101
|
Singh A, Bagadia M, Sandhu KS. Spatially coordinated replication and minimization of expression noise constrain three-dimensional organization of yeast genome. DNA Res 2016; 23:155-69. [PMID: 26932984 PMCID: PMC4833423 DOI: 10.1093/dnares/dsw005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/31/2016] [Indexed: 01/01/2023] Open
Abstract
Despite recent advances, the underlying functional constraints that shape the three-dimensional organization of eukaryotic genome are not entirely clear. Through comprehensive multivariate analyses of genome-wide datasets, we show that cis and trans interactions in yeast genome have significantly distinct functional associations. In particular, (i) the trans interactions are constrained by coordinated replication and co-varying mutation rates of early replicating domains through interactions among early origins, while cis interactions are constrained by coordination of late replication through interactions among late origins; (ii)cis and trans interactions exhibit differential preference for nucleosome occupancy; (iii)cis interactions are also constrained by the essentiality and co-fitness of interacting genes. Essential gene clusters associate with high average interaction frequency, relatively short-range interactions of low variance, and exhibit less fluctuations in chromatin conformation, marking a physically restrained state of engaged loci that, we suggest, is important to mitigate the epigenetic errors by restricting the spatial mobility of loci. Indeed, the genes with lower expression noise associate with relatively short-range interactions of lower variance and exhibit relatively higher average interaction frequency, a property that is conserved across Escherichia coli,yeast, and mESCs. Altogether, our observations highlight the coordination of replication and the minimization of expression noise, not necessarily co-expression of genes, as potent evolutionary constraints shaping the spatial organization of yeast genome.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar 140306, India
| | - Meenakshi Bagadia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar 140306, India
| | - Kuljeet Singh Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar 140306, India
| |
Collapse
|
102
|
Minnen A, Bürmann F, Wilhelm L, Anchimiuk A, Diebold-Durand ML, Gruber S. Control of Smc Coiled Coil Architecture by the ATPase Heads Facilitates Targeting to Chromosomal ParB/parS and Release onto Flanking DNA. Cell Rep 2016; 14:2003-16. [PMID: 26904953 PMCID: PMC4785775 DOI: 10.1016/j.celrep.2016.01.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/22/2015] [Accepted: 01/21/2016] [Indexed: 11/01/2022] Open
Abstract
Smc/ScpAB promotes chromosome segregation in prokaryotes, presumably by compacting and resolving nascent sister chromosomes. The underlying mechanisms, however, are poorly understood. Here, we investigate the role of the Smc ATPase activity in the recruitment of Smc/ScpAB to the Bacillus subtilis chromosome. We demonstrate that targeting of Smc/ScpAB to ParB/parS loading sites is strictly dependent on engagement of Smc head domains and relies on an open organization of the Smc coiled coils. We find that dimerization of the Smc hinge domain stabilizes closed Smc rods and hinders head engagement as well as chromosomal targeting. Conversely, the ScpAB sub-complex promotes head engagement and Smc rod opening and thereby facilitates recruitment of Smc to parS sites. Upon ATP hydrolysis, Smc/ScpAB is released from loading sites and relocates within the chromosome-presumably through translocation along DNA double helices. Our findings define an intermediate state in the process of chromosome organization by Smc.
Collapse
Affiliation(s)
- Anita Minnen
- Research Group 'Chromosome Organization and Dynamics', Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Frank Bürmann
- Research Group 'Chromosome Organization and Dynamics', Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Larissa Wilhelm
- Research Group 'Chromosome Organization and Dynamics', Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Anna Anchimiuk
- Research Group 'Chromosome Organization and Dynamics', Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marie-Laure Diebold-Durand
- Research Group 'Chromosome Organization and Dynamics', Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Stephan Gruber
- Research Group 'Chromosome Organization and Dynamics', Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
103
|
Abstract
Twenty years ago, the publication of the first bacterial genome sequence, from Haemophilus influenzae, shook the world of bacteriology. In this Timeline, we review the first two decades of bacterial genome sequencing, which have been marked by three revolutions: whole-genome shotgun sequencing, high-throughput sequencing and single-molecule long-read sequencing. We summarize the social history of sequencing and its impact on our understanding of the biology, diversity and evolution of bacteria, while also highlighting spin-offs and translational impact in the clinic. We look forward to a 'sequencing singularity', where sequencing becomes the method of choice for as-yet unthinkable applications in bacteriology and beyond.
Collapse
Affiliation(s)
- Nicholas J Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark J Pallen
- Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
104
|
Jeon C, Kim J, Jeong H, Jung Y, Ha BY. Chromosome-like organization of an asymmetrical ring polymer confined in a cylindrical space. SOFT MATTER 2015; 11:8179-8193. [PMID: 26337601 DOI: 10.1039/c5sm01286d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To what extent does a confined polymer show chromosome-like organization? Using molecular dynamics simulations, we study a model Escherichia coli (E. coli) chromosome: an asymmetrical ring polymer, formed by small monomers on one side and big monomers on the other confined in a concentric-shell or simple cylinder with closed ends. The ring polymer is organized in the way observed for the E. coli chromosome: if the big monomers are assumed to be localized in the inner cylinder, the two "subchains" forming the ring are spontaneously partitioned in a parallel orientation with the "body" (big-monomer) chain linearly organized with a desired precision and the crossing (small-monomer) chain residing preferentially in the peripheral region. Furthermore, we show that the introduction of a "fluctuating boundary" between the two subchains leads to a double-peak distribution of ter-proximate loci, as seen in experiments, which would otherwise remain single-peaked. In a simple cylinder, however, a chromosome-like organization of the ring polymer typically requires an external mechanism such as cell-wall attachment. Finally, our results clarify to what degree the spatial organization of the chromosomes can be accomplished solely by ring asymmetry and anisotropic confinement.
Collapse
Affiliation(s)
- Chanil Jeon
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| | | | | | | | | |
Collapse
|
105
|
Wang X, Le TBK, Lajoie BR, Dekker J, Laub MT, Rudner DZ. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev 2015; 29:1661-75. [PMID: 26253537 PMCID: PMC4536313 DOI: 10.1101/gad.265876.115] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SMC condensin complexes play a central role in compacting and resolving replicated chromosomes in virtually all organisms, yet how they accomplish this remains elusive. In Bacillus subtilis, condensin is loaded at centromeric parS sites, where it encircles DNA and individualizes newly replicated origins. Using chromosome conformation capture and cytological assays, we show that condensin recruitment to origin-proximal parS sites is required for the juxtaposition of the two chromosome arms. Recruitment to ectopic parS sites promotes alignment of large tracks of DNA flanking these sites. Importantly, insertion of parS sites on opposing arms indicates that these "zip-up" interactions only occur between adjacent DNA segments. Collectively, our data suggest that condensin resolves replicated origins by promoting the juxtaposition of DNA flanking parS sites, drawing sister origins in on themselves and away from each other. These results are consistent with a model in which condensin encircles the DNA flanking its loading site and then slides down, tethering the two arms together. Lengthwise condensation via loop extrusion could provide a generalizable mechanism by which condensin complexes act dynamically to individualize origins in B. subtilis and, when loaded along eukaryotic chromosomes, resolve them during mitosis.
Collapse
Affiliation(s)
- Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Tung B K Le
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bryan R Lajoie
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
106
|
The bacterial nucleoid: nature, dynamics and sister segregation. Curr Opin Microbiol 2015; 22:127-37. [PMID: 25460806 DOI: 10.1016/j.mib.2014.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022]
Abstract
Recent studies reveal that the bacterial nucleoid has a defined, self-adherent shape and an underlying longitudinal organization and comprises a viscoelastic matrix. Within this shape, mobility is enhanced by ATP-dependent processes and individual loci can undergo ballistic off-equilibrium movements. In Escherichia coli, two global dynamic nucleoid behaviors emerge pointing to nucleoid-wide accumulation and relief of internal stress. Sister segregation begins with local splitting of individual loci, which is delayed at origin, terminus and specialized interstitial snap regions. Globally, as studied in several systems, segregation is a multi-step process in which internal nucleoid state plays critical roles that involve both compaction and expansion. The origin and terminus regions undergo specialized programs partially driven by complex ATP burning mechanisms such as a ParAB Brownian ratchet and a septum-associated FtsK motor. These recent findings reveal strong, direct parallels among events in different systems and between bacterial nucleoids and mammalian chromosomes with respect to physical properties, internal organization and dynamic behaviors.
Collapse
|
107
|
Wang X, Rudner DZ. Spatial organization of bacterial chromosomes. Curr Opin Microbiol 2015; 22:66-72. [PMID: 25460798 DOI: 10.1016/j.mib.2014.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
Bacterial chromosomes are organized in stereotypical patterns that are faithfully and robustly regenerated in daughter cells. Two distinct spatial patterns were described almost a decade ago in our most tractable model organisms. In recent years, analysis of chromosome organization in a larger and more diverse set of bacteria and a deeper characterization of chromosome dynamics in the original model systems have provided a broader and more complete picture of both chromosome organization and the activities that generate the observed spatial patterns. Here, we summarize these different patterns highlighting similarities and differences and discuss the protein factors that help establish and maintain them.
Collapse
Affiliation(s)
- Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
108
|
Gruber S. Multilayer chromosome organization through DNA bending, bridging and extrusion. Curr Opin Microbiol 2015; 22:102-10. [PMID: 25460803 DOI: 10.1016/j.mib.2014.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/25/2022]
Abstract
All living cells have to master the extraordinarily extended and tangly nature of genomic DNA molecules — in particular during cell division when sister chromosomes are resolved from one another and confined to opposite halves of a cell. Bacteria have evolved diverse sets of proteins, which collectively ensure the formation of compact and yet highly dynamic nucleoids. Some of these players act locally by changing the path of DNA through the bending of its double helical backbone. Other proteins have wider or even global impact on chromosome organization, for example by interconnecting two distant segments of chromosomal DNA or by actively relocating DNA within a cell. Here, I highlight different modes of chromosome organization in bacteria and on this basis consider models for the function of SMC protein complexes, whose mechanism of action is only poorly understood so far.
Collapse
Affiliation(s)
- Stephan Gruber
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
109
|
Spencer SJ, Tamminen MV, Preheim SP, Guo MT, Briggs AW, Brito IL, A Weitz D, Pitkänen LK, Vigneault F, Juhani Virta MP, Alm EJ. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME JOURNAL 2015; 10:427-36. [PMID: 26394010 PMCID: PMC4737934 DOI: 10.1038/ismej.2015.124] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 02/01/2023]
Abstract
Many microbial communities are characterized by high genetic diversity. 16S ribosomal RNA sequencing can determine community members, and metagenomics can determine the functional diversity, but resolving the functional role of individual cells in high throughput remains an unsolved challenge. Here, we describe epicPCR (Emulsion, Paired Isolation and Concatenation PCR), a new technique that links functional genes and phylogenetic markers in uncultured single cells, providing a throughput of hundreds of thousands of cells with costs comparable to one genomic library preparation. We demonstrate the utility of our technique in a natural environment by profiling a sulfate-reducing community in a freshwater lake, revealing both known sulfate reducers and discovering new putative sulfate reducers. Our method is adaptable to any conserved genetic trait and translates genetic associations from diverse microbial samples into a sequencing library that answers targeted ecological questions. Potential applications include identifying functional community members, tracing horizontal gene transfer networks and mapping ecological interactions between microbial cells.
Collapse
Affiliation(s)
- Sarah J Spencer
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manu V Tamminen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sarah P Preheim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mira T Guo
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Adrian W Briggs
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Ilana L Brito
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Physics, Harvard University, Cambridge, MA, USA
| | - Leena K Pitkänen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Marko P Juhani Virta
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Eric J Alm
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
110
|
Bartman CR, Blobel GA. Perturbing Chromatin Structure to Understand Mechanisms of Gene Expression. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:207-12. [PMID: 26370411 DOI: 10.1101/sqb.2015.80.027359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The study of nuclear structure falls between the fields of cell biology and molecular biology and draws on techniques from both fields. In recent years, many exciting advances have been made in these areas, including single-molecule and superresolution imaging and the development of chromosome conformation capture (3C)-based technologies, which have brought the advent of genome-wide analysis of chromatin structure and contacts. However, many questions remain as to the function of nuclear structures, in particular their influence on transcription. Here we describe studies that have directly manipulated nuclear architecture at various levels and thus have clarified the causal influence of structure on transcription. We will also highlight open questions in the field, most notably regarding our understanding of the dynamics and variability in nuclear structure and its influence on gene expression.
Collapse
Affiliation(s)
- Caroline R Bartman
- Division of Hematology, Children's Hospital of Pennsylvania, Philadelphia, Pennsylvania 19104 Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Pennsylvania, Philadelphia, Pennsylvania 19104 Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
111
|
Imakaev MV, Fudenberg G, Mirny LA. Modeling chromosomes: Beyond pretty pictures. FEBS Lett 2015; 589:3031-6. [PMID: 26364723 DOI: 10.1016/j.febslet.2015.09.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
Recently, Chromosome Conformation Capture (3C) based experiments have highlighted the importance of computational models for the study of chromosome organization. In this review, we propose that current computational models can be grouped into roughly four classes, with two classes of data-driven models: consensus structures and data-driven ensembles, and two classes of de novo models: structural ensembles and mechanistic ensembles. Finally, we highlight specific questions mechanistic ensembles can address.
Collapse
Affiliation(s)
- Maxim V Imakaev
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Geoffrey Fudenberg
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leonid A Mirny
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
112
|
Dekker J, Heard E. Structural and functional diversity of Topologically Associating Domains. FEBS Lett 2015; 589:2877-84. [PMID: 26348399 DOI: 10.1016/j.febslet.2015.08.044] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
Recent studies have shown that chromosomes in a range of organisms are compartmentalized in different types of chromatin domains. In mammals, chromosomes form compartments that are composed of smaller Topologically Associating Domains (TADs). TADs are thought to represent functional domains of gene regulation but much is still unknown about the mechanisms of their formation and how they exert their regulatory effect on embedded genes. Further, similar domains have been detected in other organisms, including flies, worms, fungi and bacteria. Although in all these cases these domains appear similar as detected by 3C-based methods, their biology appears to be quite distinct with differences in the protein complexes involved in their formation and differences in their internal organization. Here we outline our current understanding of such domains in different organisms and their roles in gene regulation.
Collapse
Affiliation(s)
- Job Dekker
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - Edith Heard
- Institut Curie, CNRS UMR3215, INSERM U934, 26 Rue d'Ulm, 75248 Paris Cedex 05, France.
| |
Collapse
|
113
|
Fraser J, Williamson I, Bickmore WA, Dostie J. An Overview of Genome Organization and How We Got There: from FISH to Hi-C. Microbiol Mol Biol Rev 2015; 79:347-72. [PMID: 26223848 PMCID: PMC4517094 DOI: 10.1128/mmbr.00006-15] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In humans, nearly two meters of genomic material must be folded to fit inside each micrometer-scale cell nucleus while remaining accessible for gene transcription, DNA replication, and DNA repair. This fact highlights the need for mechanisms governing genome organization during any activity and to maintain the physical organization of chromosomes at all times. Insight into the functions and three-dimensional structures of genomes comes mostly from the application of visual techniques such as fluorescence in situ hybridization (FISH) and molecular approaches including chromosome conformation capture (3C) technologies. Recent developments in both types of approaches now offer the possibility of exploring the folded state of an entire genome and maybe even the identification of how complex molecular machines govern its shape. In this review, we present key methodologies used to study genome organization and discuss what they reveal about chromosome conformation as it relates to transcription regulation across genomic scales in mammals.
Collapse
Affiliation(s)
- James Fraser
- Department of Biochemistry, and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Iain Williamson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Josée Dostie
- Department of Biochemistry, and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| |
Collapse
|
114
|
Abstract
Repeated extragenic palindromes (REPs) in the enterobacterial genomes are usually composed of individual palindromic units separated by linker sequences. A total of 355 annotated REPs are distributed along the Escherichia coli genome. RNA sequence (RNAseq) analysis showed that almost 80% of the REPs in E. coli are transcribed. The DNA sequence of REP325 showed that it is a cluster of six repeats, each with two palindromic units capable of forming cruciform structures in supercoiled DNA. Here, we report that components of the REP325 element and at least one of its RNA products play a role in bacterial nucleoid DNA condensation. These RNA not only are present in the purified nucleoid but bind to the bacterial nucleoid-associated HU protein as revealed by RNA IP followed by microarray analysis (RIP-Chip) assays. Deletion of REP325 resulted in a dramatic increase of the nucleoid size as observed using transmission electron microscopy (TEM), and expression of one of the REP325 RNAs, nucleoid-associated noncoding RNA 4 (naRNA4), from a plasmid restored the wild-type condensed structure. Independently, chromosome conformation capture (3C) analysis demonstrated physical connections among various REP elements around the chromosome. These connections are dependent in some way upon the presence of HU and the REP325 element; deletion of HU genes and/or the REP325 element removed the connections. Finally, naRNA4 together with HU condensed DNA in vitro by connecting REP325 or other DNA sequences that contain cruciform structures in a pairwise manner as observed by atomic force microscopy (AFM). On the basis of our results, we propose molecular models to explain connections of remote cruciform structures mediated by HU and naRNA4. Nucleoid organization in bacteria is being studied extensively, and several models have been proposed. However, the molecular nature of the structural organization is not well understood. Here we characterized the role of a novel nucleoid-associated noncoding RNA, naRNA4, in nucleoid structures both in vivo and in vitro. We propose models to explain how naRNA4 together with nucleoid-associated protein HU connects remote DNA elements for nucleoid condensation. We present the first evidence of a noncoding RNA together with a nucleoid-associated protein directly condensing nucleoid DNA.
Collapse
|
115
|
Marbouty M, Le Gall A, Cattoni D, Cournac A, Koh A, Fiche JB, Mozziconacci J, Murray H, Koszul R, Nollmann M. Condensin- and Replication-Mediated Bacterial Chromosome Folding and Origin Condensation Revealed by Hi-C and Super-resolution Imaging. Mol Cell 2015; 59:588-602. [DOI: 10.1016/j.molcel.2015.07.020] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 06/10/2015] [Accepted: 07/21/2015] [Indexed: 12/01/2022]
|
116
|
Gerganova V, Berger M, Zaldastanishvili E, Sobetzko P, Lafon C, Mourez M, Travers A, Muskhelishvili G. Chromosomal position shift of a regulatory gene alters the bacterial phenotype. Nucleic Acids Res 2015; 43:8215-26. [PMID: 26170236 PMCID: PMC4751926 DOI: 10.1093/nar/gkv709] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/30/2015] [Indexed: 12/31/2022] Open
Abstract
Recent studies strongly suggest that in bacterial cells the order of genes along the chromosomal origin-to-terminus axis is determinative for regulation of the growth phase-dependent gene expression. The prediction from this observation is that positional displacement of pleiotropic genes will affect the genetic regulation and hence, the cellular phenotype. To test this prediction we inserted the origin-proximal dusB-fis operon encoding the global regulator FIS in the vicinity of replication terminus on both arms of the Escherichia coli chromosome. We found that the lower fis gene dosage in the strains with terminus-proximal dusB-fis operons was compensated by increased fis expression such that the intracellular concentration of FIS was homeostatically adjusted. Nevertheless, despite unchanged FIS levels the positional displacement of dusB-fis impaired the competitive growth fitness of cells and altered the state of the overarching network regulating DNA topology, as well as the cellular response to environmental stress, hazardous substances and antibiotics. Our finding that the chromosomal repositioning of a regulatory gene can determine the cellular phenotype unveils an important yet unexplored facet of the genetic control mechanisms and paves the way for novel approaches to manipulate bacterial physiology.
Collapse
Affiliation(s)
- Veneta Gerganova
- Jacobs University Bremen, School of Engineering and Science, Bremen, 28758, Germany
| | - Michael Berger
- Institut für Hygiene, Universitätsklinikum Münster, Münster, 48149, Germany
| | | | - Patrick Sobetzko
- Philipps-Universität Marburg, LOEWE-Zentrum für Synthetische Mikrobiologie, Department of Chromosome Biology, Marburg, 35032, Germany
| | - Corinne Lafon
- SANOFI/ TSU Infectious Diseases, Toulouse, 31036, France
| | - Michael Mourez
- SANOFI/ TSU Infectious Diseases, Toulouse, 31036, France
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | |
Collapse
|
117
|
Lagomarsino MC, Espéli O, Junier I. From structure to function of bacterial chromosomes: Evolutionary perspectives and ideas for new experiments. FEBS Lett 2015; 589:2996-3004. [PMID: 26171924 DOI: 10.1016/j.febslet.2015.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022]
Abstract
The link between chromosome structure and function is a challenging open question because chromosomes in vivo are highly dynamic and arduous to manipulate. Here, we examine several promising approaches to tackle this question specifically in bacteria, by integrating knowledge from different sources. Toward this end, we first provide a brief overview of experimental tools that have provided insights into the description of the bacterial chromosome, including genetic, biochemical and fluorescence microscopy techniques. We then explore the possibility of using comparative genomics to isolate functionally important features of chromosome organization, exploiting the fact that features shared between phylogenetically distant bacterial species reflect functional significance. Finally, we discuss possible future perspectives from the field of experimental evolution. Specifically, we propose novel experiments in which bacteria could be screened and selected on the basis of the structural properties of their chromosomes.
Collapse
Affiliation(s)
| | - Olivier Espéli
- CIRB-Collège de France, CNRS UMR 7241, INSERM U1050, Paris, France
| | - Ivan Junier
- Laboratoire Adaptation et Pathogénie des Micro-organismes - UMR 5163, Université Grenoble 1, CNRS, BP 170, F-38042 Grenoble Cedex 9, France; Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
118
|
Cattoni DI, Valeri A, Le Gall A, Nollmann M. A matter of scale: how emerging technologies are redefining our view of chromosome architecture. Trends Genet 2015; 31:454-64. [PMID: 26113398 DOI: 10.1016/j.tig.2015.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022]
Abstract
The 3D folding of the genome and its relation to fundamental processes such as gene regulation, replication, and segregation remains one of the most puzzling and exciting questions in genetics. In this review, we describe how the use of new technologies is starting to revolutionize the field of chromosome organization, and to shed light on the mechanisms of transcription, replication, and repair. In particular, we concentrate on recent studies using genome-wide methods, single-molecule technologies, and super-resolution microscopy (SRM). We summarize some of the main concerns when employing these techniques, and discuss potential new and exciting perspectives that illuminate the connection between 3D genomic organization and gene regulation.
Collapse
Affiliation(s)
- Diego I Cattoni
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Alessandro Valeri
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Antoine Le Gall
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
119
|
Jin DJ, Cagliero C, Martin CM, Izard J, Zhou YN. The dynamic nature and territory of transcriptional machinery in the bacterial chromosome. Front Microbiol 2015; 6:497. [PMID: 26052320 PMCID: PMC4440401 DOI: 10.3389/fmicb.2015.00497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/06/2015] [Indexed: 11/16/2022] Open
Abstract
Our knowledge of the regulation of genes involved in bacterial growth and stress responses is extensive; however, we have only recently begun to understand how environmental cues influence the dynamic, three-dimensional distribution of RNA polymerase (RNAP) in Escherichia coli on the level of single cell, using wide-field fluorescence microscopy and state-of-the-art imaging techniques. Live-cell imaging using either an agarose-embedding procedure or a microfluidic system further underscores the dynamic nature of the distribution of RNAP in response to changes in the environment and highlights the challenges in the study. A general agreement between live-cell and fixed-cell images has validated the formaldehyde-fixing procedure, which is a technical breakthrough in the study of the cell biology of RNAP. In this review we use a systems biology perspective to summarize the advances in the cell biology of RNAP in E. coli, including the discoveries of the bacterial nucleolus, the spatial compartmentalization of the transcription machinery at the periphery of the nucleoid, and the segregation of the chromosome territories for the two major cellular functions of transcription and replication in fast-growing cells. Our understanding of the coupling of transcription and bacterial chromosome (or nucleoid) structure is also summarized. Using E. coli as a simple model system, co-imaging of RNAP with DNA and other factors during growth and stress responses will continue to be a useful tool for studying bacterial growth and adaptation in changing environment.
Collapse
Affiliation(s)
- Ding J Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| | - Cedric Cagliero
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| | - Carmen M Martin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| | - Jerome Izard
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| | - Yan N Zhou
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick, MD, USA
| |
Collapse
|
120
|
Serra F, Di Stefano M, Spill YG, Cuartero Y, Goodstadt M, Baù D, Marti-Renom MA. Restraint-based three-dimensional modeling of genomes and genomic domains. FEBS Lett 2015; 589:2987-95. [PMID: 25980604 DOI: 10.1016/j.febslet.2015.05.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Chromosomes are large polymer molecules composed of nucleotides. In some species, such as humans, this polymer can sum up to meters long and still be properly folded within the nuclear space of few microns in size. The exact mechanisms of how the meters long DNA is folded into the nucleus, as well as how the regulatory machinery can access it, is to a large extend still a mystery. However, and thanks to newly developed molecular, genomic and computational approaches based on the Chromosome Conformation Capture (3C) technology, we are now obtaining insight on how genomes are spatially organized. Here we review a new family of computational approaches that aim at using 3C-based data to obtain spatial restraints for modeling genomes and genomic domains.
Collapse
Affiliation(s)
- François Serra
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Marco Di Stefano
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Yannick G Spill
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Yasmina Cuartero
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Michael Goodstadt
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Davide Baù
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Marc A Marti-Renom
- Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain; Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
121
|
Chromosomal "stress-response" domains govern the spatiotemporal expression of the bacterial virulence program. mBio 2015; 6:e00353-15. [PMID: 25922390 PMCID: PMC4436070 DOI: 10.1128/mbio.00353-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies strongly suggest that the gene expression sustaining both normal and pathogenic bacterial growth is governed by the structural dynamics of the chromosome. However, the mechanistic device coordinating the chromosomal configuration with selective expression of the adaptive traits remains largely unknown. We used a holistic approach exploring the inherent relationships between the physicochemical properties of the DNA and the expression of adaptive traits, including virulence factors, in the pathogen Dickeya dadantii (formerly Erwinia chrysanthemi). In the transcriptomes obtained under adverse conditions encountered during bacterial infection, we explored the patterns of chromosomal DNA sequence organization, supercoil dynamics, and gene expression densities, together with the long-range regulatory impacts of the abundant DNA architectural proteins implicated in pathogenicity control. By integrating these data, we identified transient chromosomal domains of coherent gene expression featuring distinct couplings between DNA thermodynamic stability, supercoil dynamics, and virulence traits. We infer that the organization of transient chromosomal domains serving specific functions acts as a fundamental device for versatile adjustment of the pathogen to environmental stress. We believe that the identification of chromosomal “stress-response” domains harboring distinct virulence traits and mediating the cellular adaptive behavior provides a breakthrough in understanding the control mechanisms of bacterial pathogenicity.
Collapse
|
122
|
Abstract
Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward "ideal" chromosome structures that represent hierarchical fibrils of fibrils.
Collapse
|
123
|
3D genome architecture from populations to single cells. Curr Opin Genet Dev 2015; 31:36-41. [DOI: 10.1016/j.gde.2015.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/02/2015] [Indexed: 02/03/2023]
|
124
|
Trussart M, Serra F, Baù D, Junier I, Serrano L, Marti-Renom MA. Assessing the limits of restraint-based 3D modeling of genomes and genomic domains. Nucleic Acids Res 2015; 43:3465-77. [PMID: 25800747 PMCID: PMC4402535 DOI: 10.1093/nar/gkv221] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/22/2015] [Indexed: 12/24/2022] Open
Abstract
Restraint-based modeling of genomes has been recently explored with the advent of Chromosome Conformation Capture (3C-based) experiments. We previously developed a reconstruction method to resolve the 3D architecture of both prokaryotic and eukaryotic genomes using 3C-based data. These models were congruent with fluorescent imaging validation. However, the limits of such methods have not systematically been assessed. Here we propose the first evaluation of a mean-field restraint-based reconstruction of genomes by considering diverse chromosome architectures and different levels of data noise and structural variability. The results show that: first, current scoring functions for 3D reconstruction correlate with the accuracy of the models; second, reconstructed models are robust to noise but sensitive to structural variability; third, the local structure organization of genomes, such as Topologically Associating Domains, results in more accurate models; fourth, to a certain extent, the models capture the intrinsic structural variability in the input matrices and fifth, the accuracy of the models can be a priori predicted by analyzing the properties of the interaction matrices. In summary, our work provides a systematic analysis of the limitations of a mean-field restrain-based method, which could be taken into consideration in further development of methods as well as their applications.
Collapse
Affiliation(s)
- Marie Trussart
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - François Serra
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | - Davide Baù
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | - Ivan Junier
- Universitat Pompeu Fabra (UPF), Barcelona, Spain Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Luís Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Marc A Marti-Renom
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona, Spain Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
125
|
Jecz P, Bartosik AA, Glabski K, Jagura-Burdzy G. A single parS sequence from the cluster of four sites closest to oriC is necessary and sufficient for proper chromosome segregation in Pseudomonas aeruginosa. PLoS One 2015; 10:e0120867. [PMID: 25794281 PMCID: PMC4368675 DOI: 10.1371/journal.pone.0120867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/27/2015] [Indexed: 11/19/2022] Open
Abstract
Among the mechanisms that control chromosome segregation in bacteria are highly-conserved partitioning systems comprising three components: ParA protein (a deviant Walker-type ATPase), ParB protein (a DNA-binding element) and multiple cis-acting palindromic centromere-like sequences, designated parS. Ten putative parS sites have been identified in the P. aeruginosa PAO1 genome, four localized in close proximity of oriC and six, diverged by more than one nucleotide from a perfect palindromic sequence, dispersed along the chromosome. Here, we constructed and analyzed P. aeruginosa mutants deprived of each single parS sequence and their different combinations. The analysis included evaluation of a set of phenotypic features, chromosome segregation, and ParB localization in the cells. It was found that ParB binds specifically to all ten parS sites, although with different affinities. The P. aeruginosa parS mutant with all ten parS sites modified (parSnull) is viable however it demonstrates the phenotype characteristic for parAnull or parBnull mutants: slightly slower growth rate, high frequency of anucleate cells, and defects in motility. The genomic position and sequence of parS determine its role in P. aeruginosa biology. It transpired that any one of the four parS sites proximal to oriC (parS1 to parS4), which are bound by ParB with the highest affinity, is necessary and sufficient for the parABS role in chromosome partitioning. When all these four sites are mutated simultaneously, the strain shows the parSnull phenotype, which indicates that none of the remaining six parS sites can substitute for these four oriC-proximal sites in this function. A single ectopic parS2 (inserted opposite oriC in the parSnull mutant) facilitates ParB organization into regularly spaced condensed foci and reverses some of the mutant phenotypes but is not sufficient for accurate chromosome segregation.
Collapse
Affiliation(s)
- Paulina Jecz
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Aneta A. Bartosik
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Glabski
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
126
|
Scolari VF, Cosentino Lagomarsino M. Combined collapse by bridging and self-adhesion in a prototypical polymer model inspired by the bacterial nucleoid. SOFT MATTER 2015; 11:1677-1687. [PMID: 25532064 DOI: 10.1039/c4sm02434f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent experimental results suggest that the E. coli chromosome feels a self-attracting interaction of osmotic origin, and is condensed in foci by bridging interactions. Motivated by these findings, we explore a generic modeling framework combining solely these two ingredients, in order to characterize their joint effects. Specifically, we study a simple polymer physics computational model with weak ubiquitous short-ranged self attraction and stronger sparse bridging interactions. Combining theoretical arguments and simulations, we study the general phenomenology of polymer collapse induced by these dual contributions, in the case of regularly spaced bridging. Our results distinguish a regime of classical Flory-like coil-globule collapse dictated by the interplay of excluded volume and attractive energy and a switch-like collapse where bridging interactions compete with entropy loss terms from the looped arms of a star-like rosette. Additionally, we show that bridging can induce stable compartmentalized domains. In these configurations, different "cores" of bridging proteins are kept separated by star-like polymer loops in an entropically favorable multi-domain configuration, with a mechanism that parallels micellar polysoaps. Such compartmentalized domains are stable, and do not need any intra-specific interactions driving their segregation. Domains can be stable also in the presence of uniform attraction, as long as the uniform collapse is above its theta point.
Collapse
Affiliation(s)
- Vittore F Scolari
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, 15 rue de l'École de Médecine Paris, France.
| | | |
Collapse
|
127
|
Building bridges within the bacterial chromosome. Trends Genet 2015; 31:164-73. [DOI: 10.1016/j.tig.2015.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/22/2022]
|
128
|
Feig M, Harada R, Mori T, Yu I, Takahashi K, Sugita Y. Complete atomistic model of a bacterial cytoplasm for integrating physics, biochemistry, and systems biology. J Mol Graph Model 2015; 58:1-9. [PMID: 25765281 DOI: 10.1016/j.jmgm.2015.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 01/10/2023]
Abstract
A model for the cytoplasm of Mycoplasma genitalium is presented that integrates data from a variety of sources into a physically and biochemically consistent model. Based on gene annotations, core genes expected to be present in the cytoplasm were determined and a metabolic reaction network was reconstructed. The set of cytoplasmic genes and metabolites from the predicted reactions were assembled into a comprehensive atomistic model consisting of proteins with predicted structures, RNA, protein/RNA complexes, metabolites, ions, and solvent. The resulting model bridges between atomistic and cellular scales, between physical and biochemical aspects, and between structural and systems views of cellular systems and is meant as a starting point for a variety of simulation studies.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States; Quantitative Biology Center, RIKEN, International Medical Device Alliance (IMDA) 6F, 1-6-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Ryuhei Harada
- Advanced Institute for Computational Science, RIKEN, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Quantitative Biology Center, RIKEN, International Medical Device Alliance (IMDA) 6F, 1-6-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takaharu Mori
- Quantitative Biology Center, RIKEN, International Medical Device Alliance (IMDA) 6F, 1-6-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Theoretical Molecular Science Laboratory and iTHES, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Isseki Yu
- Theoretical Molecular Science Laboratory and iTHES, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Koichi Takahashi
- Quantitative Biology Center, RIKEN, Laboratory for Biochemical Simulation, Suita, Osaka 565-0874, Japan; Institute for Advanced Biosciences, Keio University, Fujisawa 252-8520, Japan
| | - Yuji Sugita
- Advanced Institute for Computational Science, RIKEN, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Quantitative Biology Center, RIKEN, International Medical Device Alliance (IMDA) 6F, 1-6-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Theoretical Molecular Science Laboratory and iTHES, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
129
|
Ay F, Vu TH, Zeitz MJ, Varoquaux N, Carette JE, Vert JP, Hoffman AR, Noble WS. Identifying multi-locus chromatin contacts in human cells using tethered multiple 3C. BMC Genomics 2015; 16:121. [PMID: 25887659 PMCID: PMC4369351 DOI: 10.1186/s12864-015-1236-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/12/2015] [Indexed: 12/02/2022] Open
Abstract
Background Several recently developed experimental methods, each an extension of the chromatin conformation capture (3C) assay, have enabled the genome-wide profiling of chromatin contacts between pairs of genomic loci in 3D. Especially in complex eukaryotes, data generated by these methods, coupled with other genome-wide datasets, demonstrated that non-random chromatin folding correlates strongly with cellular processes such as gene expression and DNA replication. Results We describe a genome architecture assay, tethered multiple 3C (TM3C), that maps genome-wide chromatin contacts via a simple protocol of restriction enzyme digestion and religation of fragments upon agarose gel beads followed by paired-end sequencing. In addition to identifying contacts between pairs of loci, TM3C enables identification of contacts among more than two loci simultaneously. We use TM3C to assay the genome architectures of two human cell lines: KBM7, a near-haploid chronic leukemia cell line, and NHEK, a normal diploid human epidermal keratinocyte cell line. We confirm that the contact frequency maps produced by TM3C exhibit features characteristic of existing genome architecture datasets, including the expected scaling of contact probabilities with genomic distance, megabase scale chromosomal compartments and sub-megabase scale topological domains. We also confirm that TM3C captures several known cell type-specific contacts, ploidy shifts and translocations, such as Philadelphia chromosome formation (Ph+) in KBM7. We confirm a subset of the triple contacts involving the IGF2-H19 imprinting control region (ICR) using PCR analysis for KBM7 cells. Our genome-wide analysis of pairwise and triple contacts demonstrates their preference for linking open chromatin regions to each other and for linking regions with higher numbers of DNase hypersensitive sites (DHSs) to each other. For near-haploid KBM7 cells, we infer whole genome 3D models that exhibit clustering of small chromosomes with each other and large chromosomes with each other, consistent with previous studies of the genome architectures of other human cell lines. Conclusion TM3C is a simple protocol for ascertaining genome architecture and can be used to identify simultaneous contacts among three or four loci. Application of TM3C to a near-haploid human cell line revealed large-scale features of chromosomal organization and multi-way chromatin contacts that preferentially link regions of open chromatin. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1236-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, 98195, WA, USA.
| | - Thanh H Vu
- Veterans Affairs Palo Alto Health Care System, Stanford University Medical School, Palo Alto, 94304, CA, USA.
| | - Michael J Zeitz
- Veterans Affairs Palo Alto Health Care System, Stanford University Medical School, Palo Alto, 94304, CA, USA.
| | - Nelle Varoquaux
- Mines ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 35 rue St Honoré, Fontainebleau, 77300, France. .,Institut Curie, Paris, F-75248, France. .,U900, INSERM, ParisF-75248, France.
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, 94305, CA, USA.
| | - Jean-Philippe Vert
- Mines ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 35 rue St Honoré, Fontainebleau, 77300, France. .,Institut Curie, Paris, F-75248, France. .,U900, INSERM, ParisF-75248, France.
| | - Andrew R Hoffman
- Veterans Affairs Palo Alto Health Care System, Stanford University Medical School, Palo Alto, 94304, CA, USA.
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, 98195, WA, USA. .,Department of Computer Science and Engineering, University of Washington, Seattle, 98195, WA, USA.
| |
Collapse
|
130
|
van der Valk RA, Vreede J, Crémazy F, Dame RT. Genomic Looping: A Key Principle of Chromatin Organization. J Mol Microbiol Biotechnol 2015; 24:344-59. [DOI: 10.1159/000368851] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
131
|
Ramachandran R, Jha J, Chattoraj DK. Chromosome segregation in Vibrio cholerae. J Mol Microbiol Biotechnol 2015; 24:360-70. [PMID: 25732338 DOI: 10.1159/000368853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The study of chromosome segregation is currently one of the most exciting research frontiers in cell biology. In this review, we discuss our current knowledge of the chromosome segregation process in Vibrio cholerae, based primarily on findings from fluorescence microscopy experiments. This bacterium is of special interest because of its eukaryotic feature of having a divided genome, a feature shared with 10% of known bacteria. We also discuss how the segregation mechanisms of V. cholerae compare with those in other bacteria, and highlight some of the remaining questions regarding the process of bacterial chromosome segregation.
Collapse
Affiliation(s)
- Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Md., USA
| | | | | |
Collapse
|
132
|
Abstract
It has recently been demonstrated that bacterial chromosomes are highly organized, with specific positioning of the replication initiation region. Moreover, the positioning of the replication machinery (replisome) has been shown to be variable and dependent on species-specific cell cycle features. Here, we analyzed replisome positions in Mycobacterium smegmatis, a slow-growing bacterium that exhibits characteristic asymmetric polar cell extension. Time-lapse fluorescence microscopy analyses revealed that the replisome is slightly off-center in mycobacterial cells, a feature that is likely correlated with the asymmetric growth of Mycobacterium cell poles. Estimates of the timing of chromosome replication in relation to the cell cycle, as well as cell division and chromosome segregation events, revealed that chromosomal origin-of-replication (oriC) regions segregate soon after the start of replication. Moreover, our data demonstrate that organization of the chromosome by ParB determines the replisome choreography. Despite significant progress in elucidating the basic processes of bacterial chromosome replication and segregation, understanding of chromosome dynamics during the mycobacterial cell cycle remains incomplete. Here, we provide in vivo experimental evidence that replisomes in Mycobacterium smegmatis are highly dynamic, frequently splitting into two distinct replication forks. However, unlike in Escherichia coli, the forks do not segregate toward opposite cell poles but remain in relatively close proximity. In addition, we show that replication cycles do not overlap. Finally, our data suggest that ParB participates in the positioning of newly born replisomes in M. smegmatis cells. The present results broaden our understanding of chromosome segregation in slow-growing bacteria. In view of the complexity of the mycobacterial cell cycle, especially for pathogenic representatives of the genus, understanding the mechanisms and factors that affect chromosome dynamics will facilitate the identification of novel antimicrobial factors.
Collapse
|
133
|
Graumann PL. Chromosome architecture and segregation in prokaryotic cells. J Mol Microbiol Biotechnol 2015; 24:291-300. [PMID: 25732333 DOI: 10.1159/000369100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Peter L Graumann
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
134
|
Muskhelishvili G, Travers A. Order from the Order: How a Spatiotemporal Genetic Program Is Encoded in a 2-D Genetic Map of the Bacterial Chromosome. J Mol Microbiol Biotechnol 2015; 24:332-43. [DOI: 10.1159/000368852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
135
|
Abstract
UNLABELLED Subcellular organization of the bacterial nucleoid and spatiotemporal dynamics of DNA replication and segregation have been studied intensively, but the functional link between these processes remains poorly understood. Here we use quantitative time-lapse fluorescence microscopy for single-cell analysis of chromosome organization and DNA replisome dynamics in Mycobacterium smegmatis. We report that DNA replication takes place near midcell, where, following assembly of the replisome on the replication origin, the left and right replication forks colocalize throughout the replication cycle. From its initial position near the cell pole, a fluorescently tagged chromosomal locus (attB, 245° from the origin) moves rapidly to the replisome complex just before it is replicated. The newly duplicated attB loci then segregate to mirror-symmetric positions relative to midcell. Genetic ablation of ParB, a component of the ParABS chromosome segregation system, causes marked defects in chromosome organization, condensation, and segregation. ParB deficiency also results in mislocalization of the DNA replication machinery and SMC (structural maintenance of chromosome) protein. These observations suggest that ParB and SMC play important and overlapping roles in chromosome organization and replisome dynamics in mycobacteria. IMPORTANCE We studied the spatiotemporal organization of the chromosome and DNA replication machinery in Mycobacterium smegmatis, a fast-growing relative of the human pathogen Mycobacterium tuberculosis. We show that genetic ablation of the DNA-binding proteins ParB and SMC disturbs the organization of the chromosome and causes a severe defect in subcellular localization and movement of the DNA replication complexes. These observations suggest that ParB and SMC provide a functional link between chromosome organization and DNA replication dynamics. This work also reveals important differences in the biological roles of the ParABS and SMC systems in mycobacteria versus better-characterized model organisms, such as Escherichia coli and Bacillus subtilis.
Collapse
|
136
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
137
|
Mori H, Takeuchi R, Otsuka Y, Bowden S, Yokoyama K, Muto A, Libourel I, Wanner BL. Toward Network Biology in E. coli Cell. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:155-68. [DOI: 10.1007/978-3-319-23603-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
138
|
Marbouty M, Cournac A, Flot JF, Marie-Nelly H, Mozziconacci J, Koszul R. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. eLife 2014; 3:e03318. [PMID: 25517076 PMCID: PMC4381813 DOI: 10.7554/elife.03318] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
Genomic analyses of microbial populations in their natural environment remain limited by the difficulty to assemble full genomes of individual species. Consequently, the chromosome organization of microorganisms has been investigated in a few model species, but the extent to which the features described can be generalized to other taxa remains unknown. Using controlled mixes of bacterial and yeast species, we developed meta3C, a metagenomic chromosome conformation capture approach that allows characterizing individual genomes and their average organization within a mix of organisms. Not only can meta3C be applied to species already sequenced, but a single meta3C library can be used for assembling, scaffolding and characterizing the tridimensional organization of unknown genomes. By applying meta3C to a semi-complex environmental sample, we confirmed its promising potential. Overall, this first meta3C study highlights the remarkable diversity of microorganisms chromosome organization, while providing an elegant and integrated approach to metagenomic analysis. DOI:http://dx.doi.org/10.7554/eLife.03318.001 Microbial communities play vital roles in the environment and sustain animal and plant life. Marine microbes are part of the ocean's food chain; soil microbes support the turnover of major nutrients and facilitate plant growth; and the microbial communities residing in the human gut support digestion and the immune system, among other roles. These communities are very complex systems, often containing 1000s of different species engaged in co-dependent relationships, and are therefore very difficult to study. The entire DNA sequence of an organism constitutes its genome, and much of this genetic information is stored in large structures called chromosomes. Examining the genome of a species can provide important clues about its lifestyle and how it evolved. To do this, DNA is extracted from cells and is then usually cut into smaller fragments, amplified, and sequenced. The small stretches of sequence obtained, called reads, are finally assembled, yielding ideally the complete genome of the organism under study. Metagenomics attempts to interpret the combined genome of all the different species in a microbial community and has been instrumental in deciphering how the different species interact with each other. Metagenomics involves sequencing stretches of the community's DNA and matching these pieces to individual species to ultimately assemble whole genomes. While this may be a relatively straightforward task for communities that contain only a handful of members, the metagenomes derived from complex microbial communities are huge, fragmented, and incomplete. This often makes it very difficult or even nearly impossible to match the inferred DNA stretches to individual species. A method called chromosome conformation capture (or ‘3C’ for short) can reveal the physical contacts between different regions of a chromosome and between the different chromosomes of a cell. How often each of these chromosomal contacts occurs provides a kind of physical signature to each genome and each individual chromosome within it. Marbouty et al. took advantage of these interactions to develop a technique that combines metagenomics and chromosome conformation capture—called meta3C—that can analyze the DNA of many different species mixed together. Testing meta3C on artificial mixtures of a few species of yeast or bacteria showed that meta3C can separate the genomes of the different species without any prior knowledge of the composition of the mix. In a single experiment, meta3C can identify individual chromosomes, match each of them to its species of origin, and reveal the three-dimensional structure of each genome in the mix. Further tests showed that meta3C can also interpret more complex communities where the number and types of the species present are not known. Meta3C holds great promise for understanding how microbial communities work and how the genomes of the species within a community are organized. However, further developments of the technique will be required to investigate communities as diverse as those present in most natural environments. DOI:http://dx.doi.org/10.7554/eLife.03318.002
Collapse
Affiliation(s)
- Martial Marbouty
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Axel Cournac
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Jean-François Flot
- Biological Physics and Evolutionary Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Hervé Marie-Nelly
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Julien Mozziconacci
- Department of Physics, Laboratoire de physique théorique de la matière condensée, Université Pierre et Marie Curie, Paris, France
| | - Romain Koszul
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, Paris, France
| |
Collapse
|
139
|
Diament A, Pinter RY, Tuller T. Three-dimensional eukaryotic genomic organization is strongly correlated with codon usage expression and function. Nat Commun 2014; 5:5876. [PMID: 25510862 DOI: 10.1038/ncomms6876] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 11/17/2014] [Indexed: 01/08/2023] Open
Abstract
It has been shown that the distribution of genes in eukaryotic genomes is not random; however, formerly reported relations between gene function and genomic organization were relatively weak. Previous studies have demonstrated that codon usage bias is related to all stages of gene expression and to protein function. Here we apply a novel tool for assessing functional relatedness, codon usage frequency similarity (CUFS), which measures similarity between genes in terms of codon and amino acid usage. By analyzing chromosome conformation capture data, describing the three-dimensional (3D) conformation of the DNA, we show that the functional similarity between genes captured by CUFS is directly and very strongly correlated with their 3D distance in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, mouse and human. This emphasizes the importance of three-dimensional genomic localization in eukaryotes and indicates that codon usage is tightly linked to genome architecture.
Collapse
Affiliation(s)
- Alon Diament
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ron Y Pinter
- Department of Computer Science, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tamir Tuller
- 1] Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel [2] The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
140
|
Srinivasan R, Scolari VF, Lagomarsino MC, Seshasayee ASN. The genome-scale interplay amongst xenogene silencing, stress response and chromosome architecture in Escherichia coli. Nucleic Acids Res 2014; 43:295-308. [PMID: 25429971 PMCID: PMC4288151 DOI: 10.1093/nar/gku1229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The gene expression state of exponentially growing Escherichia coli cells is manifested by high expression of essential and growth-associated genes and low levels of stress-related and horizontally acquired genes. An important player in maintaining this homeostasis is the H-NS-StpA gene silencing system. A Δhns-stpA deletion mutant results in high expression of otherwise-silent horizontally acquired genes, many located in the terminus-half of the chromosome, and an indirect downregulation of many highly expressed genes. The Δhns-stpA double mutant displays slow growth. Using laboratory evolution we address the evolutionary strategies that E. coli would adopt to redress this gene expression imbalance. We show that two global gene regulatory mutations-(i) point mutations inactivating the stress-responsive sigma factor RpoS or σ38 and (ii) an amplification of ∼40% of the chromosome centred around the origin of replication-converge in partially reversing the global gene expression imbalance caused by Δhns-stpA. Transcriptome data of these mutants further show a three-way link amongst the global gene regulatory networks of H-NS and σ38, as well as chromosome architecture. Increasing gene expression around the terminus of replication results in a decrease in the expression of genes around the origin and vice versa; this appears to be a persistent phenomenon observed as an association across ∼300 publicly-available gene expression data sets for E. coli. These global suppressor effects are transient and rapidly give way to more specific mutations, whose roles in reversing the growth defect of H-NS mutations remain to be understood.
Collapse
Affiliation(s)
- Rajalakshmi Srinivasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104, India
| | - Vittore Ferdinando Scolari
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104, India Genomic Physics Group, UMR 7238 CNRS Microorganism Genomics, UPMC, Paris, France
| | - Marco Cosentino Lagomarsino
- Genomic Physics Group, UMR 7238 CNRS Microorganism Genomics, UPMC, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, 15 Rue de l'École de Médecine Paris, France CNRS, UMR 7238, Paris, France
| | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India
| |
Collapse
|
141
|
Ay F, Bunnik EM, Varoquaux N, Vert JP, Noble WS, Le Roch KG. Multiple dimensions of epigenetic gene regulation in the malaria parasite Plasmodium falciparum: gene regulation via histone modifications, nucleosome positioning and nuclear architecture in P. falciparum. Bioessays 2014; 37:182-94. [PMID: 25394267 DOI: 10.1002/bies.201400145] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasmodium falciparum is the most deadly human malarial parasite, responsible for an estimated 207 million cases of disease and 627,000 deaths in 2012. Recent studies reveal that the parasite actively regulates a large fraction of its genes throughout its replicative cycle inside human red blood cells and that epigenetics plays an important role in this precise gene regulation. Here, we discuss recent advances in our understanding of three aspects of epigenetic regulation in P. falciparum: changes in histone modifications, nucleosome occupancy and the three-dimensional genome structure. We compare these three aspects of the P. falciparum epigenome to those of other eukaryotes, and show that large-scale compartmentalization is particularly important in determining histone decomposition and gene regulation in P. falciparum. We conclude by presenting a gene regulation model for P. falciparum that combines the described epigenetic factors, and by discussing the implications of this model for the future of malaria research.
Collapse
Affiliation(s)
- Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
142
|
Abstract
One of the most important discoveries in the field of microbiology in the last two decades is that bacterial cells have intricate subcellular organization. This understanding has emerged mainly from the depiction of spatial and temporal organization of proteins in specific domains within bacterial cells, e.g., midcell, cell poles, membrane and periplasm. Because translation of bacterial RNA molecules was considered to be strictly coupled to their synthesis, they were not thought to specifically localize to regions outside the nucleoid. However, the increasing interest in RNAs, including non-coding RNAs, encouraged researchers to explore the spatial and temporal localization of RNAs in bacteria. The recent technological improvements in the field of fluorescence microscopy allowed subcellular imaging of RNAs even in the tiny bacterial cells. It has been reported by several groups, including ours that transcripts may specifically localize in such cells. Here we review what is known about localization of RNA and of the pathways that determine RNA fate in bacteria, and discuss the possible cues and mechanisms underlying these distribution patterns.
Collapse
Affiliation(s)
- Avi-ad Avraam Buskila
- a Department of Microbiology and Molecular Genetics; IMRIC ; The Hebrew University Faculty of Medicine ; Israel
| | | | | |
Collapse
|
143
|
Le TB, Laub MT. New approaches to understanding the spatial organization of bacterial genomes. Curr Opin Microbiol 2014; 22:15-21. [PMID: 25305533 DOI: 10.1016/j.mib.2014.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/17/2014] [Indexed: 11/16/2022]
Abstract
In all organisms, chromosomal DNA must be compacted nearly three orders of magnitude to fit within the limited volume of a cell. However, chromosomes cannot be haphazardly packed, and instead must adopt structures compatible with numerous cellular processes, including DNA replication, chromosome segregation, recombination, and gene expression. Recent technical advances have dramatically enhanced our understanding of how chromosomes are organized in vivo and have begun to reveal the mechanisms and forces responsible. Here, we review the current arsenal of techniques used to query chromosome structure, focusing first on single-cell fluorescence microscopy approaches that directly examine chromosome structure and then on population-averaged biochemical methods that infer chromosome structure based on the interaction frequencies of different loci. We describe the power of these techniques, highlighting the major advances they have produced while also discussing their limitations.
Collapse
Affiliation(s)
- Tung Bk Le
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
144
|
Ghosh S, Mallick B, Nagaraja V. Direct regulation of topoisomerase activity by a nucleoid-associated protein. Nucleic Acids Res 2014; 42:11156-65. [PMID: 25200077 PMCID: PMC4176182 DOI: 10.1093/nar/gku804] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The topological homeostasis of bacterial chromosomes is maintained by the balance between compaction and the topological organization of genomes. Two classes of proteins play major roles in chromosome organization: the nucleoid-associated proteins (NAPs) and topoisomerases. The NAPs bind DNA to compact the chromosome, whereas topoisomerases catalytically remove or introduce supercoils into the genome. We demonstrate that HU, a major NAP of Mycobacterium tuberculosis specifically stimulates the DNA relaxation ability of mycobacterial topoisomerase I (TopoI) at lower concentrations but interferes at higher concentrations. A direct physical interaction between M. tuberculosis HU (MtHU) and TopoI is necessary for enhancing enzyme activity both in vitro and in vivo. The interaction is between the amino terminal domain of MtHU and the carboxyl terminal domain of TopoI. Binding of MtHU did not affect the two catalytic trans-esterification steps but enhanced the DNA strand passage, requisite for the completion of DNA relaxation, a new mechanism for the regulation of topoisomerase activity. An interaction-deficient mutant of MtHU was compromised in enhancing the strand passage activity. The species-specific physical and functional cooperation between MtHU and TopoI may be the key to achieve the DNA relaxation levels needed to maintain the optimal superhelical density of mycobacterial genomes.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India
| | - Bratati Mallick
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
145
|
Bartosik AA, Glabski K, Jecz P, Lasocki K, Mikosa M, Plochocka D, Thomas CM, Jagura-Burdzy G. Dissection of the region of Pseudomonas aeruginosa ParA that is important for dimerization and interactions with its partner ParB. MICROBIOLOGY-SGM 2014; 160:2406-2420. [PMID: 25139949 PMCID: PMC4219104 DOI: 10.1099/mic.0.081216-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa ParA belongs to a large subfamily of Walker-type ATPases acting as partitioning proteins in bacteria. ParA has the ability to both self-associate and interact with its partner ParB. Analysis of the deletion mutants defined the part of the protein involved in dimerization and interactions with ParB. Here, a set of ParA alanine substitution mutants in the region between E67 and L85 was created and analysed in vivo and in vitro. All mutants impaired in dimerization (substitutions at positions M74, H79, Y82 and L84) were also defective in interactions with ParB, suggesting that ParA-ParB interactions depend on the ability of ParA to dimerize. Mutants with alanine substitutions at positions E67, C68, L70, E72, F76, Q83 and L85 were not impaired in dimerization, but were defective in interactions with ParB. The dimerization interface partly overlapped the pseudo-hairpin, involved in interactions with ParB. ParA mutant derivatives tested in vitro showed no defects in ATPase activity. Two parA alleles (parA84, whose product can neither self-interact nor interact with ParB, and parA67, whose product is impaired in interactions with ParB, but not in dimerization) were introduced into the P. aeruginosa chromosome by homologous gene exchange. Both mutants showed defective separation of ParB foci, but to different extents. Only PAO1161 parA84 was visibly impaired in terms of chromosome segregation, growth rate and motility, similar to a parA-null mutant.
Collapse
Affiliation(s)
- Aneta A. Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Krzysztof Glabski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Paulina Jecz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Krzysztof Lasocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Malgorzata Mikosa
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Danuta Plochocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
146
|
Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, Dekker J, Tiana G, Heard E. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 2014; 157:950-63. [PMID: 24813616 DOI: 10.1016/j.cell.2014.03.025] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/02/2013] [Accepted: 03/06/2014] [Indexed: 11/16/2022]
Abstract
A new level of chromosome organization, topologically associating domains (TADs), was recently uncovered by chromosome conformation capture (3C) techniques. To explore TAD structure and function, we developed a polymer model that can extract the full repertoire of chromatin conformations within TADs from population-based 3C data. This model predicts actual physical distances and to what extent chromosomal contacts vary between cells. It also identifies interactions within single TADs that stabilize boundaries between TADs and allows us to identify and genetically validate key structural elements within TADs. Combining the model's predictions with high-resolution DNA FISH and quantitative RNA FISH for TADs within the X-inactivation center (Xic), we dissect the relationship between transcription and spatial proximity to cis-regulatory elements. We demonstrate that contacts between potential regulatory elements occur in the context of fluctuating structures rather than stable loops and propose that such fluctuations may contribute to asymmetric expression in the Xic during X inactivation.
Collapse
Affiliation(s)
- Luca Giorgetti
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3215, 75248 Paris Cedex 05, France; INSERM U934, 75248 Paris Cedex 05, France
| | - Rafael Galupa
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3215, 75248 Paris Cedex 05, France; INSERM U934, 75248 Paris Cedex 05, France
| | - Elphège P Nora
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France
| | - Tristan Piolot
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3215, 75248 Paris Cedex 05, France; INSERM U934, 75248 Paris Cedex 05, France
| | - France Lam
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3215, 75248 Paris Cedex 05, France; INSERM U934, 75248 Paris Cedex 05, France
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605-0103, USA
| | - Guido Tiana
- Dipartimento di Fisica, Università degli Studi di Milano and INFN, Via Celoria 16, 20133 Milano, Italy.
| | - Edith Heard
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3215, 75248 Paris Cedex 05, France; INSERM U934, 75248 Paris Cedex 05, France; Collège de France, 11 place Marcelin-Berthelot, Paris 75005, France.
| |
Collapse
|
147
|
David A, Demarre G, Muresan L, Paly E, Barre FX, Possoz C. The two Cis-acting sites, parS1 and oriC1, contribute to the longitudinal organisation of Vibrio cholerae chromosome I. PLoS Genet 2014; 10:e1004448. [PMID: 25010199 PMCID: PMC4091711 DOI: 10.1371/journal.pgen.1004448] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
The segregation of bacterial chromosomes follows a precise choreography of spatial organisation. It is initiated by the bipolar migration of the sister copies of the replication origin (ori). Most bacterial chromosomes contain a partition system (Par) with parS sites in close proximity to ori that contribute to the active mobilisation of the ori region towards the old pole. This is thought to result in a longitudinal chromosomal arrangement within the cell. In this study, we followed the duplication frequency and the cellular position of 19 Vibrio cholerae genome loci as a function of cell length. The genome of V. cholerae is divided between two chromosomes, chromosome I and II, which both contain a Par system. The ori region of chromosome I (oriI) is tethered to the old pole, whereas the ori region of chromosome II is found at midcell. Nevertheless, we found that both chromosomes adopted a longitudinal organisation. Chromosome I extended over the entire cell while chromosome II extended over the younger cell half. We further demonstrate that displacing parS sites away from the oriI region rotates the bulk of chromosome I. The only exception was the region where replication terminates, which still localised to the septum. However, the longitudinal arrangement of chromosome I persisted in Par mutants and, as was reported earlier, the ori region still localised towards the old pole. Finally, we show that the Par-independent longitudinal organisation and oriI polarity were perturbed by the introduction of a second origin. Taken together, these results suggest that the Par system is the major contributor to the longitudinal organisation of chromosome I but that the replication program also influences the arrangement of bacterial chromosomes.
Collapse
Affiliation(s)
- Ariane David
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| | - Gaëlle Demarre
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| | - Leila Muresan
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| | - Evelyne Paly
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| | - François-Xavier Barre
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
- * E-mail: (FXB); (CP)
| | - Christophe Possoz
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
- * E-mail: (FXB); (CP)
| |
Collapse
|
148
|
Chakraborty S, Mehtab S, Krishnan Y. The predictive power of synthetic nucleic acid technologies in RNA biology. Acc Chem Res 2014; 47:1710-9. [PMID: 24712860 DOI: 10.1021/ar400323d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONSPECTUS: The impact of nucleic acid nanotechnology in terms of transforming motifs from biology in synthetic and translational ways is widely appreciated. But it is also emerging that the thinking and vision behind nucleic acids as construction material has broader implications, not just in nanotechnology or even synthetic biology, but can feed back into our understanding of biology itself. Physicists have treated nucleic acids as polymers and connected physical principles to biology by abstracting out the molecular interactions. In contrast, biologists delineate molecular players and pathways related to nucleic acids and how they may be networked. But in vitro nucleic acid nanotechnology has provided a valuable framework for nucleic acids by connecting its biomolecular interactions with its materials properties and thereby superarchitecture ultramanipulation that on multiple occasions has pre-empted the elucidation of how living cells themselves are exploiting these same structural concepts. This Account seeks to showcase the larger implications of certain architectural principles that have arisen from the field of structural DNA/RNA nanotechnology in biology. Here we draw connections between these principles and particular molecular phenomena within living systems that have fed in to our understanding of how the cell uses nucleic acids as construction material to achieve different functions. We illustrate this by considering a few exciting and emerging examples in biology in the context of both switchable systems and scaffolding type systems. Due to the scope of this Account, we will focus our discussion on examples of the RNA scaffold as summarized. In the context of switchable RNA architectures, the synthetic demonstration of small molecules blocking RNA translation preceded the discovery of riboswitches. In another example, it was after the description of aptazymes that the first allosteric ribozyme, glmS, was discovered. In the context of RNA architectures as structural scaffolds, there are clear parallels between DNA origami and the recently emerging molecular mechanism of heterochromatin formation by Xist RNA. Further, following the construction of well-defined 2D DNA-protein architectures, the striking observation of remarkably sculpted 2D RNA-protein hydrogel sheets in Caenorhabditis elegans speaks to the in vivo relevance of designer nucleic acid architectures. It is noteworthy that discoveries of properties in synthetic space seem to precede the uncovering of similar phenomena in vivo.
Collapse
Affiliation(s)
- Saikat Chakraborty
- National
Centre for Biological
Sciences, TIFR, GKVK Bellary Road, Bangalore, 560065 Karnataka, India
| | - Shabana Mehtab
- National
Centre for Biological
Sciences, TIFR, GKVK Bellary Road, Bangalore, 560065 Karnataka, India
| | - Yamuna Krishnan
- National
Centre for Biological
Sciences, TIFR, GKVK Bellary Road, Bangalore, 560065 Karnataka, India
| |
Collapse
|
149
|
Beitel CW, Froenicke L, Lang JM, Korf IF, Michelmore RW, Eisen JA, Darling AE. Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. PeerJ 2014; 2:e415. [PMID: 24918035 PMCID: PMC4045339 DOI: 10.7717/peerj.415] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/15/2014] [Indexed: 12/13/2022] Open
Abstract
Metagenomics is a valuable tool for the study of microbial communities but has been limited by the difficulty of "binning" the resulting sequences into groups corresponding to the individual species and strains that constitute the community. Moreover, there are presently no methods to track the flow of mobile DNA elements such as plasmids through communities or to determine which of these are co-localized within the same cell. We address these limitations by applying Hi-C, a technology originally designed for the study of three-dimensional genome structure in eukaryotes, to measure the cellular co-localization of DNA sequences. We leveraged Hi-C data generated from a simple synthetic metagenome sample to accurately cluster metagenome assembly contigs into groups that contain nearly complete genomes of each species. The Hi-C data also reliably associated plasmids with the chromosomes of their host and with each other. We further demonstrated that Hi-C data provides a long-range signal of strain-specific genotypes, indicating such data may be useful for high-resolution genotyping of microbial populations. Our work demonstrates that Hi-C sequencing data provide valuable information for metagenome analyses that are not currently obtainable by other methods. This metagenomic Hi-C method could facilitate future studies of the fine-scale population structure of microbes, as well as studies of how antibiotic resistance plasmids (or other genetic elements) mobilize in microbial communities. The method is not limited to microbiology; the genetic architecture of other heterogeneous populations of cells could also be studied with this technique.
Collapse
Affiliation(s)
| | - Lutz Froenicke
- The University of California, Davis Genome Center , Davis, CA , USA
| | - Jenna M Lang
- The University of California, Davis Genome Center , Davis, CA , USA
| | - Ian F Korf
- The University of California, Davis Genome Center , Davis, CA , USA ; Department of Molecular and Cellular Biology, University of California , Davis, CA , USA
| | - Richard W Michelmore
- The University of California, Davis Genome Center , Davis, CA , USA ; Department of Molecular and Cellular Biology, University of California , Davis, CA , USA ; Department of Plant Sciences, University of California , Davis, CA , USA
| | - Jonathan A Eisen
- The University of California, Davis Genome Center , Davis, CA , USA ; Department of Medical Microbiology and Immunology, University of California , Davis, CA , USA ; Department of Evolution and Ecology, University of California , Davis, CA , USA
| | - Aaron E Darling
- ithree institute, University of Technology Sydney , Sydney, NSW , Australia
| |
Collapse
|
150
|
Weng X, Xiao J. Spatial organization of transcription in bacterial cells. Trends Genet 2014; 30:287-97. [PMID: 24862529 DOI: 10.1016/j.tig.2014.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/27/2022]
Abstract
Prokaryotic transcription has been extensively studied over the past half a century. However, there often exists a gap between the structural, mechanistic description of transcription obtained from in vitro biochemical studies, and the cellular, phenomenological observations from in vivo genetic studies. It is now accepted that a living bacterial cell is a complex entity; the heterogeneous cellular environment is drastically different from the homogenous, well-mixed situation in vitro. Where molecules are inside a cell may be important for their function; hence, the spatial organization of different molecular components may provide a new means of transcription regulation in vivo, possibly bridging this gap. In this review, we survey current evidence for the spatial organization of four major components of transcription [genes, transcription factors, RNA polymerase (RNAP) and RNAs] and critically analyze their biological significance.
Collapse
Affiliation(s)
- Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|