, and subsequently reassembled on completion of these processes. The assembly and disassembly of nucleosomes is dependent on the function of histone modifiers, chromatin remodelers and histone chaperones. In this review, we discuss the roles of an evolutionarily conserved histone chaperone known as the HIR/HIRA complex. In S. cerevisiae, the HIR complex is made up of the proteins Hir1, Hir2, Hir3 and Hpc2, which collectively act in transcriptional regulation, elongation, gene silencing, cellular senescence and even aging. This review presents an overview of the role of the HIR complex, in yeast as well as other organisms, in each of these processes, in order to give a better understanding of how nucleosome assembly is imperative for cellular homeostasis and genomic integrity. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
109
|
Histone variants and chromatin assembly in plant abiotic stress responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:343-348. [PMID: 24459736 DOI: 10.1016/j.bbagrm.2011.07.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genome organization into nucleosomes and higher-order chromatin structures has profound implications for the regulation of gene expression, DNA replication and repair. The structure of chromatin can be remodeled by several mechanisms; among others, nucleosome assembly/disassembly and replacement of canonical histones with histone variants constitute important ones. In this review, we provide a brief description on the current knowledge about histone chaperones involved in nucleosome assembly/disassembly and histone variants in Arabidopsis thaliana. We discuss recent advances in revealing crucial functions of histone chaperones, nucleosome assembly/disassembly and histone variants in plant response to abiotic stresses. It appears that chromatin structure remodeling may provide a flexible, global and stable means for the regulation of gene transcription to help plants more effectively cope with environmental stresses. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.
Collapse
|
110
|
North JA, Šimon M, Ferdinand MB, Shoffner MA, Picking JW, Howard CJ, Mooney AM, van Noort J, Poirier MG, Ottesen JJ. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure. Nucleic Acids Res 2014; 42:4922-33. [PMID: 24561803 PMCID: PMC4005658 DOI: 10.1093/nar/gku150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nucleosomes contain ∼146 bp of DNA wrapped around a histone protein octamer that controls DNA accessibility to transcription and repair complexes. Posttranslational modification (PTM) of histone proteins regulates nucleosome function. To date, only modest changes in nucleosome structure have been directly attributed to histone PTMs. Histone residue H3(T118) is located near the nucleosome dyad and can be phosphorylated. This PTM destabilizes nucleosomes and is implicated in the regulation of transcription and repair. Here, we report gel electrophoretic mobility, sucrose gradient sedimentation, thermal disassembly, micrococcal nuclease digestion and atomic force microscopy measurements of two DNA–histone complexes that are structurally distinct from nucleosomes. We find that H3(T118ph) facilitates the formation of a nucleosome duplex with two DNA molecules wrapped around two histone octamers, and an altosome complex that contains one DNA molecule wrapped around two histone octamers. The nucleosome duplex complex forms within short ∼150 bp DNA molecules, whereas altosomes require at least ∼250 bp of DNA and form repeatedly along 3000 bp DNA molecules. These results are the first report of a histone PTM significantly altering the nucleosome structure.
Collapse
Affiliation(s)
- Justin A North
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA and Huygens-Kamerlingh Onnes Laboratory, Leiden University, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Teichert I, Nowrousian M, Pöggeler S, Kück U. The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development. ADVANCES IN GENETICS 2014; 87:199-244. [PMID: 25311923 DOI: 10.1016/b978-0-12-800149-3.00004-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous fungi are excellent experimental systems due to their short life cycles as well as easy and safe manipulation in the laboratory. They form three-dimensional structures with numerous different cell types and have a long tradition as genetic model organisms used to unravel basic mechanisms underlying eukaryotic cell differentiation. The filamentous ascomycete Sordaria macrospora is a model system for sexual fruiting body (perithecia) formation. S. macrospora is homothallic, i.e., self-fertile, easily genetically tractable, and well suited for large-scale genomics, transcriptomics, and proteomics studies. Specific features of its life cycle and the availability of a developmental mutant library make it an excellent system for studying cellular differentiation at the molecular level. In this review, we focus on recent developments in identifying gene and protein regulatory networks governing perithecia formation. A number of tools have been developed to genetically analyze developmental mutants and dissect transcriptional profiles at different developmental stages. Protein interaction studies allowed us to identify a highly conserved eukaryotic multisubunit protein complex, the striatin-interacting phosphatase and kinase complex and its role in sexual development. We have further identified a number of proteins involved in chromatin remodeling and transcriptional regulation of fruiting body development. Furthermore, we review the involvement of metabolic processes from both primary and secondary metabolism, and the role of nutrient recycling by autophagy in perithecia formation. Our research has uncovered numerous players regulating multicellular development in S. macrospora. Future research will focus on mechanistically understanding how these players are orchestrated in this fungal model system.
Collapse
Affiliation(s)
- Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Stefanie Pöggeler
- Abteilung Genetik eukaryotischer Mikroorganismen, Institut für Mikrobiologie und Genetik, Georg-August Universität Göttingen, Göttingen, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
112
|
Pascoalino B, Dindar G, Vieira-da-Rocha JP, Machado CR, Janzen CJ, Schenkman S. Characterization of two different Asf1 histone chaperones with distinct cellular localizations and functions in Trypanosoma brucei. Nucleic Acids Res 2013; 42:2906-18. [PMID: 24322299 PMCID: PMC3950673 DOI: 10.1093/nar/gkt1267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The anti-silencing function protein 1 (Asf1) is a chaperone that forms a complex with histones H3 and H4 facilitating dimer deposition and removal from chromatin. Most eukaryotes possess two different Asf1 chaperones but their specific functions are still unknown. Trypanosomes, a group of early-diverged eukaryotes, also have two, but more divergent Asf1 paralogs than Asf1 of higher eukaryotes. To unravel possible different functions, we characterized the two Asf1 proteins in Trypanosoma brucei. Asf1A is mainly localized in the cytosol but translocates to the nucleus in S phase. In contrast, Asf1B is predominantly localized in the nucleus, as described for other organisms. Cytosolic Asf1 knockdown results in accumulation of cells in early S phase of the cell cycle, whereas nuclear Asf1 knockdown arrests cells in S/G2 phase. Overexpression of cytosolic Asf1 increases the levels of histone H3 and H4 acetylation. In contrast to cytosolic Asf1, overexpression of nuclear Asf1 causes less pronounced growth defects in parasites exposed to genotoxic agents, prompting a function in chromatin remodeling in response to DNA damage. Only the cytosolic Asf1 interacts with recombinant H3/H4 dimers in vitro. These findings denote the early appearance in evolution of distinguishable functions for the two Asf1 chaperons in trypanosomes.
Collapse
Affiliation(s)
- Bruno Pascoalino
- Depto. de Microbiologia, Imunologia e Parasitologia, UNIFESP, Rua Pedro de Toledo 669 L6A, São Paulo, São Paulo 04039-032, Brazil, Lehrstuhl für Zell- und Entwicklungsbiologie, Theodor-Boveri-Institut, Biozentrum der Universität Würzburg, Am Hubland, 97074 Würzburg, Germany and Depto. de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP 4861, 30161-970, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
113
|
Iglesias J, Trigueros M, Rojas-Triana M, Fernández M, Albar JP, Bustos R, Paz-Ares J, Rubio V. Proteomics identifies ubiquitin–proteasome targets and new roles for chromatin-remodeling in the Arabidopsis response to phosphate starvation. J Proteomics 2013; 94:1-22. [DOI: 10.1016/j.jprot.2013.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 11/29/2022]
|
114
|
Horikoshi N, Sato K, Shimada K, Arimura Y, Osakabe A, Tachiwana H, Hayashi-Takanaka Y, Iwasaki W, Kagawa W, Harata M, Kimura H, Kurumizaka H. Structural polymorphism in the L1 loop regions of human H2A.Z.1 and H2A.Z.2. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2431-9. [PMID: 24311584 PMCID: PMC3852653 DOI: 10.1107/s090744491302252x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/10/2013] [Indexed: 04/26/2023]
Abstract
The histone H2A.Z variant is widely conserved among eukaryotes. Two isoforms, H2A.Z.1 and H2A.Z.2, have been identified in vertebrates and may have distinct functions in cell growth and gene expression. However, no structural differences between H2A.Z.1 and H2A.Z.2 have been reported. In the present study, the crystal structures of nucleosomes containing human H2A.Z.1 and H2A.Z.2 were determined. The structures of the L1 loop regions were found to clearly differ between H2A.Z.1 and H2A.Z.2, although their amino-acid sequences in this region are identical. This structural polymorphism may have been induced by a substitution that evolutionally occurred at the position of amino acid 38 and by the flexible nature of the L1 loops of H2A.Z.1 and H2A.Z.2. It was also found that in living cells nucleosomal H2A.Z.1 exchanges more rapidly than H2A.Z.2. A mutational analysis revealed that the amino-acid difference at position 38 is at least partially responsible for the distinctive dynamics of H2A.Z.1 and H2A.Z.2. These findings provide important new information for understanding the differences in the regulation and functions of H2A.Z.1 and H2A.Z.2 in cells.
Collapse
Affiliation(s)
- Naoki Horikoshi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Keisuke Shimada
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yasuhiro Arimura
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Akihisa Osakabe
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroaki Tachiwana
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yoko Hayashi-Takanaka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Wakana Iwasaki
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Wataru Kagawa
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Program in Chemistry and Life Science, Department of Interdisciplinary Science and Engineering, School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino-shi, Tokyo 191-8506, Japan
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiya-machi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
115
|
Adam S, Polo SE, Almouzni G. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell 2013; 155:94-106. [PMID: 24074863 DOI: 10.1016/j.cell.2013.08.029] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/17/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
Understanding how to recover fully functional and transcriptionally active chromatin when its integrity has been challenged by genotoxic stress is a critical issue. Here, by investigating how chromatin dynamics regulate transcriptional activity in response to DNA damage in human cells, we identify a pathway involving the histone chaperone histone regulator A (HIRA) to promote transcription restart after UVC damage. Our mechanistic studies reveal that HIRA accumulates at sites of UVC irradiation upon detection of DNA damage prior to repair and deposits newly synthesized H3.3 histones. This local action of HIRA depends on ubiquitylation events associated with damage recognition. Furthermore, we demonstrate that the early and transient function of HIRA in response to DNA damage primes chromatin for later reactivation of transcription. We propose that HIRA-dependent histone deposition serves as a chromatin bookmarking system to facilitate transcription recovery after genotoxic stress.
Collapse
Affiliation(s)
- Salomé Adam
- Chromatin Dynamics, Institut Curie Research Centre, 75248 Paris Cedex 5, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 218, 75248 Paris Cedex 5, France
| | | | | |
Collapse
|
116
|
Dinant C, Ampatziadis-Michailidis G, Lans H, Tresini M, Lagarou A, Grosbart M, Theil AF, van Cappellen WA, Kimura H, Bartek J, Fousteri M, Houtsmuller AB, Vermeulen W, Marteijn JA. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage. Mol Cell 2013; 51:469-79. [PMID: 23973375 DOI: 10.1016/j.molcel.2013.08.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/07/2013] [Accepted: 07/17/2013] [Indexed: 02/05/2023]
Abstract
Chromatin remodeling is tightly linked to all DNA-transacting activities. To study chromatin remodeling during DNA repair, we established quantitative fluorescence imaging methods to measure the exchange of histones in chromatin in living cells. We show that particularly H2A and H2B are evicted and replaced at an accelerated pace at sites of UV-induced DNA damage. This accelerated exchange of H2A/H2B is facilitated by SPT16, one of the two subunits of the histone chaperone FACT (facilitates chromatin transcription) but largely independent of its partner SSRP1. Interestingly, SPT16 is targeted to sites of UV light-induced DNA damage-arrested transcription and is required for efficient restart of RNA synthesis upon damage removal. Together, our data uncover an important role for chromatin dynamics at the crossroads of transcription and the UV-induced DNA damage response.
Collapse
Affiliation(s)
- Christoffel Dinant
- Department of Genetics, Erasmus Medical Centre, Rotterdam 3015 GE, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
An extreme case of chromatin remodelling is the genome-wide exchange of histones with basic non-histone DNA-packaging proteins that occurs in post-meiotic male germ cells. The scale of this genome reorganization is such that chromatin needs to undergo a prior "preparation" for a facilitated action of the factors involved. Stage-specific incorporation of specialized histone variants, affecting large domains of chromatin, combined with histone post-translational modifications accompany the successive steps of the male genome reorganization. Recently, it has been shown that a testis-specific H2B variant, TH2B, one of the first identified core histone variants, replaces H2B at the time of cells' commitment into meiotic divisions and contributes to the process of global histone removal. These investigations also revealed a previously unknown histone dosage compensation mechanism that also ensures a functional interconnection between histone variant expression and histone post-translational modifications and will be further discussed here.
Collapse
Affiliation(s)
- Jérôme Govin
- CEA, iRTSV; Biologie à Grande Echelle; Grenoble, France; INSERM, U1038; Grenoble, France; Université Grenoble-Alpes; Grenoble, France; INSERM, U823; Institut Albert Bonniot; Grenoble, France
| | - Saadi Khochbin
- Université Grenoble-Alpes; Grenoble, France; INSERM, U823; Institut Albert Bonniot; Grenoble, France
| |
Collapse
|
118
|
Goldstein M, Derheimer FA, Tait-Mulder J, Kastan MB. Nucleolin mediates nucleosome disruption critical for DNA double-strand break repair. Proc Natl Acad Sci U S A 2013; 110:16874-9. [PMID: 24082117 PMCID: PMC3801049 DOI: 10.1073/pnas.1306160110] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recruitment of DNA repair factors and modulation of chromatin structure at sites of DNA double-strand breaks (DSBs) is a complex and highly orchestrated process. We developed a system that can induce DSBs rapidly at defined endogenous sites in mammalian genomes and enables direct assessment of repair and monitoring of protein recruitment, egress, and modification at DSBs. The tight regulation of the system also permits assessments of relative kinetics and dependencies of events associated with cellular responses to DNA breakage. Distinct advantages of this system over focus formation/disappearance assays for assessing DSB repair are demonstrated. Using ChIP, we found that nucleosomes are partially disassembled around DSBs during nonhomologous end-joining repair in G1-arrested mammalian cells, characterized by a transient loss of the H2A/H2B histone dimer. Nucleolin, a protein with histone chaperone activity, interacts with RAD50 via its arginine-glycine rich domain and is recruited to DSBs rapidly in an MRE11-NBS1-RAD50 complex-dependent manner. Down-regulation of nucleolin abrogates the nucleosome disruption, the recruitment of repair factors, and the repair of the DSB, demonstrating the functional importance of nucleosome disruption in DSB repair and identifying a chromatin-remodeling protein required for the process. Interestingly, the nucleosome disruption that occurs during DSB repair in cycling cells differs in that both H2A/H2B and H3/H4 histone dimers are removed. This complete nucleosome disruption is also dependent on nucleolin and is required for recruitment of replication protein A to DSBs, a marker of DSB processing that is a requisite for homologous recombination repair.
Collapse
Affiliation(s)
- Michael Goldstein
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105; and
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| | | | | | - Michael B. Kastan
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105; and
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
119
|
Moshkin YM, Doyen CM, Kan TW, Chalkley GE, Sap K, Bezstarosti K, Demmers JA, Ozgur Z, van Ijcken WFJ, Verrijzer CP. Histone chaperone NAP1 mediates sister chromatid resolution by counteracting protein phosphatase 2A. PLoS Genet 2013; 9:e1003719. [PMID: 24086141 PMCID: PMC3784504 DOI: 10.1371/journal.pgen.1003719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 06/26/2013] [Indexed: 12/27/2022] Open
Abstract
Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci. Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis.
Collapse
Affiliation(s)
- Yuri M. Moshkin
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cecile M. Doyen
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tsung-Wai Kan
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gillian E. Chalkley
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karen Sap
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A. Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Zeliha Ozgur
- Genomics Centre, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - C. Peter Verrijzer
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
120
|
Maher RL, Prasad A, Rizvanova O, Wallace SS, Pederson DS. Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes. DNA Repair (Amst) 2013; 12:964-71. [PMID: 24051050 DOI: 10.1016/j.dnarep.2013.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 11/27/2022]
Abstract
Reactive oxygen species generate ~20,000 oxidative lesions in the DNA of every cell, every day. Most of these lesions are located within nucleosomes, which package DNA in chromatin and impede base excision repair (BER). We demonstrated previously that periodic, spontaneous partial unwrapping of DNA from the underlying histone octamer enables BER enzymes to bind to oxidative lesions that would otherwise be sterically inaccessible. In the present study, we asked if these periodic DNA unwrapping events are frequent enough to account for the estimated rates of BER in vivo. We measured rates of excision of oxidative lesions from sites in nucleosomes that are accessible only during unwrapping episodes. Using reaction conditions appropriate for presteady-state kinetic analyses, we derived lesion exposure rates for both 601 and 5S rDNA-based nucleosomes. Although DNA unwrapping-mediated exposure of a lesion ~16NT from the nucleosome edge occurred ~7-8 times per minute, exposure rates fell dramatically for lesions located 10 or more NT further in from the nucleosome edge. The rates likely are too low to account for observed rates of BER in cells. Thus, chromatin remodeling, either BER-specific or that associated with transcription, replication, or other DNA repair processes, probably contributes to efficient BER in vivo.
Collapse
Affiliation(s)
- Robyn L Maher
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
121
|
Casein kinase 2 associates with the yeast chromatin reassembly factor Spt2/Sin1 to regulate its function in the repression of spurious transcription. Mol Cell Biol 2013; 33:4198-211. [PMID: 23979598 DOI: 10.1128/mcb.00525-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spt2/Sin1 is a DNA binding protein with HMG-like domains. It plays a role in chromatin modulations associated with transcription elongation in Saccharomyces cerevisiae. Spt2 maintains the nucleosome level in coding regions and is important for the inhibition of spurious transcription in yeast. In this work, we undertook a biochemical approach to identify Spt2-interacting partners. Interestingly, casein kinase 2 (CK2) interacts with Spt2 and phosphorylates it in vitro as well as in vivo on two small regions, region I (RI) (amino acids 226 to 230) and RII (amino acids 277 to 281), located in its essential C-terminal domain. Mutation of the phosphorylation sites in RI and RII to acidic residues, thereby mimicking CK2 phosphorylation, leads to the inhibition of Spt2 function in the repression of spurious transcription and to a loss of its recruitment to coding regions. Inversely, depleting cells of CK2 activity leads to an increased Spt2 association with genes. We further show that Spt2 physically interacts with the essential histone chaperone Spt6 and that this association is inhibited in vitro and in vivo by CK2-dependent phosphorylation. Taken together, our data suggest that CK2 regulates the function of Spt2 by modulating its interaction with chromatin and the histone chaperone Spt6.
Collapse
|
122
|
Torigoe SE, Patel A, Khuong MT, Bowman GD, Kadonaga JT. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling. eLife 2013; 2:e00863. [PMID: 23986862 PMCID: PMC3748710 DOI: 10.7554/elife.00863] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/16/2013] [Indexed: 11/23/2022] Open
Abstract
Chromatin assembly involves the combined action of ATP-dependent motor proteins and histone chaperones. Because motor proteins in chromatin assembly also function as chromatin remodeling factors, we investigated the relationship between ATP-driven chromatin assembly and chromatin remodeling in the generation of periodic nucleosome arrays. We found that chromatin remodeling-defective Chd1 motor proteins are able to catalyze ATP-dependent chromatin assembly. The resulting nucleosomes are not, however, spaced in periodic arrays. Wild-type Chd1, but not chromatin remodeling-defective Chd1, can catalyze the conversion of randomly-distributed nucleosomes into periodic arrays. These results reveal a functional distinction between ATP-dependent nucleosome assembly and chromatin remodeling, and suggest a model for chromatin assembly in which randomly-distributed nucleosomes are formed by the nucleosome assembly function of Chd1, and then regularly-spaced nucleosome arrays are generated by the chromatin remodeling activity of Chd1. These findings uncover an unforeseen level of specificity in the role of motor proteins in chromatin assembly. DOI:http://dx.doi.org/10.7554/eLife.00863.001 In many cells, genomic DNA is wrapped around proteins known as histones to produce particles called nucleosomes. These particles then join together—like beads on a string—to form a highly periodic structure called chromatin. In the nucleus, chromatin is further folded and condensed into chromosomes. However, many important processes, including the replication of DNA and the transcription of genes, require access to the DNA. The cell must therefore be able to disassemble chromatin and remove the histones, and then, once these processes are complete, to reassemble the chromatin. Enzymes known as chromatin assembly factors are responsible for the disassembly and reassembly of chromatin. There are two main types of chromatin assembly factors in eukaryotic cells (i.e., cells with nuclei)—histone chaperones and motor proteins. The histone chaperones escort histones from the cytoplasm, where they are made, to the nucleus. The motor proteins—using energy supplied by ATP molecules—then catalyze the formation of nucleosomes. This involves two activities: the motor proteins assemble nucleosomes by helping the DNA to wrap around the histones, and they also remodel chromatin by altering the positions of nucleosomes along the DNA to ensure that they are periodic—that is, regularly spaced. A conserved motor protein called Chd1 performs chromatin assembly and remodeling in eukaryotic cells. Chd1 works in conjunction with histone chaperones—both are needed for chromatin assembly, and so are DNA, histones and ATP. However, whether or not chromatin assembly and chromatin remodeling by Chd1 are identical or distinct processes is not well understood. Torigoe et al. have now discovered a mutant Chd1 protein that has nucleosome assembly activity (i.e., it can make nucleosomes) but cannot remodel chromatin (i.e., it is unable to move nucleosomes), and thus have demonstrated that these two processes are functionally distinct. Torigoe et al. additionally have found that the mutant Chd1 proteins produce randomly distributed nucleosomes rather than the periodic arrays normally found in chromatin. Further analysis then revealed that the wild-type Chd1 protein, which can remodel chromatin, is able to convert randomly distributed nucleosomes into periodic arrays. These findings have led to a new model for chromatin assembly in which Chd1 initially generates randomly distributed nucleosomes (via its assembly function), and then converts them into periodic arrays of nucleosomes (via its remodeling function). Together, these studies shed light on the mechanisms by which chromatin is created and manipulated in cells. DOI:http://dx.doi.org/10.7554/eLife.00863.002
Collapse
Affiliation(s)
- Sharon E Torigoe
- Section of Molecular Biology , University of California, San Diego , La Jolla , United States
| | | | | | | | | |
Collapse
|
123
|
Torigoe SE, Patel A, Khuong MT, Bowman GD, Kadonaga JT. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling. eLife 2013. [PMID: 23986862 DOI: 10.7554/elife.00863.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromatin assembly involves the combined action of ATP-dependent motor proteins and histone chaperones. Because motor proteins in chromatin assembly also function as chromatin remodeling factors, we investigated the relationship between ATP-driven chromatin assembly and chromatin remodeling in the generation of periodic nucleosome arrays. We found that chromatin remodeling-defective Chd1 motor proteins are able to catalyze ATP-dependent chromatin assembly. The resulting nucleosomes are not, however, spaced in periodic arrays. Wild-type Chd1, but not chromatin remodeling-defective Chd1, can catalyze the conversion of randomly-distributed nucleosomes into periodic arrays. These results reveal a functional distinction between ATP-dependent nucleosome assembly and chromatin remodeling, and suggest a model for chromatin assembly in which randomly-distributed nucleosomes are formed by the nucleosome assembly function of Chd1, and then regularly-spaced nucleosome arrays are generated by the chromatin remodeling activity of Chd1. These findings uncover an unforeseen level of specificity in the role of motor proteins in chromatin assembly. DOI:http://dx.doi.org/10.7554/eLife.00863.001.
Collapse
Affiliation(s)
- Sharon E Torigoe
- Section of Molecular Biology , University of California, San Diego , La Jolla , United States
| | | | | | | | | |
Collapse
|
124
|
Gao S, Xiong J, Zhang C, Berquist BR, Yang R, Zhao M, Molascon AJ, Kwiatkowski SY, Yuan D, Qin Z, Wen J, Kapler GM, Andrews PC, Miao W, Liu Y. Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 2013; 27:1662-79. [PMID: 23884606 DOI: 10.1101/gad.218966.113] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Replication of nuclear DNA occurs in the context of chromatin and is influenced by histone modifications. In the ciliate Tetrahymena thermophila, we identified TXR1, encoding a histone methyltransferase. TXR1 deletion resulted in severe DNA replication stress, manifested by the accumulation of ssDNA, production of aberrant replication intermediates, and activation of robust DNA damage responses. Paired-end Illumina sequencing of ssDNA revealed intergenic regions, including replication origins, as hot spots for replication stress in ΔTXR1 cells. ΔTXR1 cells showed a deficiency in histone H3 Lys 27 monomethylation (H3K27me1), while ΔEZL2 cells, deleting a Drosophila E(z) homolog, were deficient in H3K27 di- and trimethylation, with no detectable replication stress. A point mutation in histone H3 at Lys 27 (H3 K27Q) mirrored the phenotype of ΔTXR1, corroborating H3K27me1 as a key player in DNA replication. Additionally, we demonstrated interactions between TXR1 and proliferating cell nuclear antigen (PCNA). These findings support a conserved pathway through which H3K27me1 facilitates replication elongation.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
A nucleosomal region important for ensuring proper interactions between the transcription elongation factor Spt16 and transcribed genes in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2013; 3:929-40. [PMID: 23576521 PMCID: PMC3689804 DOI: 10.1534/g3.113.005926] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The highly conserved FACT (FAcilitates Chromatin Transactions) histone chaperone assists in the transcription elongation process first by facilitating the removal of histones in front of transcribing RNA polymerase II (Pol II) and then by contributing to nucleosome reassembly in the wake of Pol II passage. Whereas it is well established that FACT localizes across actively transcribed genes, the mechanisms that regulate FACT recruitment to and disengagement from chromatin during transcription still remain to be elucidated. Using the Saccharomyces cerevisiae model system, we previously showed that a histone H3 mutant—H3-L61W—greatly perturbs interactions between the yeast FACT (yFACT) complex and chromatin during transcription, resulting in a pronounced shift in yFACT occupancy toward the 3′ ends of transcribed genes. In the present study we report that two histone H4 mutants—H4-R36A and H4-K31E—alter the association pattern of the yFACT subunit Spt16 across transcribed genes in a fashion similar to that seen for H3-L61W. Interestingly, H4-R36, H4-K31, and H3-L61 are in close proximity to each other on the side of the nucleosome. We also provide evidence that the H4-R36A and H3-L61W mutants impair proper Spt16−chromatin interactions by perturbing a common process. Collectively, our results suggest that a nucleosomal region encompassing the H4-R36, H4-K31, and H3-L61 residues plays an important role in ensuring proper association of yFACT across transcribed genes.
Collapse
|
126
|
Histone acetyl transferase 1 is essential for mammalian development, genome stability, and the processing of newly synthesized histones H3 and H4. PLoS Genet 2013; 9:e1003518. [PMID: 23754951 PMCID: PMC3675013 DOI: 10.1371/journal.pgen.1003518] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/04/2013] [Indexed: 11/24/2022] Open
Abstract
Histone acetyltransferase 1 is an evolutionarily conserved type B histone acetyltransferase that is thought to be responsible for the diacetylation of newly synthesized histone H4 on lysines 5 and 12 during chromatin assembly. To understand the function of this enzyme in a complex organism, we have constructed a conditional mouse knockout model of Hat1. Murine Hat1 is essential for viability, as homozygous deletion of Hat1 results in neonatal lethality. The lungs of embryos and pups genetically deficient in Hat1 were much less mature upon histological evaluation. The neonatal lethality is due to severe defects in lung development that result in less aeration and respiratory distress. Many of the Hat1−/− neonates also display significant craniofacial defects with abnormalities in the bones of the skull and jaw. Hat1−/− mouse embryonic fibroblasts (MEFs) are defective in cell proliferation and are sensitive to DNA damaging agents. In addition, the Hat1−/− MEFs display a marked increase in genome instability. Analysis of histone dynamics at sites of replication-coupled chromatin assembly demonstrates that Hat1 is not only responsible for the acetylation of newly synthesized histone H4 but is also required to maintain the acetylation of histone H3 on lysines 9, 18, and 27 during replication-coupled chromatin assembly. The packaging of genomic DNA during replication is a highly orchestrated process. An important aspect of chromatin assembly is the processing of newly synthesized histones prior to their incorporation into chromatin. The transient acetylation of histone H3 and H4 NH2-terminal tails is a hallmark of this processing with newly synthesized molecules of histone H4 being predominantly diacetylated. This diacetylation occurs specifically on lysine residues 5 and 12 and this precise pattern is widely conserved throughout eukaryotic evolution. The acetylation of newly synthesized histones is catalyzed by type B histone acetyltransferases. Hat1 is the founding member of this class of enzymes and has been proposed to be responsible for the diacetylation of newly synthesized histone H4. Here we describe the development of a mouse knockout model of Hat1. The absence of Hat1 results in neonatal lethality due to developmental defects in the lung. Mouse embryonic fibroblasts derived from Hat1−/− mice are sensitive to DNA damaging agents and display a high level of genome instability. Biochemical analyses provide definitive evidence that Hat1 is the sole enzyme responsible for the acetylation of newly synthesized histone H4. Surprisingly, Hat1 is also necessary for the normal processing of newly synthesized histone H3.
Collapse
|
127
|
Mocquard-Bucher E, Galvani A, Thiriet C. Histone H4 acetylation links nucleosome turnover and nucleosome assembly: lessons from the slime moldPhysarum polycephalum. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.848241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
128
|
Terweij M, van Leeuwen F. Histone exchange: sculpting the epigenome. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.838193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
129
|
Lario LD, Ramirez-Parra E, Gutierrez C, Spampinato CP, Casati P. ANTI-SILENCING FUNCTION1 proteins are involved in ultraviolet-induced DNA damage repair and are cell cycle regulated by E2F transcription factors in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1164-77. [PMID: 23596192 PMCID: PMC3668047 DOI: 10.1104/pp.112.212837] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/16/2013] [Indexed: 05/19/2023]
Abstract
ANTI-SILENCING FUNCTION1 (ASF1) is a key histone H3/H4 chaperone that participates in a variety of DNA- and chromatin-related processes, including DNA repair, where chromatin assembly and disassembly are of primary relevance. Information concerning the role of ASF1 proteins in the post-ultraviolet (UV) response in higher plants is currently limited. In Arabidopsis (Arabidopsis thaliana), an initial analysis of in vivo localization of ASF1A and ASF1B indicates that both proteins are mainly expressed in proliferative tissues. In silico promoter analysis identified ASF1A and ASF1B as potential targets of E2F corresponds to Adenovirus E2 Binding Factor. [corrected]. These observations were experimentally validated, both in vitro, by electrophoretic mobility shift assays, and in vivo, by chromatin immunoprecipitation assays and expression analysis using transgenic plants with altered levels of different E2F transcription factors. These data suggest that ASF1A and ASF1B are regulated during cell cycle progression through E2F transcription factors. In addition, we found that ASF1A and ASF1B are associated with the UV-B-induced DNA damage response in Arabidopsis. Transcript levels of ASF1A and ASF1B were increased following UV-B treatment. Consistent with a potential role in UV-B response, RNA interference-silenced plants of both genes showed increased sensitivity to UV-B compared with wild-type plants. Finally, by coimmunoprecipitation analysis, we found that ASF1 physically interacts with amino-terminal acetylated histones H3 and H4 and with acetyltransferases of the Histone Acetyl Transferase subfamily, which are known to be involved in cell cycle control and DNA repair, among other functions. Together, we provide evidence that ASF1A and ASF1B are regulated by cell cycle progression and are involved in DNA repair after UV-B irradiation.
Collapse
|
130
|
Hu J, Wang Y. p53 and the PWWP domain containing effector proteins in chromatin damage repair. CELL & DEVELOPMENTAL BIOLOGY 2013; 2:112. [PMID: 25264544 PMCID: PMC4175562 DOI: 10.4172/2168-9296.1000112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In eukaryotic cells, DNA damage repair occurs on a template DNA that is organized with histones to form nucleosomes and chromatin structures. As such, chromatin plays an important role in DNA damage repair. In this review, we will use "chromatin damage repair" as a framework and highlight recent progress in understanding the role of chromatin, chromatin modifiers, chromatin binding effectors (e.g., the PWWP domain proteins), and the p53 tumor suppressor. We view chromatin as an active participant during DNA damage repair.
Collapse
Affiliation(s)
- Jing Hu
- Graduate Program in Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802 USA
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802 USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802 USA
| | - Yanming Wang
- Graduate Program in Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802 USA
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802 USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802 USA
| |
Collapse
|
131
|
Abstract
The historical origins and current interpretation of the molecular chaperone concept are presented, with the emphasis on the distinction between folding chaperones and assembly chaperones. Definitions of some basic terms in this field are offered and misconceptions pointed out. Two examples of assembly chaperone are discussed in more detail: the role of numerous histone chaperones in fundamental nuclear processes and the co-operation of assembly chaperones with folding chaperones in the production of the world's most important enzyme.
Collapse
Affiliation(s)
- R John Ellis
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
132
|
Wang HC, Wu ML, Ko TP, Wang AHJ. Neisseria conserved hypothetical protein DMP12 is a DNA mimic that binds to histone-like HU protein. Nucleic Acids Res 2013; 41:5127-38. [PMID: 23531546 PMCID: PMC3643605 DOI: 10.1093/nar/gkt201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 12/16/2022] Open
Abstract
DNA mimic proteins are unique factors that control the DNA-binding activity of target proteins by directly occupying their DNA-binding sites. To date, only a few DNA mimic proteins have been reported and their functions analyzed. Here, we present evidence that the Neisseria conserved hypothetical protein DMP12 should be added to this list. Our gel filtration and analytical ultracentrifugation results showed that the DMP12 monomer interacts with the dimeric form of the bacterial histone-like protein HU. Subsequent structural analysis of DMP12 showed that the shape and electrostatic surface of the DMP12 monomer are similar to those of the straight portion of the bent HU-bound DNA and complementary to those of HU protein dimer. DMP12 also protects HU protein from limited digestion by trypsin and enhances the growth rate Escherichia coli. Functionally, HU proteins participate in bacterial nucleoid formation, as well as recombination, gene regulation and DNA replication. The interaction between DMP12 and HU protein might, therefore, play important roles in these DNA-related mechanisms.
Collapse
Affiliation(s)
- Hao-Ching Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan, and Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Mao-Lun Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan, and Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan, and Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan, and Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
133
|
The histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis. EMBO J 2013; 32:1075-86. [PMID: 23503590 DOI: 10.1038/emboj.2013.54] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/13/2013] [Indexed: 12/15/2022] Open
Abstract
Histone chaperones affect chromatin structure and gene expression through interaction with histones and RNA polymerase II (PolII). Here, we report that the histone chaperone Spt6 counteracts H3K27me3, an epigenetic mark deposited by the Polycomb Repressive Complex 2 (PRC2) and associated with transcriptional repression. By regulating proper engagement and function of the H3K27 demethylase KDM6A (UTX), Spt6 effectively promotes H3K27 demethylation, muscle gene expression, and cell differentiation. ChIP-Seq experiments reveal an extensive genome-wide overlap of Spt6, PolII, and KDM6A at transcribed regions that are devoid of H3K27me3. Mammalian cells and zebrafish embryos with reduced Spt6 display increased H3K27me3 and diminished expression of the master regulator MyoD, resulting in myogenic differentiation defects. As a confirmation for an antagonistic relationship between Spt6 and H3K27me3, inhibition of PRC2 permits MyoD re-expression in myogenic cells with reduced Spt6. Our data indicate that, through cooperation with PolII and KDM6A, Spt6 orchestrates removal of H3K27me3, thus controlling developmental gene expression and cell differentiation.
Collapse
|
134
|
Osakabe A, Tachiwana H, Takaku M, Hori T, Obuse C, Kimura H, Fukagawa T, Kurumizaka H. Vertebrate Spt2 is a novel nucleolar histone chaperone that assists in ribosomal DNA transcription. J Cell Sci 2013; 126:1323-32. [PMID: 23378026 DOI: 10.1242/jcs.112623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, transcription occurs in the chromatin context with the assistance of histone-binding proteins, such as chromatin/nucleosome remodeling factors and histone chaperones. However, it is unclear how each remodeling factor or histone chaperone functions in transcription. Here, we identify a novel histone-binding protein, Spt2, in higher eukaryotes. Recombinant human Spt2 binds to histones and DNA, and promotes nucleosome assembly in vitro. Spt2 accumulates in nucleoli and interacts with RNA polymerase I in chicken DT40 cells, suggesting its involvement in ribosomal RNA transcription. Consistently, Spt2-deficient chicken DT40 cells are sensitive to RNA polymerase I inhibitors and exhibit decreased transcription activity, as shown by a transcription run-on assay. Domain analyses of Spt2 revealed that the C-terminal region, containing the region homologous to yeast Spt2, is responsible for histone binding, while the central region is essential for nucleolar localization and DNA binding. Based on these results, we conclude that vertebrate Spt2 is a novel histone chaperone with a separate DNA-binding domain that facilitates ribosomal DNA transcription through chromatin remodeling during transcription.
Collapse
Affiliation(s)
- Akihisa Osakabe
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Carvalho S, Raposo AC, Martins FB, Grosso AR, Sridhara SC, Rino J, Carmo-Fonseca M, de Almeida SF. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res 2013; 41:2881-93. [PMID: 23325844 PMCID: PMC3597667 DOI: 10.1093/nar/gks1472] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Histone H3 of nucleosomes positioned on active genes is trimethylated at Lys36 (H3K36me3) by the SETD2 (also termed KMT3A/SET2 or HYPB) methyltransferase. Previous studies in yeast indicated that H3K36me3 prevents spurious intragenic transcription initiation through recruitment of a histone deacetylase complex, a mechanism that is not conserved in mammals. Here, we report that downregulation of SETD2 in human cells leads to intragenic transcription initiation in at least 11% of active genes. Reduction of SETD2 prevents normal loading of the FACT (FAcilitates Chromatin Transcription) complex subunits SPT16 and SSRP1, and decreases nucleosome occupancy in active genes. Moreover, co-immunoprecipitation experiments suggest that SPT16 is recruited to active chromatin templates, which contain H3K36me3-modified nucleosomes. Our results further show that within minutes after transcriptional activation, there is a SETD2-dependent reduction in gene body occupancy of histone H2B, but not of histone H3, suggesting that SETD2 coordinates FACT-mediated exchange of histone H2B during transcription-coupled nucleosome displacement. After inhibition of transcription, we observe a SETD2-dependent recruitment of FACT and increased histone H2B occupancy. These data suggest that SETD2 activity modulates FACT recruitment and nucleosome dynamics, thereby repressing cryptic transcription initiation.
Collapse
Affiliation(s)
- Sílvia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Fujimoto M, Takaki E, Takii R, Tan K, Prakasam R, Hayashida N, Iemura SI, Natsume T, Nakai A. RPA Assists HSF1 Access to Nucleosomal DNA by Recruiting Histone Chaperone FACT. Mol Cell 2012; 48:182-94. [DOI: 10.1016/j.molcel.2012.07.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/22/2012] [Accepted: 07/24/2012] [Indexed: 01/10/2023]
|
137
|
Adam S, Polo SE. Chromatin dynamics during nucleotide excision repair: histones on the move. Int J Mol Sci 2012; 13:11895-11911. [PMID: 23109890 PMCID: PMC3472782 DOI: 10.3390/ijms130911895] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 12/16/2022] Open
Abstract
It has been a long-standing question how DNA damage repair proceeds in a nuclear environment where DNA is packaged into chromatin. Several decades of analysis combining in vitro and in vivo studies in various model organisms ranging from yeast to human have markedly increased our understanding of the mechanisms underlying chromatin disorganization upon damage detection and re-assembly after repair. Here, we review the methods that have been developed over the years to delineate chromatin alterations in response to DNA damage by focusing on the well-characterized Nucleotide Excision Repair (NER) pathway. We also highlight how these methods have provided key mechanistic insight into histone dynamics coupled to repair in mammals, raising new issues about the maintenance of chromatin integrity. In particular, we discuss how NER factors and central players in chromatin dynamics such as histone modifiers, nucleosome remodeling factors, and histone chaperones function to mobilize histones during repair.
Collapse
Affiliation(s)
- Salomé Adam
- Laboratory of Chromatin Dynamics, Curie Institute Research Centre, 75248 Paris Cedex 5, France; E-Mail:
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 218, 75248 Paris Cedex 5, France
| | - Sophie E. Polo
- Laboratory of Chromatin Dynamics, Curie Institute Research Centre, 75248 Paris Cedex 5, France; E-Mail:
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 218, 75248 Paris Cedex 5, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-1-5624-6721; Fax: +33-1-4633-3016
| |
Collapse
|
138
|
Alsford S, Horn D. Cell-cycle-regulated control of VSG expression site silencing by histones and histone chaperones ASF1A and CAF-1b in Trypanosoma brucei. Nucleic Acids Res 2012; 40:10150-60. [PMID: 22941664 PMCID: PMC3488249 DOI: 10.1093/nar/gks813] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antigenic variation in African trypanosomes involves monoallelic expression and reversible silencing of variant surface glycoprotein (VSG) genes found adjacent to telomeres in polycistronic expression sites (ESs). We assessed the impact on ES silencing of five candidate essential chromatin-associated factors that emerged from a genome-wide RNA interference viability screen. Using this approach, we demonstrate roles in VSG ES silencing for two histone chaperones. Defects in S-phase progression in cells depleted for histone H3, or either chaperone, highlight in particular the link between chromatin assembly and DNA replication control. S-phase checkpoint arrest was incomplete, however, allowing G2/M-specific VSG ES derepression following knockdown of histone H3. In striking contrast, knockdown of anti-silencing factor 1A (ASF1A) allowed for derepression at all cell cycle stages, whereas knockdown of chromatin assembly factor 1b (CAF-1b) revealed derepression predominantly in S-phase and G2/M. Our results support a central role for chromatin in maintaining VSG ES silencing. ASF1A and CAF-1b appear to play constitutive and DNA replication-dependent roles, respectively, in the recycling and assembly of chromatin. Defects in these functions typically lead to arrest in S-phase but defective cells can also progress through the cell cycle leading to nucleosome depletion and derepression of telomeric VSG ESs.
Collapse
Affiliation(s)
- Sam Alsford
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | |
Collapse
|
139
|
Abstract
Environments can be ever-changing and stresses are commonplace. In order for organisms to survive, they need to be able to respond to change and adapt to new conditions. Fortunately, many organisms have systems in place that enable dynamic adaptation to immediate stresses and changes within the environment. Much of this cellular response is coordinated by modulating the structure and accessibility of the genome. In eukaryotic cells, the genome is packaged and rolled up by histone proteins to create a series of DNA/histone core structures known as nucleosomes; these are further condensed into chromatin. The degree and nature of the condensation can in turn determine which genes are transcribed. Histones can be modified chemically by a large number of proteins that are thereby responsible for dynamic changes in gene expression. In this Primer we discuss findings from a study published in this issue of PLoS Biology by Weiner et al. that highlight how chromatin structure and chromatin binding proteins alter transcription in response to environmental changes and stresses. Their study reveals the importance of chromatin in mediating the speed and amplitude of stress responses in cells and suggests that chromatin is a critically important component of the cellular response to stress.
Collapse
Affiliation(s)
- Karen T. Smith
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jerry L. Workman
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
140
|
Begum NA, Stanlie A, Nakata M, Akiyama H, Honjo T. The histone chaperone Spt6 is required for activation-induced cytidine deaminase target determination through H3K4me3 regulation. J Biol Chem 2012; 287:32415-29. [PMID: 22843687 DOI: 10.1074/jbc.m112.351569] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H3K4me3 plays a critical role in the activation-induced cytidine deaminase (AID)-induced DNA cleavage of switch (S) regions in the immunoglobulin heavy chain (IgH) locus during class-switch recombination (CSR). The histone chaperone complex facilitates chromatin transcription (FACT) is responsible for forming H3K4me3 at AID target loci. Here we show that the histone chaperone suppressor of Ty6 (Spt6) also participates in regulating H3K4me3 for CSR and for somatic hypermutation in AID target loci. We found that H3K4me3 loss was correlated with defects in AID-induced DNA breakage and reduced mutation frequencies in IgH loci in both S and variable regions and in non-IgH loci such as metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and small nucleolar RNA host gene 3 (SNHG3). Global gene expression analysis revealed that Spt6 can act as both a positive and negative transcriptional regulator in B cells, affecting ∼5% of the genes that includes suppressor of Ty4 (Spt4) and AID. Interestingly, Spt6 regulates CSR and AID expression through two distinct histone modification pathways, H3K4me3 and H3K36me3, respectively. Tandem SH2 domain of Spt6 plays a critical role in CSR and H3K4me3 regulation involving Set1 histone methyltransferase. We conclude that Spt6 is a unique histone chaperone capable of regulating the histone epigenetic state of both AID targets and the AID locus.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
141
|
Histone chaperone activity of Fanconi anemia proteins, FANCD2 and FANCI, is required for DNA crosslink repair. EMBO J 2012; 31:3524-36. [PMID: 22828868 DOI: 10.1038/emboj.2012.197] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/03/2012] [Indexed: 01/10/2023] Open
Abstract
Fanconi anaemia (FA) is a rare hereditary disorder characterized by genomic instability and cancer susceptibility. A key FA protein, FANCD2, is targeted to chromatin with its partner, FANCI, and plays a critical role in DNA crosslink repair. However, the molecular function of chromatin-bound FANCD2-FANCI is still poorly understood. In the present study, we found that FANCD2 possesses nucleosome-assembly activity in vitro. The mobility of histone H3 was reduced in FANCD2-knockdown cells following treatment with an interstrand DNA crosslinker, mitomycin C. Furthermore, cells harbouring FANCD2 mutations that were defective in nucleosome assembly displayed impaired survival upon cisplatin treatment. Although FANCI by itself lacked nucleosome-assembly activity, it significantly stimulated FANCD2-mediated nucleosome assembly. These observations suggest that FANCD2-FANCI may regulate chromatin dynamics during DNA repair.
Collapse
|
142
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
143
|
Chujo M, Tarumoto Y, Miyatake K, Nishida E, Ishikawa F. HIRA, a conserved histone chaperone, plays an essential role in low-dose stress response via transcriptional stimulation in fission yeast. J Biol Chem 2012; 287:23440-50. [PMID: 22589550 DOI: 10.1074/jbc.m112.349944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells that have been pre-exposed to mild stress (priming stress) acquire transient resistance to subsequent severe stress even under different combinations of stresses. This phenomenon is called cross-tolerance. Although it has been reported that cross-tolerance occurs in many organisms, the molecular basis is not clear yet. Here, we identified slm9(+) as a responsible gene for the cross-tolerance in the fission yeast Schizosaccharomyces pombe. Slm9 is a homolog of mammalian HIRA histone chaperone. HIRA forms a conserved complex and gene disruption of other HIRA complex components, Hip1, Hip3, and Hip4, also yielded a cross-tolerance-defective phenotype, indicating that the fission yeast HIRA is involved in the cross-tolerance as a complex. We also revealed that Slm9 was recruited to the stress-responsive gene loci upon stress treatment in an Atf1-dependent manner. The expression of stress-responsive genes under stress conditions was compromised in HIRA disruptants. Consistent with this, Pol II recruitment and nucleosome eviction at these gene loci were impaired in slm9Δ cells. Furthermore, we found that the priming stress enhanced the expression of stress-responsive genes in wild-type cells that were exposed to the severe stress. These observations suggest that HIRA functions in stress response through transcriptional regulation.
Collapse
Affiliation(s)
- Moeko Chujo
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
144
|
Gesing S, Schindler D, Fränzel B, Wolters D, Nowrousian M. The histone chaperone ASF1 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol 2012; 84:748-65. [PMID: 22463819 DOI: 10.1111/j.1365-2958.2012.08058.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ascomycetes develop four major types of fruiting bodies that share a common ancestor, and a set of common core genes most likely controls this process. One way to identify such genes is to search for conserved expression patterns. We analysed microarray data of Fusarium graminearum and Sordaria macrospora, identifying 78 genes with similar expression patterns during fruiting body development. One of these genes was asf1 (anti-silencing function 1), encoding a predicted histone chaperone. asf1 expression is also upregulated during development in the distantly related ascomycete Pyronema confluens. To test whether asf1 plays a role in fungal development, we generated an S. macrospora asf1 deletion mutant. The mutant is sterile and can be complemented to fertility by transformation with the wild-type asf1 and its P. confluens homologue. An ASF1-EGFP fusion protein localizes to the nucleus. By tandem-affinity purification/mass spectrometry as well as yeast two-hybrid analysis, we identified histones H3 and H4 as ASF1 interaction partners. Several developmental genes are dependent on asf1 for correct transcriptional expression. Deletion of the histone chaperone genes rtt106 and cac2 did not cause any developmental phenotypes. These data indicate that asf1 of S. macrospora encodes a conserved histone chaperone that is required for fruiting body development.
Collapse
Affiliation(s)
- Stefan Gesing
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
145
|
Petesch SJ, Lis JT. Overcoming the nucleosome barrier during transcript elongation. Trends Genet 2012; 28:285-94. [PMID: 22465610 DOI: 10.1016/j.tig.2012.02.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 12/21/2022]
Abstract
RNA polymerase II (Pol II) must break the nucleosomal barrier to gain access to DNA and transcribe genes efficiently. New single-molecule techniques have elucidated many molecular details of nucleosome disassembly and what happens once Pol II encounters a nucleosome. Our review highlights mechanisms that Pol II utilizes to transcribe through nucleosomes, including the roles of chromatin remodelers, histone chaperones, post-translational modifications of histones, incorporation of histone variants into nucleosomes, and activation of the poly(ADP-ribose) polymerase (PARP) enzyme. Future studies need to assess the molecular details and the contribution of each of these mechanisms, individually and in combination, to transcription across the genome to understand how cells are able to regulate transcription in response to developmental, environmental and nutritional cues.
Collapse
Affiliation(s)
- Steven J Petesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
146
|
Hopfner KP, Gerhold CB, Lakomek K, Wollmann P. Swi2/Snf2 remodelers: hybrid views on hybrid molecular machines. Curr Opin Struct Biol 2012; 22:225-33. [PMID: 22445226 DOI: 10.1016/j.sbi.2012.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/26/2012] [Indexed: 12/14/2022]
Abstract
Swi2/Snf2 (switch/sucrose non-fermentable) enzymes form a large and diverse class of proteins and multiprotein assemblies that remodel nucleic acid:protein complexes, using the energy of ATP hydrolysis. The core Swi2/Snf2 type ATPase domain belongs to the 'helicase and NTP driven nucleic acid translocase' superfamily 2 (SF2). It serves as a motor that functionally and structurally interacts with different targeting domains and functional modules to drive a plethora of remodeling activities in chromatin structure and dynamics, transcription regulation and DNA repair. Recent progress on the interaction of Swi2/Snf2 enzymes and multiprotein assemblies with their substrate nucleic acids and proteins, using hybrid structural biology methods, illuminates mechanisms for complex chemo-mechanical remodeling reactions. For Mot1, a hybrid mechanism of remodeler and chaperone emerged.
Collapse
Affiliation(s)
- Karl-Peter Hopfner
- Department of Biochemistry at the Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany.
| | | | | | | |
Collapse
|
147
|
Keck KM, Pemberton LF. Histone chaperones link histone nuclear import and chromatin assembly. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:277-89. [PMID: 22015777 PMCID: PMC3272145 DOI: 10.1016/j.bbagrm.2011.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/08/2011] [Accepted: 09/12/2011] [Indexed: 12/12/2022]
Abstract
Histone chaperones are proteins that shield histones from nonspecific interactions until they are assembled into chromatin. After their synthesis in the cytoplasm, histones are bound by different histone chaperones, subjected to a series of posttranslational modifications and imported into the nucleus. These evolutionarily conserved modifications, including acetylation and methylation, can occur in the cytoplasm, but their role in regulating import is not well understood. As part of histone import complexes, histone chaperones may serve to protect the histones during transport, or they may be using histones to promote their own nuclear localization. In addition, there is evidence that histone chaperones can play an active role in the import of histones. Histone chaperones have also been shown to regulate the localization of important chromatin modifying enzymes. This review is focused on the role histone chaperones play in the early biogenesis of histones, the distinct cytoplasmic subcomplexes in which histone chaperones have been found in both yeast and mammalian cells and the importins/karyopherins and nuclear localization signals that mediate the nuclear import of histones. We also address the role that histone chaperone localization plays in human disease. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.
Collapse
Affiliation(s)
- Kristin M. Keck
- Center for Cell Signaling, Department of Microbiology, Immunology and Cancer Biology University of Virginia, Charlottesville, VA 22908, USA
| | - Lucy F. Pemberton
- Center for Cell Signaling, Department of Microbiology, Immunology and Cancer Biology University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
148
|
Malzkorn B, Wolter M, Riemenschneider MJ, Reifenberger G. Unraveling the glioma epigenome: from molecular mechanisms to novel biomarkers and therapeutic targets. Brain Pathol 2012; 21:619-32. [PMID: 21939466 DOI: 10.1111/j.1750-3639.2011.00536.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Epigenetic regulation of gene expression by DNA methylation and histone modification is frequently altered in human cancers including gliomas, the most common primary brain tumors. In diffuse astrocytic and oligodendroglial gliomas, epigenetic changes often present as aberrant hypermethylation of 5'-cytosine-guanine (CpG)-rich regulatory sequences in a large variety of genes, a phenomenon referred to as glioma CpG island methylator phenotype (G-CIMP). G-CIMP is particularly common but not restricted to gliomas with isocitrate dehydrogenase 1 (IDH1) or 2 (IDH2) mutation. Recent studies provided a mechanistic link between these genetic mutations and the associated widespread epigenetic modifications. Specifically, 2-hydroxyglutarate, the oncometabolite produced by mutant IDH1 and IDH2 proteins, has been shown to function as a competitive inhibitor of various α-ketoglutarate (α-KG)-dependent dioxygenases, including histone demethylases and members of the ten-eleven-translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. In this review article, we briefly address (i) the basic principles of epigenetic control of gene expression; (ii) the most important methods to analyze focal and global epigenetic alterations in cells and tissues; and (iii) the involvement of epigenetic alterations in the molecular pathogenesis of gliomas. Moreover, we discuss the promising roles of epigenetic alterations as molecular diagnostic markers and novel therapeutic targets, and highlight future perspectives toward unraveling the "glioma epigenome."
Collapse
Affiliation(s)
- Bastian Malzkorn
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
149
|
Giri S, Prasanth SG. Replicating and transcribing on twisted roads of chromatin. Brief Funct Genomics 2012; 11:188-204. [PMID: 22267489 DOI: 10.1093/bfgp/elr047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chromatin, a complex of DNA and proteins in the eukaryotic cell nucleus governs various cellular processes including DNA replication, DNA repair and transcription. Chromatin architecture and dynamics dictates the timing of cellular events by regulating proteins' accessibility to DNA as well as by acting as a scaffold for protein-protein interactions. Nucleosome, the basic unit of chromatin consists of a histone octamer comprised of (H3-H4)2 tetramer and two H2A-H2B dimers on which 146 bp of DNA is wrapped around ~1.6 times. Chromatin changes brought about by histone modifications, histone-modifying enzymes, chromatin remodeling factors, histone chaperones, histone variants and chromatin dynamics influence the regulation and timing of gene expression. Similarly, the timing of DNA replication is dependent on the chromatin context that in turn dictates origin selection. Further, during the process of DNA replication, not only does an organism's DNA have to be accurately replicated but also the chromatin structure and the epigenetic marks have to be faithfully transmitted to the daughter cells. Active transcription has been shown to repress replication while at the same time it has been shown that when origins are located at promoters, because of enhanced chromatin accessibility, they fire efficiently. In this review, we focus on how chromatin modulates two fundamental processes, DNA replication and transcription.
Collapse
Affiliation(s)
- Sumanprava Giri
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
150
|
Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer. Oncogene 2011; 31:3939-48. [PMID: 22139082 DOI: 10.1038/onc.2011.554] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A clearer definition of the molecular determinants that drive the development and progression of prostate cancer (PCa) is urgently needed. Efforts to map recurrent somatic deletions in the tumor genome, especially homozygous deletions (HODs), have provided important positional information in the search for cancer-causing genes. Analyzing HODs in the tumors of 244 patients from two independent cohorts and 22 PCa xenografts using high-resolution single-nucleotide polymorphism arrays, herein we report the identification of CHD1, a chromatin remodeler, as one of the most frequently homozygously deleted genes in PCa, second only to PTEN in this regard. The HODs observed in CHD1, including deletions affecting only internal exons of CHD1, were found to completely extinguish the expression of mRNA of this gene in PCa xenografts. Loss of this chromatin remodeler in clinical specimens is significantly associated with an increased number of additional chromosomal deletions, both hemi- and homozygous, especially on 2q, 5q and 6q. Together with the deletions observed in HEK293 cells stably transfected with CHD1 small hairpin RNA, these data suggest a causal relationship. Downregulation of Chd1 in mouse prostate epithelial cells caused dramatic morphological changes indicative of increased invasiveness, but did not result in transformation. Indicating a new role of CHD1, these findings collectively suggest that distinct CHD1-associated alterations of genomic structure evolve during and are required for the development of PCa.
Collapse
|