101
|
Chong PA, Forman-Kay JD. Oxidative Inhibition of Pbp1 Phase Separation. Biochemistry 2019; 58:3057-3059. [PMID: 31282150 DOI: 10.1021/acs.biochem.9b00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- P Andrew Chong
- Molecular Medicine Program , The Hospital for Sick Children , Toronto , ON M5G 0A4 , Canada
| | - Julie D Forman-Kay
- Molecular Medicine Program , The Hospital for Sick Children , Toronto , ON M5G 0A4 , Canada.,Department of Biochemistry , University of Toronto , Toronto , ON M5S 1A8 , Canada
| |
Collapse
|
102
|
Yu R, Sun L, Sun Y, Han X, Qin L, Dang W. Cellular response to moderate chromatin architectural defects promotes longevity. SCIENCE ADVANCES 2019; 5:eaav1165. [PMID: 31309140 PMCID: PMC6620092 DOI: 10.1126/sciadv.aav1165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 05/30/2019] [Indexed: 05/05/2023]
Abstract
Changes in chromatin organization occur during aging. Overexpression of histones partially alleviates these changes and promotes longevity. We report that deletion of the histone H3-H4 minor locus HHT1-HHF1 extended the replicative life span of Saccharomyces cerevisiae. This longevity effect was mediated through TOR signaling inhibition. We present evidence for evolutionarily conserved transcriptional and phenotypic responses to defects in chromatin structure, collectively termed the chromatin architectural defect (CAD) response. Promoters of the CAD response genes were sensitive to histone dosage, with HHT1-HHF1 deletion, nucleosome occupancy was reduced at these promoters allowing transcriptional activation induced by stress response transcription factors Msn2 and Gis1, both of which were required for the life-span extension of hht1-hhf1Δ. Therefore, we conclude that the CAD response induced by moderate chromatin defects promotes longevity.
Collapse
Affiliation(s)
- Ruofan Yu
- Department of Molecular and Human Genetics, and Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luyang Sun
- Department of Molecular and Human Genetics, and Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Sun
- Department of Molecular and Human Genetics, and Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Han
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, and Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author.
| |
Collapse
|
103
|
Guarino AM, Mauro GD, Ruggiero G, Geyer N, Delicato A, Foulkes NS, Vallone D, Calabrò V. YB-1 recruitment to stress granules in zebrafish cells reveals a differential adaptive response to stress. Sci Rep 2019; 9:9059. [PMID: 31227764 PMCID: PMC6588705 DOI: 10.1038/s41598-019-45468-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 06/04/2019] [Indexed: 01/14/2023] Open
Abstract
The survival of cells exposed to adverse environmental conditions entails various alterations in cellular function including major changes in the transcriptome as well as a radical reprogramming of protein translation. While in mammals this process has been extensively studied, stress responses in non-mammalian vertebrates remain poorly understood. One of the key cellular responses to many different types of stressors is the transient generation of structures called stress granules (SGs). These represent cytoplasmic foci where untranslated mRNAs are sorted or processed for re-initiation, degradation, or packaging into mRNPs. Here, using the evolutionarily conserved Y-box binding protein 1 (YB-1) and G3BP1 as markers, we have studied the formation of stress granules in zebrafish (D. rerio) in response to different environmental stressors. We show that following heat shock, zebrafish cells, like mammalian cells, form stress granules which contain both YB-1 and G3BP1 proteins. Moreover, zfYB-1 knockdown compromises cell viability, as well as recruitment of G3BP1 into SGs, under heat shock conditions highlighting the essential role played by YB-1 in SG assembly and cell survival. However, zebrafish PAC2 cells do not assemble YB-1-positive stress granules upon oxidative stress induced by arsenite, copper or hydrogen peroxide treatment. This contrasts with the situation in human cells where SG formation is robustly induced by exposure to oxidative stressors. Thus, our findings point to fundamental differences in the mechanisms whereby mammalian and zebrafish cells respond to oxidative stress.
Collapse
Affiliation(s)
- Andrea Maria Guarino
- University of Naples Federico II, Department of Biology, Monte Sant'Angelo Campus, Via Cinthia 4, Naples, 80126, Italy
| | - Giuseppe Di Mauro
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,University of Ferrara, Department of Life Sciences and Biotechnology, Via Borsari 46, 44121, Ferrara, Italy
| | - Gennaro Ruggiero
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nathalie Geyer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Antonella Delicato
- University of Naples Federico II, Department of Biology, Monte Sant'Angelo Campus, Via Cinthia 4, Naples, 80126, Italy
| | - Nicholas S Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Daniela Vallone
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Viola Calabrò
- University of Naples Federico II, Department of Biology, Monte Sant'Angelo Campus, Via Cinthia 4, Naples, 80126, Italy.
| |
Collapse
|
104
|
Ahmed K, Carter DE, Lajoie P. Hyperactive
TORC
1 sensitizes yeast cells to endoplasmic reticulum stress by compromising cell wall integrity. FEBS Lett 2019; 593:1957-1973. [DOI: 10.1002/1873-3468.13463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Khadija Ahmed
- Department of Anatomy and Cell Biology The University of Western Ontario London Canada
| | - David E. Carter
- Robarts Research Institute The University of Western Ontario London Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology The University of Western Ontario London Canada
| |
Collapse
|
105
|
Abstract
Recently in Cell, Kato et al. (2019) and Yang et al. (2019) report that reversible oxidation of multiple methionines in a region of Pbp1, the yeast paralog of ataxin-2 protein, couples metabolic redox status to phase separation of Pbp1 into liquid-like condensates. In turn, Pbp1 condensates inhibit target of rapamycin complex 1 (TORC1) signaling and thereby induce autophagy and restore metabolic homeostasis.
Collapse
Affiliation(s)
- Manoel Prouteau
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva Medical School (CMU) 1, rue Michel-Servet, CH - 1211 Geneva 4, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva Medical School (CMU) 1, rue Michel-Servet, CH - 1211 Geneva 4, Switzerland; Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, Sciences II, Room 3-308, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland.
| |
Collapse
|
106
|
Kosmacz M, Gorka M, Schmidt S, Luzarowski M, Moreno JC, Szlachetko J, Leniak E, Sokolowska EM, Sofroni K, Schnittger A, Skirycz A. Protein and metabolite composition of Arabidopsis stress granules. THE NEW PHYTOLOGIST 2019; 222:1420-1433. [PMID: 30664249 DOI: 10.1111/nph.15690] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 05/06/2023]
Abstract
Stress granules (SGs) are evolutionary conserved aggregates of proteins and untranslated mRNAs formed in response to stress. Despite their importance for stress adaptation, no complete proteome composition has been reported for plant SGs. In this study, we addressed the existing gap. Importantly, we also provide evidence for metabolite sequestration within the SGs. To isolate SGs we used Arabidopsis seedlings expressing green fluorescent protein (GFP) fusion of the SGs marker protein, Rbp47b, and an experimental protocol combining differential centrifugation with affinity purification (AP). SGs isolates were analysed using mass spectrometry-based proteomics and metabolomics. A quarter of the identified proteins constituted known or predicted SG components. Intriguingly, the remaining proteins were enriched in key enzymes and regulators, such as cyclin-dependent kinase A (CDKA), that mediate plant responses to stress. In addition to proteins, nucleotides, amino acids and phospholipids also accumulated in SGs. Taken together, our results indicated the presence of a preexisting SG protein interaction network; an evolutionary conservation of the proteins involved in SG assembly and dynamics; an important role for SGs in moderation of stress responses by selective storage of proteins and metabolites.
Collapse
Affiliation(s)
- Monika Kosmacz
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Michał Gorka
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Stephan Schmidt
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Juan C Moreno
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Jagoda Szlachetko
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Ewa Leniak
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | | | - Kostika Sofroni
- Department of Developmental Biology, University of Hamburg, 22069, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, 22069, Hamburg, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| |
Collapse
|
107
|
Yeast Ataxin-2 Forms an Intracellular Condensate Required for the Inhibition of TORC1 Signaling during Respiratory Growth. Cell 2019; 177:697-710.e17. [PMID: 30982600 DOI: 10.1016/j.cell.2019.02.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 10/04/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Yeast ataxin-2, also known as Pbp1 (polyA binding protein-binding protein 1), is an intrinsically disordered protein implicated in stress granule formation, RNA biology, and neurodegenerative disease. To understand the endogenous function of this protein, we identify Pbp1 as a dedicated regulator of TORC1 signaling and autophagy under conditions that require mitochondrial respiration. Pbp1 binds to TORC1 specifically during respiratory growth, but utilizes an additional methionine-rich, low complexity (LC) region to inhibit TORC1. This LC region causes phase separation, forms reversible fibrils, and enables self-association into assemblies required for TORC1 inhibition. Mutants that weaken phase separation in vitro exhibit reduced capacity to inhibit TORC1 and induce autophagy. Loss of Pbp1 leads to mitochondrial dysfunction and reduced fitness during nutritional stress. Thus, Pbp1 forms a condensate in response to respiratory status to regulate TORC1 signaling.
Collapse
|
108
|
Suda K, Kaneko A, Shimobayashi M, Nakashima A, Maeda T, Hall MN, Ushimaru T. TORC1 regulates autophagy induction in response to proteotoxic stress in yeast and human cells. Biochem Biophys Res Commun 2019; 511:434-439. [PMID: 30797551 DOI: 10.1016/j.bbrc.2019.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 11/18/2022]
Abstract
Misfolded and aggregated proteins are eliminated to maintain protein homeostasis. Autophagy contributes to the removal of protein aggregates. However, if and how proteotoxic stress induces autophagy is poorly understood. Here we show that proteotoxic stress after treatment with azetidine-2-carboxylic acid (AZC), a toxic proline analog, induces autophagy in budding yeast. AZC treatment attenuated target of rapamycin complex 1 (TORC1) activity, resulting in the dephosphorylation of Atg13, a key factor of autophagy. By contrast, AZC treatment did not affect target of rapamycin complex 2 (TORC2). Proteotoxic stress also induced TORC1 inactivation and autophagy in fission yeast and human cells. This study suggested that TORC1 is a conserved key factor to cope with proteotoxic stress in eukaryotic cells.
Collapse
Affiliation(s)
- Kazuki Suda
- Department of Biological Science, Shizuoka University, Shizuoka, 422-8021, Japan
| | - Atsuki Kaneko
- Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8021, Japan
| | | | - Akio Nakashima
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Michael N Hall
- Biozentrum, University of Basel, 4056, Basel, Switzerland, Switzerland
| | - Takashi Ushimaru
- Department of Biological Science, Shizuoka University, Shizuoka, 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8021, Japan.
| |
Collapse
|
109
|
Jiang Y, Berg MD, Genereaux J, Ahmed K, Duennwald ML, Brandl CJ, Lajoie P. Sfp1 links TORC1 and cell growth regulation to the yeast SAGA‐complex component Tra1 in response to polyQ proteotoxicity. Traffic 2019; 20:267-283. [DOI: 10.1111/tra.12637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Yuwei Jiang
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
| | - Matthew D. Berg
- Department of BiochemistryThe University of Western Ontario London Ontario Canada
| | - Julie Genereaux
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
- Department of BiochemistryThe University of Western Ontario London Ontario Canada
| | - Khadija Ahmed
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
| | - Martin L. Duennwald
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
- Department of Pathology and Laboratory MedicineThe University of Western Ontario London Ontario Canada
| | | | - Patrick Lajoie
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
| |
Collapse
|
110
|
Wang Z, Zhang H. Phase Separation, Transition, and Autophagic Degradation of Proteins in Development and Pathogenesis. Trends Cell Biol 2019; 29:417-427. [PMID: 30826216 DOI: 10.1016/j.tcb.2019.01.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 01/03/2023]
Abstract
Phase separation and transition control the assembly and material states (liquid, gel like, or solid) of protein condensates to ensure that distinct cellular functions occur in a spatiotemporally controlled manner. The assembly and biophysical properties of condensates are precisely regulated by chaperone proteins, post-translational modifications (PTMs), and numerous cellular factors. Phase separation also triages misfolded and unwanted proteins for autophagic degradation. The concerted actions of receptor proteins, scaffold proteins, and PTMs determine the size, assembly rate, and material properties of condensates for efficient removal. Altered phase separation and transition affect the degradation of protein condensates, resulting in their accumulation under certain developmental and pathological conditions. Elucidation of the role of phase separation and transition in the degradation of disease-related protein condensates will provide insights into the molecular mechanism underlying the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Zheng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
111
|
Chen DD, Shi L, Yue SN, Zhang TJ, Wang SL, Liu YN, Ren A, Zhu J, Yu HS, Zhao MW. The Slt2-MAPK pathway is involved in the mechanism by which target of rapamycin regulates cell wall components in Ganoderma lucidum. Fungal Genet Biol 2019; 123:70-77. [DOI: 10.1016/j.fgb.2018.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
|
112
|
Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc Natl Acad Sci U S A 2019; 116:2097-2102. [PMID: 30674674 PMCID: PMC6369741 DOI: 10.1073/pnas.1815767116] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The integrated stress response (ISR) protects cells from a variety of harmful stressors by temporarily halting protein synthesis. However, chronic ISR activation has pathological consequences and is linked to several neurological disorders. Pharmacological inhibition of chronic ISR activity emerges as a powerful strategy to treat ISR-mediated neurodegeneration but is typically linked to adverse effects due to the ISR’s importance for normal cellular function. Paradoxically, the small-molecule ISR inhibitor ISRIB has promising therapeutic potential in vivo without overt side effects. We demonstrate here that ISRIB inhibits low-level ISR activity, but does not affect strong ISR signaling. We thereby provide a plausible mechanism of how ISRIB counteracts toxic chronic ISR activity, without disturbing the cytoprotective effects of a strong acute ISR. Activation of the integrated stress response (ISR) by a variety of stresses triggers phosphorylation of the α-subunit of translation initiation factor eIF2. P-eIF2α inhibits eIF2B, the guanine nucleotide exchange factor that recycles inactive eIF2•GDP to active eIF2•GTP. eIF2 phosphorylation thereby represses translation. Persistent activation of the ISR has been linked to the development of several neurological disorders, and modulation of the ISR promises new therapeutic strategies. Recently, a small-molecule ISR inhibitor (ISRIB) was identified that rescues translation in the presence of P-eIF2α by facilitating the assembly of more active eIF2B. ISRIB enhances cognitive memory processes and has therapeutic effects in brain-injured mice without displaying overt side effects. While using ISRIB to investigate the ISR in picornavirus-infected cells, we observed that ISRIB rescued translation early in infection when P-eIF2α levels were low, but not late in infection when P-eIF2α levels were high. By treating cells with varying concentrations of poly(I:C) or arsenite to induce the ISR, we provide additional proof that ISRIB is unable to inhibit the ISR when intracellular P-eIF2α concentrations exceed a critical threshold level. Together, our data demonstrate that the effects of pharmacological activation of eIF2B are tuned by P-eIF2α concentration. Thus, ISRIB can mitigate undesirable outcomes of low-level ISR activation that may manifest neurological disease but leaves the cytoprotective effects of acute ISR activation intact. The insensitivity of cells to ISRIB during acute ISR may explain why ISRIB does not cause overt toxic side effects in vivo.
Collapse
|
113
|
Nutrient Signaling via the TORC1-Greatwall-PP2A B55δ Pathway Is Responsible for the High Initial Rates of Alcoholic Fermentation in Sake Yeast Strains of Saccharomyces cerevisiae. Appl Environ Microbiol 2018; 85:AEM.02083-18. [PMID: 30341081 DOI: 10.1128/aem.02083-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/13/2018] [Indexed: 01/14/2023] Open
Abstract
Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 (K7) and its relatives carry a homozygous loss-of-function mutation in the RIM15 gene, which encodes a Greatwall family protein kinase. Disruption of RIM15 in nonsake yeast strains leads to improved alcoholic fermentation, indicating that the defect in Rim15p is associated with the enhanced fermentation performance of sake yeast cells. In order to understand how Rim15p mediates fermentation control, we here focused on target-of-rapamycin protein kinase complex 1 (TORC1) and protein phosphatase 2A with the B55δ regulatory subunit (PP2AB55δ), complexes that are known to act upstream and downstream of Rim15p, respectively. Several lines of evidence, including our previous transcriptomic analysis data, suggested enhanced TORC1 signaling in sake yeast cells during sake fermentation. Fermentation tests of the TORC1-related mutants using a laboratory strain revealed that TORC1 signaling positively regulates the initial fermentation rate in a Rim15p-dependent manner. Deletion of the CDC55 gene, encoding B55δ, abolished the high fermentation performance of Rim15p-deficient laboratory yeast and sake yeast cells, indicating that PP2AB55δ mediates the fermentation control by TORC1 and Rim15p. The TORC1-Greatwall-PP2AB55δ pathway similarly affected the fermentation rate in the fission yeast Schizosaccharomyces pombe, strongly suggesting that the evolutionarily conserved pathway governs alcoholic fermentation in yeasts. It is likely that elevated PP2AB55δ activity accounts for the high fermentation performance of sake yeast cells. Heterozygous loss-of-function mutations in CDC55 found in K7-related sake strains may indicate that the Rim15p-deficient phenotypes are disadvantageous to cell survival.IMPORTANCE The biochemical processes and enzymes responsible for glycolysis and alcoholic fermentation by the yeast S. cerevisiae have long been the subject of scientific research. Nevertheless, the factors determining fermentation performance in vivo are not fully understood. As a result, the industrial breeding of yeast strains has required empirical characterization of fermentation by screening numerous mutants through laborious fermentation tests. To establish a rational and efficient breeding strategy, key regulators of alcoholic fermentation need to be identified. In the present study, we focused on how sake yeast strains of S. cerevisiae have acquired high alcoholic fermentation performance. Our findings provide a rational molecular basis to design yeast strains with optimal fermentation performance for production of alcoholic beverages and bioethanol. In addition, as the evolutionarily conserved TORC1-Greatwall-PP2AB55δ pathway plays a major role in the glycolytic control, our work may contribute to research on carbohydrate metabolism in higher eukaryotes.
Collapse
|
114
|
Prouteau M, Loewith R. Regulation of Cellular Metabolism through Phase Separation of Enzymes. Biomolecules 2018; 8:biom8040160. [PMID: 30513998 PMCID: PMC6316564 DOI: 10.3390/biom8040160] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
Metabolism is the sum of the life-giving chemical processes that occur within a cell. Proper regulation of these processes is essential for all organisms to thrive and prosper. When external factors are too extreme, or if internal regulation is corrupted through genetic or epigenetic changes, metabolic homeostasis is no longer achievable and diseases such as metabolic syndrome or cancer, aging, and, ultimately, death ensue. Metabolic reactions are catalyzed by proteins, and the in vitro kinetic properties of these enzymes have been studied by biochemists for many decades. These efforts led to the appreciation that enzyme activities can be acutely regulated and that this regulation is critical to metabolic homeostasis. Regulation can be mediated through allosteric interactions with metabolites themselves or via post-translational modifications triggered by intracellular signal transduction pathways. More recently, enzyme regulation has attracted the attention of cell biologists who noticed that change in growth conditions often triggers the condensation of diffusely localized enzymes into one or more discrete foci, easily visible by light microscopy. This reorganization from a soluble to a condensed state is best described as a phase separation. As summarized in this review, stimulus-induced phase separation has now been observed for dozens of enzymes suggesting that this could represent a widespread mode of activity regulation, rather than, or in addition to, a storage form of temporarily superfluous enzymes. Building on our recent structure determination of TOROIDs (TORc1 Organized in Inhibited Domain), the condensate formed by the protein kinase Target Of Rapamycin Complex 1 (TORC1), we will highlight that the molecular organization of enzyme condensates can vary dramatically and that future work aimed at the structural characterization of enzyme condensates will be critical to understand how phase separation regulates enzyme activity and consequently metabolic homeostasis. This information may ultimately facilitate the design of strategies to target the assembly or disassembly of specific enzymes condensates as a therapeutic approach to restore metabolic homeostasis in certain diseases.
Collapse
Affiliation(s)
- Manoël Prouteau
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland.
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland.
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland.
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland.
- Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, Sciences II, Room 3-308, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland.
| |
Collapse
|
115
|
Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes. Sci Rep 2018; 8:16500. [PMID: 30405153 PMCID: PMC6220292 DOI: 10.1038/s41598-018-34908-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/26/2018] [Indexed: 11/08/2022] Open
Abstract
The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance, but a compensatory response is triggered, with catalase and glutathione increasing. Unexpectedly, TRR1 deletion causes sensitivity to the inhibitors of the TORC1 pathway, such as rapamycin. This correlates with low Tor2p kinase levels and indicates a direct role of Trr1p in its stability. Markers of TORC1 activity, however, suggest increased TORC1 activity. The autophagy caused by nitrogen starvation is reduced in the trr1Δ mutant. Ribosomal protein Rsp6p is dephosphorylated in the presence of rapamycin. This dephosphorylation diminishes in the TRR1 deletion strain. These results show a complex network of interactions between thioredoxin reductase Trr1p and the processes controlled by TOR.
Collapse
|
116
|
Brambilla M, Martani F, Bertacchi S, Vitangeli I, Branduardi P. The Saccharomyces cerevisiae
poly (A) binding protein (Pab1): Master regulator of mRNA metabolism and cell physiology. Yeast 2018; 36:23-34. [DOI: 10.1002/yea.3347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marco Brambilla
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Francesca Martani
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Stefano Bertacchi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Ilaria Vitangeli
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
117
|
Varlakhanova NV, Tornabene BA, Ford MGJ. Ivy1 is a negative regulator of Gtr-dependent TORC1 activation. J Cell Sci 2018; 131:jcs.218305. [PMID: 30097557 DOI: 10.1242/jcs.218305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022] Open
Abstract
The highly conserved TORC1 complex controls cell growth in response to nutrients, especially amino acids. The EGO complex activates TORC1 in response to glutamine and leucine. Here, we demonstrate that the I-BAR domain-containing protein Ivy1 colocalizes with Gtr1 and Gtr2, a heterodimer of small GTPases that are part of the EGO complex. Ivy1 is a negative regulator of Gtr-induced TORC1 activation, and is contained within puncta associated with the vacuolar membrane in cells grown in nutrient-rich medium or after brief nitrogen starvation. Addition of glutamine to nitrogen-starved cells leads to dissipation of Ivy1 puncta and redistribution of Ivy1 throughout the vacuolar membrane. Continued stimulation with glutamine results in concentration of Ivy1 within vacuolar membrane invaginations and its spatial separation from the EGO complex components Gtr1 and Gtr2. Disruption of vacuolar membrane invagination is associated with persistent mislocalization of Ivy1 across the vacuolar membrane and inhibition of TORC1 activity. Together, our findings illustrate a novel negative-feedback pathway that is exerted by Ivy1 on Gtr-dependent TORC1 signaling and provide insight into a potential molecular mechanism underlying TORC1 activation by vacuolar membrane remodeling.
Collapse
Affiliation(s)
- Natalia V Varlakhanova
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - Bryan A Tornabene
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
118
|
Bovaird S, Patel D, Padilla JCA, Lécuyer E. Biological functions, regulatory mechanisms, and disease relevance of RNA localization pathways. FEBS Lett 2018; 592:2948-2972. [PMID: 30132838 DOI: 10.1002/1873-3468.13228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The asymmetric subcellular distribution of RNA molecules from their sites of transcription to specific compartments of the cell is an important aspect of post-transcriptional gene regulation. This involves the interplay of intrinsic cis-regulatory elements within the RNA molecules with trans-acting RNA-binding proteins and associated factors. Together, these interactions dictate the intracellular localization route of RNAs, whose downstream impacts have wide-ranging implications in cellular physiology. In this review, we examine the mechanisms underlying RNA localization and discuss their biological significance. We also review the growing body of evidence pointing to aberrant RNA localization pathways in the development and progression of diseases.
Collapse
Affiliation(s)
- Samantha Bovaird
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dhara Patel
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Juan-Carlos Alberto Padilla
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, QC, Canada
| |
Collapse
|
119
|
Crawford RA, Pavitt GD. Translational regulation in response to stress in Saccharomyces cerevisiae. Yeast 2018; 36:5-21. [PMID: 30019452 PMCID: PMC6492140 DOI: 10.1002/yea.3349] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae must dynamically alter the composition of its proteome in order to respond to diverse stresses. The reprogramming of gene expression during stress typically involves initial global repression of protein synthesis, accompanied by the activation of stress‐responsive mRNAs through both translational and transcriptional responses. The ability of specific mRNAs to counter the global translational repression is therefore crucial to the overall response to stress. Here we summarize the major repressive mechanisms and discuss mechanisms of translational activation in response to different stresses in S. cerevisiae. Taken together, a wide range of studies indicate that multiple elements act in concert to bring about appropriate translational responses. These include regulatory elements within mRNAs, altered mRNA interactions with RNA‐binding proteins and the specialization of ribosomes that each contribute towards regulating protein expression to suit the changing environmental conditions.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
120
|
Abstract
The mechanistic target of rapamycin (mTOR) is an evolutionary conserved protein with a serine/threonine kinase activity that regulates cell growth, proliferation, motility, survival, protein synthesis, autophagy and transcription. It is embedded in 2 large protein complexes: mTORC1 and mTORC2. Regulation of specific mTOR pathway functions depends on multiple GTPases, that act either as regulators of mTOR protein complexes, coupling energy availability with mTORC1 activity, or as downstream effectors of both mTORC1 and mTORC2. In this commentary, we highlight the advantages of studying the mTOR pathway in C. elegans, including the subcellular localization of the signaling pathway components and the animal phenotypes following tissue specific protein over-expression or knockdown. One important regulator that is not limited to the mTOR pathway is RHEB. We discuss in vitro and in vivo data suggesting that RHEB can function as an inhibitor of mTOR when not bound to GTP. RHEB-1 itself is regulated by Rab GDP dissociation inhibitor β, which directly binds to ATX-2. We also highlight the roles of these proteins in dietary restriction-depended reduction in animal size and fat content.
Collapse
Affiliation(s)
- Daniel Z Bar
- a National Human Genome Research Institute, National Institutes of Health , Bethesda , MD , USA
| | - Chayki Charar
- b Department of Genetics , Institute of Life Sciences, Hebrew University of Jerusalem , Jerusalem , Israel
| | - Yosef Gruenbaum
- b Department of Genetics , Institute of Life Sciences, Hebrew University of Jerusalem , Jerusalem , Israel
| |
Collapse
|
121
|
Chung CG, Lee H, Lee SB. Mechanisms of protein toxicity in neurodegenerative diseases. Cell Mol Life Sci 2018; 75:3159-3180. [PMID: 29947927 PMCID: PMC6063327 DOI: 10.1007/s00018-018-2854-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
Protein toxicity can be defined as all the pathological changes that ensue from accumulation, mis-localization, and/or multimerization of disease-specific proteins. Most neurodegenerative diseases manifest protein toxicity as one of their key pathogenic mechanisms, the details of which remain unclear. By systematically deconstructing the nature of toxic proteins, we aim to elucidate and illuminate some of the key mechanisms of protein toxicity from which therapeutic insights may be drawn. In this review, we focus specifically on protein toxicity from the point of view of various cellular compartments such as the nucleus and the mitochondria. We also discuss the cell-to-cell propagation of toxic disease proteins that complicates the mechanistic understanding of the disease progression as well as the spatiotemporal point at which to therapeutically intervene. Finally, we discuss selective neuronal vulnerability, which still remains largely enigmatic.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
122
|
mTOR Regulates Phase Separation of PGL Granules to Modulate Their Autophagic Degradation. Cell 2018; 174:1492-1506.e22. [PMID: 30173914 DOI: 10.1016/j.cell.2018.08.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/03/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
The assembly of phase-separated structures is thought to play an important role in development and disease, but little is known about the regulation and function of phase separation under physiological conditions. We showed that during C. elegans embryogenesis, PGL granules assemble via liquid-liquid phase separation (LLPS), and their size and biophysical properties determine their susceptibility to autophagic degradation. The receptor SEPA-1 promotes LLPS of PGL-1/-3, while the scaffold protein EPG-2 controls the size of PGL-1/-3 compartments and converts them into less dynamic gel-like structures. Under heat-stress conditions, mTORC1-mediated phosphorylation of PGL-1/-3 is elevated and PGL-1/-3 undergo accelerated phase separation, forming PGL granules that are resistant to autophagic degradation. Significantly, accumulation of PGL granules is an adaptive response to maintain embryonic viability during heat stress. We revealed that mTORC1-mediated LLPS of PGL-1/-3 acts as a switch-like stress sensor, coupling phase separation to autophagic degradation and adaptation to stress during development.
Collapse
|
123
|
Varlakhanova NV, Tornabene BA, Ford MGJ. Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32. Mol Biol Cell 2018; 29:2751-2765. [PMID: 30156471 PMCID: PMC6249832 DOI: 10.1091/mbc.e18-03-0158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TORC1 (target of rapamycin complex) integrates complex nutrient signals to generate and fine-tune a growth and metabolic response. Npr1 (nitrogen permease reactivator) is a downstream effector kinase of TORC1 that regulates the stability, activity, and trafficking of various nutrient permeases including the ammonium permeases Mep1, Mep2, and Mep3 and the general amino acid permease Gap1. Npr1 exerts its regulatory effects on Mep1 and Mep3 via Par32 (phosphorylated after rapamycin). Activation of Npr1 leads to phosphorylation of Par32, resulting in changes in its subcellular localization and function. Here we demonstrate that Par32 is a positive regulator of TORC1 activity. Loss of Par32 renders cells unable to recover from exposure to rapamycin and reverses the resistance to rapamycin of Δ npr1 cells. The sensitivity to rapamycin of cells lacking Par32 is dependent on Mep1 and Mep3 and the presence of ammonium, linking ammonium metabolism to TORC1 activity. Par32 function requires its conserved repeated glycine-rich motifs to be intact but, surprisingly, does not require its localization to the plasma membrane. In all, this work elucidates a novel mechanism by which Npr1 and Par32 exert regulatory feedback on TORC1.
Collapse
Affiliation(s)
- Natalia V Varlakhanova
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Bryan A Tornabene
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
124
|
P-Body Localization of the Hrr25/Casein Kinase 1 Protein Kinase Is Required for the Completion of Meiosis. Mol Cell Biol 2018; 38:MCB.00678-17. [PMID: 29915153 DOI: 10.1128/mcb.00678-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
P-bodies are liquid droplet-like compartments that lack a limiting membrane and are present in many eukaryotic cells. These structures contain specific sets of proteins and mRNAs at concentrations higher than that in the surrounding environment. Although highly conserved, the normal physiological roles of these ribonucleoprotein (RNP) granules remain poorly defined. Here, we report that P-bodies are required for the efficient completion of meiosis in the budding yeast Saccharomyces cerevisiae P-bodies were found to be present during all phases of the meiotic program and to provide protection for the Hrr25/CK1 protein kinase, a key regulator of this developmental process. A failure to associate with these RNP granules resulted in diminished levels of Hrr25 and an ensuing inability to complete meiosis. This work therefore identifies a novel function for these RNP granules and indicates how protein recruitment to these structures can have a significant impact on eukaryotic cell biology.
Collapse
|
125
|
Takeda E, Matsuura A. A substrate localization model for the selective regulation of TORC1 downstream pathways. Commun Integr Biol 2018; 11:1-4. [PMID: 30083287 PMCID: PMC6067869 DOI: 10.1080/19420889.2018.1475830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/02/2022] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a protein kinase complex conserved in eukaryotes that coordinates diverse cellular processes critical for cell growth to environmental conditions. Previous studies have shown that TORC1 is localized mainly in the lysosome/vacuoles, and its localization is important for signaling to downstream pathways. We recently demonstrated that signaling to Sch9, an S6K-related substrate of TORC1 in budding yeast, was selectively suppressed upon oxidative stress, which was mediated by the delocalization of phosphatidylinositol 3, 5-bisphosphate (PI[3,5]P2) from vacuolar membranes following stress. We propose that TORC1 downstream pathways can be regulated separately via the modulation of organelle localization of a specific target protein.
Collapse
Affiliation(s)
- Eigo Takeda
- Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
| | - Akira Matsuura
- Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan.,Graduate School of Science, Chiba University, Chiba, Japan.,Molecular Chirality Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
126
|
The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock. PLoS Genet 2018; 14:e1007563. [PMID: 30059503 PMCID: PMC6085073 DOI: 10.1371/journal.pgen.1007563] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/09/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022] Open
Abstract
RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5’ end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered. When confronted with external physical or chemical stress, cells respond by increasing the mRNA output of a small number of genes required for stress survival, while shutting down the majority of other genes. Moreover, each mRNA is regulated under stress to either enhance or diminish its translation into proteins. The overall purpose is for the cell to optimize gene expression for survival and recovery during rapidly changing conditions. Much of this regulation is mediated by RNA-binding proteins. We have isolated proteins binding to specific mRNAs induced by stress, to investigate how they affect the stress response. We found members of one protein complex to be bound to stress-induced mRNAs. When mutants lacking these proteins were exposed to stress, ribosomes were more engaged with translating mRNAs than in the wild-type. In the mutants, it was also possible to trigger expression of stress proteins with only minimal stress levels. Tracing the passage of ribosomes over mRNAs, we saw that ribosomes accumulated around the start codon in the mutants. These findings indicate that the protein complex is required to moderate the stress response and prevent it from overreacting, which would be harmful for the cell.
Collapse
|
127
|
Lee J, Kim M, Itoh TQ, Lim C. Ataxin-2: A versatile posttranscriptional regulator and its implication in neural function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1488. [PMID: 29869836 DOI: 10.1002/wrna.1488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Ataxin-2 (ATXN2) is a eukaryotic RNA-binding protein that is conserved from yeast to human. Genetic expansion of a poly-glutamine tract in human ATXN2 has been implicated in several neurodegenerative diseases, likely acting through gain-of-function effects. Emerging evidence, however, suggests that ATXN2 plays more direct roles in neural function via specific molecular and cellular pathways. ATXN2 and its associated protein complex control distinct steps in posttranscriptional gene expression, including poly-A tailing, RNA stabilization, microRNA-dependent gene silencing, and translational activation. Specific RNA substrates have been identified for the functions of ATXN2 in aspects of neural physiology, such as circadian rhythms and olfactory habituation. Genetic models of ATXN2 loss-of-function have further revealed its significance in stress-induced cytoplasmic granules, mechanistic target of rapamycin signaling, and cellular metabolism, all of which are crucial for neural homeostasis. Accordingly, we propose that molecular evolution has been selecting the ATXN2 protein complex as an important trans-acting module for the posttranscriptional control of diverse neural functions. This explains how ATXN2 intimately interacts with various neurodegenerative disease genes, and suggests that loss-of-function effects of ATXN2 could be therapeutic targets for ATXN2-related neurological disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jongbo Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Minjong Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Taichi Q Itoh
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
128
|
Alberti S, Carra S. Quality Control of Membraneless Organelles. J Mol Biol 2018; 430:4711-4729. [PMID: 29758260 DOI: 10.1016/j.jmb.2018.05.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
The formation of membraneless organelles (MLOs) by phase separation has emerged as a new way of organizing the cytoplasm and nucleoplasm of cells. Examples of MLOs forming via phase separation are nucleoli in the nucleus and stress granules in the cytoplasm. The main components of these MLOs are macromolecules such as RNAs and proteins. In order to assemble by phase separation, these proteins and RNAs have to undergo many cooperative interactions. These cooperative interactions are supported by specific molecular features within phase-separating proteins, such as multivalency and the presence of disordered domains that promote weak and transient interactions. However, these features also predispose phase-separating proteins to aberrant behavior. Indeed, evidence is emerging for a strong link between phase-separating proteins, MLOs, and age-related diseases. In this review, we discuss recent progress in understanding the formation, properties, and functions of MLOs. We pay special attention to the emerging link between MLOs and age-related diseases, and we explain how changes in the composition and physical properties of MLOs promote their conversion into an aberrant state. Furthermore, we discuss the key role of the protein quality control machinery in regulating the properties and functions of MLOs and thus in preventing age-related diseases.
Collapse
Affiliation(s)
- Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Center for Neuroscience and Neurotechnology, 41125 Modena, Italy.
| |
Collapse
|
129
|
McDaniel SL, Hepperla AJ, Huang J, Dronamraju R, Adams AT, Kulkarni VG, Davis IJ, Strahl BD. H3K36 Methylation Regulates Nutrient Stress Response in Saccharomyces cerevisiae by Enforcing Transcriptional Fidelity. Cell Rep 2018; 19:2371-2382. [PMID: 28614721 DOI: 10.1016/j.celrep.2017.05.057] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/10/2017] [Accepted: 05/17/2017] [Indexed: 10/25/2022] Open
Abstract
Set2-mediated histone methylation at H3K36 regulates diverse activities, including DNA repair, mRNA splicing, and suppression of inappropriate (cryptic) transcription. Although failure of Set2 to suppress cryptic transcription has been linked to decreased lifespan, the extent to which cryptic transcription influences other cellular functions is poorly understood. Here, we uncover a role for H3K36 methylation in the regulation of the nutrient stress response pathway. We found that the transcriptional response to nutrient stress was dysregulated in SET2-deleted (set2Δ) cells and was correlated with genome-wide bi-directional cryptic transcription that originated from within gene bodies. Antisense transcripts arising from these cryptic events extended into the promoters of the genes from which they arose and were associated with decreased sense transcription under nutrient stress conditions. These results suggest that Set2-enforced transcriptional fidelity is critical to the proper regulation of inducible and highly regulated transcription programs.
Collapse
Affiliation(s)
- Stephen L McDaniel
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Austin J Hepperla
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jie Huang
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raghuvar Dronamraju
- Department of Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander T Adams
- Department of Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vidyadhar G Kulkarni
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian J Davis
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Departments of Pediatrics and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
130
|
Abstract
Stress granules are cytoplasmic mRNA-protein complexes that form upon the inhibition of translation initiation and promote cell survival in response to environmental insults. However, they are often associated with pathologies, including neurodegeneration and cancer, and changes in their dynamics are implicated in ageing. Here we show that the mTOR effector kinases S6 kinase 1 (S6K1) and S6 kinase 2 (S6K2) localise to stress granules in human cells and are required for their assembly and maintenance after mild oxidative stress. The roles of S6K1 and S6K2 are distinct, with S6K1 having a more significant role in the formation of stress granules via the regulation of eIF2α phosphorylation, while S6K2 is important for their persistence. In C. elegans, the S6 kinase orthologue RSKS-1 promotes the assembly of stress granules and its loss of function sensitises the nematodes to stress-induced death. This study identifies S6 kinases as regulators of stress granule dynamics and provides a novel link between mTOR signalling, translation inhibition and survival.
Collapse
|
131
|
Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science 2018; 357:357/6357/eaaf4382. [PMID: 28935776 DOI: 10.1126/science.aaf4382] [Citation(s) in RCA: 2564] [Impact Index Per Article: 366.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phase transitions are ubiquitous in nonliving matter, and recent discoveries have shown that they also play a key role within living cells. Intracellular liquid-liquid phase separation is thought to drive the formation of condensed liquid-like droplets of protein, RNA, and other biomolecules, which form in the absence of a delimiting membrane. Recent studies have elucidated many aspects of the molecular interactions underlying the formation of these remarkable and ubiquitous droplets and the way in which such interactions dictate their material properties, composition, and phase behavior. Here, we review these exciting developments and highlight key remaining challenges, particularly the ability of liquid condensates to both facilitate and respond to biological function and how their metastability may underlie devastating protein aggregation diseases.
Collapse
Affiliation(s)
- Yongdae Shin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
132
|
El-Naggar AM, Sorensen PH. Translational control of aberrant stress responses as a hallmark of cancer. J Pathol 2018; 244:650-666. [PMID: 29293271 DOI: 10.1002/path.5030] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
Altered mRNA translational control is emerging as a critical factor in cancer development and progression. Targeting specific elements of the translational machinery, such as mTORC1 or eIF4E, is emerging as a new strategy for innovative cancer therapy. While translation of most mRNAs takes place through cap-dependent mechanisms, a sub-population of cellular mRNA species, particularly stress-inducible mRNAs with highly structured 5'-UTR regions, are primarily translated through cap-independent mechanisms. Intriguingly, many of these mRNAs encode proteins that are involved in tumour cell adaptation to microenvironmental stress, and thus linked to aggressive behaviour including tumour invasion and metastasis. This necessitates a rigorous search for links between microenvironmental stress and aggressive tumour phenotypes. Under stress, cells block global protein synthesis to preserve energy while maintaining selective synthesis of proteins that support cell survival. One highly conserved mechanism to regulate protein synthesis under cell stress is to sequester mRNAs into cytosolic aggregates called stress granules (SGs), where their translation is silenced. SGs confer survival advantages and chemotherapeutic resistance to tumour cells under stress. Recently, it has been shown that genetically blocking SG formation dramatically reduces tumour invasive and metastatic capacity in vivo. Therefore, targeting SG formation might represent a potential treatment strategy to block cancer metastasis. Here, we present the critical link between selective mRNA translation, stress adaptation, SGs, and tumour progression. Further, we also explain how deciphering mechanisms of selective mRNA translation occurs under cell stress holds great promise for the identification of new targets in the treatment of cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Amal M El-Naggar
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada.,Department of Pathology, Faculty of Medicine, Menoufia University, Egypt
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| |
Collapse
|
133
|
|
134
|
Matos-Perdomo E, Machín F. The ribosomal DNA metaphase loop of Saccharomyces cerevisiae gets condensed upon heat stress in a Cdc14-independent TORC1-dependent manner. Cell Cycle 2018; 17:200-215. [PMID: 29166821 PMCID: PMC5884360 DOI: 10.1080/15384101.2017.1407890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Chromosome morphology in Saccharomyces cerevisiae is only visible at the microscopic level in the ribosomal DNA array (rDNA). The rDNA has been thus used as a model to characterize condensation and segregation of sister chromatids in mitosis. It has been established that the metaphase structure ("loop") depends, among others, on the condensin complex; whereas its segregation also depends on that complex, the Polo-like kinase Cdc5 and the cell cycle master phosphatase Cdc14. In addition, Cdc14 also drives rDNA hypercondensation in telophase. Remarkably, since all these components are essential for cell survival, their role on rDNA condensation and segregation was established by temperature-sensitive (ts) alleles. Here, we show that the heat stress (HS) used to inactivate ts alleles (25 ºC to 37 ºC shift) causes rDNA loop condensation in metaphase-arrested wild type cells, a result that can also be mimicked by other stresses that inhibit the TORC1 pathway. Because this condensation might challenge previous findings with ts alleles, we have repeated classical experiments of rDNA condensation and segregation, yet using instead auxin-driven degradation alleles (aid alleles). We have undertaken the protein degradation at lower temperatures (25 ºC) and concluded that the classical roles for condensin, Cdc5, Cdc14 and Cdc15 still prevailed. Thus, condensin degradation disrupts rDNA higher organization, Cdc14 and Cdc5 degradation precludes rDNA segregation and Cdc15 degradation still allows rDNA hypercompaction in telophase. Finally, we provide direct genetic evidence that this HS-mediated rDNA condensation is dependent on TORC1 but, unlike the one observed in anaphase, is independent of Cdc14.
Collapse
Affiliation(s)
- Emiliano Matos-Perdomo
- a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife , Spain.,b Universidad de La Laguna , Tenerife , Spain
| | - Félix Machín
- a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife , Spain
| |
Collapse
|
135
|
Shiraishi K, Hioki T, Habata A, Yurimoto H, Sakai Y. Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress. J Cell Sci 2018; 131:jcs.209114. [PMID: 29183915 DOI: 10.1242/jcs.209114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/22/2017] [Indexed: 11/20/2022] Open
Abstract
The yeast high-osmolarity glycerol (HOG) pathway plays a central role in stress responses. It is activated by various stresses, including hyperosmotic stress, oxidative stress, high-temperature stress and exposure to arsenite. Hog1, the crucial MAP kinase of the pathway, localizes to the nucleus in response to high osmotic concentrations, i.e. high osmolarity; but, otherwise, little is known about its intracellular dynamics and regulation. By using the methylotrophic yeast Candida boidinii, we found that CbHog1-Venus formed intracellular dot structures after high-temperature stress in a reversible manner. Microscopic observation revealed that CbHog1-mCherry colocalized with CbPab1-Venus, a marker protein of stress granules. Hog1 homologs in Pichia pastoris and Schizosaccharomyces pombe also exhibited similar dot formation under high-temperature stress, whereas Saccharomyces cerevisiae Hog1 (ScHog1)-GFP did not. Analysis of CbHog1-Venus in C. boidinii revealed that a β-sheet structure in the N-terminal region was necessary and sufficient for its localization to stress granules. Physiological studies revealed that sequestration of activated Hog1 proteins in stress granules was responsible for downregulation of Hog1 activity under high-temperature stress.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kosuke Shiraishi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan
| | - Takahiro Hioki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan
| | - Akari Habata
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan .,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, 606-8502, Kyoto, Japan
| |
Collapse
|
136
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|
137
|
Takeda E, Jin N, Itakura E, Kira S, Kamada Y, Weisman LS, Noda T, Matsuura A. Vacuole-mediated selective regulation of TORC1-Sch9 signaling following oxidative stress. Mol Biol Cell 2017; 29:510-522. [PMID: 29237820 PMCID: PMC6014174 DOI: 10.1091/mbc.e17-09-0553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
TORC1 modulates proteosynthesis, nitrogen metabolism, stress responses, and autophagy. Here it is shown that the Sch9 branch of TORC1 signaling depends specifically on vacuolar membranes and that this specificity allows the cells to regulate selectively the outputs of divergent downstream pathways in response to oxidative stress. Target of rapamycin complex 1 (TORC1) is a central cellular signaling coordinator that allows eukaryotic cells to adapt to the environment. In the budding yeast, Saccharomyces cerevisiae, TORC1 senses nitrogen and various stressors and modulates proteosynthesis, nitrogen uptake and metabolism, stress responses, and autophagy. There is some indication that TORC1 may regulate these downstream pathways individually. However, the potential mechanisms for such differential regulation are unknown. Here we show that the serine/threonine protein kinase Sch9 branch of TORC1 signaling depends specifically on the integrity of the vacuolar membrane, and this dependency originates in changes in Sch9 localization reflected by phosphatidylinositol 3,5-bisphosphate. Moreover, oxidative stress induces the delocalization of Sch9 from vacuoles, contributing to the persistent inhibition of the Sch9 branch after stress. Thus, our results establish that regulation of the vacuolar localization of Sch9 serves as a selective switch for the Sch9 branch in divergent TORC1 signaling. We propose that the Sch9 branch integrates the intrinsic activity of TORC1 kinase and vacuolar status, which is monitored by the phospholipids of the vacuolar membrane, into the regulation of macromolecular synthesis.
Collapse
Affiliation(s)
- Eigo Takeda
- Department of Nanobiology, Graduate School of Advanced Integration Science
| | | | - Eisuke Itakura
- Department of Nanobiology, Graduate School of Advanced Integration Science.,Molecular Chirality Research Center, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| | - Shintaro Kira
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| | - Yoshiaki Kamada
- Laboratory of Biological Diversity, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Lois S Weisman
- Life Sciences Institute and.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, and.,Graduate School of Frontier BioSciences, Osaka University, Osaka 565-0871, Japan
| | - Akira Matsuura
- Department of Nanobiology, Graduate School of Advanced Integration Science .,Life Sciences Institute and.,Molecular Chirality Research Center, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
138
|
Barraza CE, Solari CA, Marcovich I, Kershaw C, Galello F, Rossi S, Ashe MP, Portela P. The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae. PLoS One 2017; 12:e0185416. [PMID: 29045428 PMCID: PMC5646765 DOI: 10.1371/journal.pone.0185416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 09/12/2017] [Indexed: 11/18/2022] Open
Abstract
Cellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules (SGs) and processing bodies (PBs). Here, we examine the role of PKA in the S. cerevisiae heat shock response. Under mild heat stress Tpk3 aggregates and promotes aggregation of eIF4G, Pab1 and eIF4E, whereas severe heat stress leads to the formation of PBs and SGs that contain both Tpk2 and Tpk3 and a larger 48S translation initiation complex. Deletion of TPK2 or TPK3 impacts upon the translational response to heat stress of several mRNAs including CYC1, HSP42, HSP30 and ENO2. TPK2 deletion leads to a robust translational arrest, an increase in SGs/PBs aggregation and translational hypersensitivity to heat stress, whereas TPK3 deletion represses SGs/PBs formation, translational arrest and response for the analyzed mRNAs. Therefore, this work provides evidence indicating that Tpk2 and Tpk3 have opposing roles in translational adaptation during heat stress, and highlight how the same signaling pathway can be regulated to generate strikingly distinct physiological outputs.
Collapse
Affiliation(s)
- Carla E Barraza
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Clara A Solari
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Irina Marcovich
- Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular "Dr. Hector N. Torres", Buenos Aires, Argentina
| | - Christopher Kershaw
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Fiorella Galello
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Mark P Ashe
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Paula Portela
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| |
Collapse
|
139
|
Varlakhanova NV, Mihalevic MJ, Bernstein KA, Ford MGJ. Pib2 and the EGO complex are both required for activation of TORC1. J Cell Sci 2017; 130:3878-3890. [PMID: 28993463 DOI: 10.1242/jcs.207910] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/03/2017] [Indexed: 01/12/2023] Open
Abstract
The TORC1 complex is a key regulator of cell growth and metabolism in Saccharomyces cerevisiae The vacuole-associated EGO complex couples activation of TORC1 to the availability of amino acids, specifically glutamine and leucine. The EGO complex is also essential for reactivation of TORC1 following rapamycin-induced growth arrest and for its distribution on the vacuolar membrane. Pib2, a FYVE-containing phosphatidylinositol 3-phosphate (PI3P)-binding protein, is a newly discovered and poorly characterized activator of TORC1. Here, we show that Pib2 is required for reactivation of TORC1 following rapamycin-induced growth arrest. Pib2 is required for EGO complex-mediated activation of TORC1 by glutamine and leucine as well as for redistribution of Tor1 on the vacuolar membrane. Therefore, Pib2 and the EGO complex cooperate to activate TORC1 and connect phosphoinositide 3-kinase (PI3K) signaling and TORC1 activity.
Collapse
Affiliation(s)
- Natalia V Varlakhanova
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | - Michael J Mihalevic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Marijn G J Ford
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
140
|
Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat Rev Neurosci 2017; 18:613-626. [PMID: 28855740 PMCID: PMC6420820 DOI: 10.1038/nrn.2017.92] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominantly inherited spinocerebellar ataxias (SCAs) are a large and diverse group of neurodegenerative diseases. The most prevalent SCAs (SCA1, SCA2, SCA3, SCA6 and SCA7) are caused by expansion of a glutamine-encoding CAG repeat in the affected gene. These SCAs represent a substantial portion of the polyglutamine neurodegenerative disorders and provide insight into this class of diseases as a whole. Recent years have seen considerable progress in deciphering the clinical, pathological, physiological and molecular aspects of the polyglutamine SCAs, with these advances establishing a solid base from which to pursue potential therapeutic approaches.
Collapse
Affiliation(s)
- Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
141
|
Auburger G, Sen NE, Meierhofer D, Başak AN, Gitler AD. Efficient Prevention of Neurodegenerative Diseases by Depletion of Starvation Response Factor Ataxin-2. Trends Neurosci 2017; 40:507-516. [DOI: 10.1016/j.tins.2017.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/09/2017] [Indexed: 12/13/2022]
|
142
|
Uversky VN. Intrinsic Disorder, Protein-Protein Interactions, and Disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:85-121. [PMID: 29413001 DOI: 10.1016/bs.apcsb.2017.06.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It is recognized now that biologically active proteins without stable tertiary structure (known as intrinsically disordered proteins, IDPs) and hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) are important players found in any given proteome. These IDPs/IDPRs possess functions that complement functional repertoire of their ordered counterparts, being commonly related to recognition, as well as control and regulation of various signaling pathways. They are interaction masters, being able to utilize a wide spectrum of interaction mechanisms, ranging from induced folding to formation of fuzzy complexes where significant levels of disorder are preserved, to polyvalent stochastic interactions playing crucial roles in the liquid-liquid phase transitions leading to the formation of proteinaceous membrane-less organelles. IDPs/IDPRs are tightly controlled themselves via various means, including alternative splicing, precisely controlled expression and degradation, binding to specific partners, and posttranslational modifications. Distortions in the regulation and control of IDPs/IDPRs, as well as their aberrant interactivity are commonly associated with various human diseases. This review presents some aspects of the intrinsic disorder-based functionality and dysfunctionality, paying special attention to the normal and pathological protein-protein interactions.
Collapse
Affiliation(s)
- Vladimir N Uversky
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
143
|
Cinti A, Le Sage V, Milev MP, Valiente-Echeverría F, Crossie C, Miron MJ, Panté N, Olivier M, Mouland AJ. HIV-1 enhances mTORC1 activity and repositions lysosomes to the periphery by co-opting Rag GTPases. Sci Rep 2017; 7:5515. [PMID: 28710431 PMCID: PMC5511174 DOI: 10.1038/s41598-017-05410-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
HIV-1 co-opts several host machinery to generate a permissive environment for viral replication and transmission. In this work we reveal how HIV-1 impacts the host translation and intracellular vesicular trafficking machineries for protein synthesis and to impede the physiological late endosome/lysosome (LEL) trafficking in stressful conditions. First, HIV-1 enhances the activity of the master regulator of protein synthesis, the mammalian target of rapamycin (mTOR). Second, the virus commandeers mTOR-associated late endosome/lysosome (LEL) trafficking and counteracts metabolic and environmental stress-induced intracellular repositioning of LEL. We then show that the small Rag GTPases, RagA and RagB, are required for the HIV-1-mediated LEL repositioning that is likely mediated by interactions between the Rags and the viral proteins, Gag and Vif. siRNA-mediated depletion of RagA and RagB leads to a loss in mTOR association to LEL and to a blockade of viral particle assembly and release at the plasma membrane with a marked concomitant reduction in virus production. These results show that HIV-1 co-opts fundamental mechanisms that regulate LEL motility and positioning and support the notion that LEL positioning is critical for HIV-1 replication.
Collapse
Affiliation(s)
- Alessandro Cinti
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada.,Department of Medicine and the Division of Experimental Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| | - Valerie Le Sage
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | - Miroslav P Milev
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada.,Department of Medicine and the Division of Experimental Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| | - Fernando Valiente-Echeverría
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada.,Department of Medicine and the Division of Experimental Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada.,Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia, 834100, Santiago, Chile
| | - Christina Crossie
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada.,Department of Medicine and the Division of Experimental Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada
| | - Marie-Joelle Miron
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | - Nelly Panté
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Martin Olivier
- Department of Medicine and the Division of Experimental Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada. .,Department of Medicine and the Division of Experimental Medicine, McGill University, Montréal, Québec, H3A 0G4, Canada. .,Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada.
| |
Collapse
|
144
|
An In Vitro TORC1 Kinase Assay That Recapitulates the Gtr-Independent Glutamine-Responsive TORC1 Activation Mechanism on Yeast Vacuoles. Mol Cell Biol 2017; 37:MCB.00075-17. [PMID: 28483912 DOI: 10.1128/mcb.00075-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/01/2017] [Indexed: 01/03/2023] Open
Abstract
Evolutionarily conserved target of rapamycin (TOR) complex 1 (TORC1) responds to nutrients, especially amino acids, to promote cell growth. In the yeast Saccharomyces cerevisiae, various nitrogen sources activate TORC1 with different efficiencies, although the mechanism remains elusive. Leucine, and perhaps other amino acids, was reported to activate TORC1 via the heterodimeric small GTPases Gtr1-Gtr2, the orthologues of the mammalian Rag GTPases. More recently, an alternative Gtr-independent TORC1 activation mechanism that may respond to glutamine was reported, although its molecular mechanism is not clear. In studying the nutrient-responsive TORC1 activation mechanism, the lack of an in vitro assay hinders associating particular nutrient compounds with the TORC1 activation status, whereas no in vitro assay that shows nutrient responsiveness has been reported. In this study, we have developed a new in vitro TORC1 kinase assay that reproduces, for the first time, the nutrient-responsive TORC1 activation. This in vitro TORC1 assay recapitulates the previously predicted Gtr-independent glutamine-responsive TORC1 activation mechanism. Using this system, we found that this mechanism specifically responds to l-glutamine, resides on the vacuolar membranes, and involves a previously uncharacterized Vps34-Vps15 phosphatidylinositol (PI) 3-kinase complex and the PI-3-phosphate [PI(3)P]-binding FYVE domain-containing vacuolar protein Pib2. Thus, this system was proved to be useful for dissecting the glutamine-responsive TORC1 activation mechanism.
Collapse
|
145
|
The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability. PLoS Genet 2017; 13:e1006835. [PMID: 28604780 PMCID: PMC5484544 DOI: 10.1371/journal.pgen.1006835] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/26/2017] [Accepted: 05/23/2017] [Indexed: 11/19/2022] Open
Abstract
The conserved protein kinase Sch9 is a central player in the nutrient-induced signaling network in yeast, although only few of its direct substrates are known. We now provide evidence that Sch9 controls the vacuolar proton pump (V-ATPase) to maintain cellular pH homeostasis and ageing. A synthetic sick phenotype arises when deletion of SCH9 is combined with a dysfunctional V-ATPase, and the lack of Sch9 has a significant impact on cytosolic pH (pHc) homeostasis. Sch9 physically interacts with, and influences glucose-dependent assembly/disassembly of the V-ATPase, thereby integrating input from TORC1. Moreover, we show that the role of Sch9 in regulating ageing is tightly connected with V-ATPase activity and vacuolar acidity. As both Sch9 and the V-ATPase are highly conserved in higher eukaryotes, it will be interesting to further clarify their cooperative action on the cellular processes that influence growth and ageing. The evolutionary conserved TOR complex 1 controls growth in response to the quality and quantity of nutrients such as carbon and amino acids. The protein kinase Sch9 is the main TORC1 effector in yeast. However, only few of its direct targets are known. In this study, we performed a genome-wide screening looking for mutants which require Sch9 function for their survival and growth. In this way, we identified multiple components of the highly conserved vacuolar proton pump (V-ATPase) which mediates the luminal acidification of multiple biosynthetic and endocytic organelles. Besides a genetic interaction, we found Sch9 also physically interacts with the V-ATPase to regulate its assembly state in response to glucose availability and TORC1 activity. Moreover, the interaction with the V-ATPase has consequences for ageing as it allowed Sch9 to control vacuolar pH and thereby trigger either lifespan extension or lifespan shortening. Hence, our results provide insights into the signaling mechanism coupling glucose availability, TORC1 signaling, pH homeostasis and longevity. As both Sch9 and the V-ATPase are highly conserved and implicated in various pathologies, these results offer fertile ground for further research in higher eukaryotes.
Collapse
|
146
|
Ataxin-2: From RNA Control to Human Health and Disease. Genes (Basel) 2017; 8:genes8060157. [PMID: 28587229 PMCID: PMC5485521 DOI: 10.3390/genes8060157] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/23/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins play fundamental roles in the regulation of molecular processes critical to cellular and organismal homeostasis. Recent studies have identified the RNA-binding protein Ataxin-2 as a genetic determinant or risk factor for various diseases including spinocerebellar ataxia type II (SCA2) and amyotrophic lateral sclerosis (ALS), amongst others. Here, we first discuss the increasingly wide-ranging molecular functions of Ataxin-2, from the regulation of RNA stability and translation to the repression of deleterious accumulation of the RNA-DNA hybrid-harbouring R-loop structures. We also highlight the broader physiological roles of Ataxin-2 such as in the regulation of cellular metabolism and circadian rhythms. Finally, we discuss insight from clinically focused studies to shed light on the impact of molecular and physiological roles of Ataxin-2 in various human diseases. We anticipate that deciphering the fundamental functions of Ataxin-2 will uncover unique approaches to help cure or control debilitating and lethal human diseases.
Collapse
|
147
|
Lushchak O, Strilbytska O, Piskovatska V, Storey KB, Koliada A, Vaiserman A. The role of the TOR pathway in mediating the link between nutrition and longevity. Mech Ageing Dev 2017; 164:127-138. [DOI: 10.1016/j.mad.2017.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/23/2017] [Accepted: 03/13/2017] [Indexed: 01/13/2023]
|
148
|
Aguilera-Gomez A, Rabouille C. Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in Drosophila. Dev Biol 2017; 428:310-317. [PMID: 28377034 DOI: 10.1016/j.ydbio.2017.03.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/29/2022]
Abstract
Classically, we think of cell compartmentalization as being achieved by membrane-bound organelles. It has nevertheless emerged that membrane-less assemblies also largely contribute to this compartmentalization. Here, we compare the characteristics of both types of compartmentalization in term of maintenance of functional identities. Furthermore, membrane less-compartments are critical for sustaining developmental and cell biological events as they control major metabolic pathways. We describe two examples related to this issue in Drosophila, the role of P-bodies in the translational control of gurken in the Drosophila oocyte, and the formation of Sec bodies upon amino-acid starvation in Drosophila cells.
Collapse
Affiliation(s)
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands; Department of Cell Biology, UMC Utrecht, The Netherlands; Department of Cell Biology, UMC Groningen, The Netherlands.
| |
Collapse
|
149
|
Carmo-Silva S, Nobrega C, Pereira de Almeida L, Cavadas C. Unraveling the Role of Ataxin-2 in Metabolism. Trends Endocrinol Metab 2017; 28:309-318. [PMID: 28117213 DOI: 10.1016/j.tem.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022]
Abstract
Ataxin-2 is a polyglutamine protein implicated in several biological processes such as RNA metabolism and cytoskeleton reorganization. Ataxin-2 is highly expressed in various tissues including the hypothalamus, a brain region that controls food intake and energy balance. Ataxin-2 expression is influenced by nutritional status. Emerging studies discussed here now show that ataxin-2 deficiency correlates with insulin resistance and dyslipidemia, an action mediated via the mTOR pathway, suggesting that ataxin-2 might play key roles in metabolic homeostasis including body weight regulation, insulin sensitivity, and cellular stress responses. In this review we also discuss the relevance of ataxin-2 in the hypothalamic regulation of energy balance, and its potential as a therapeutic target in metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Sara Carmo-Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clevio Nobrega
- Department of Biomedical Sciences and Medicine, Center for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Claudia Cavadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
150
|
Kawamata T, Horie T, Matsunami M, Sasaki M, Ohsumi Y. Zinc starvation induces autophagy in yeast. J Biol Chem 2017; 292:8520-8530. [PMID: 28264932 DOI: 10.1074/jbc.m116.762948] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/22/2017] [Indexed: 12/15/2022] Open
Abstract
Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes.
Collapse
Affiliation(s)
- Tomoko Kawamata
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503
| | - Tetsuro Horie
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503; Research Center for Odontology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Miou Matsunami
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503
| | - Michiko Sasaki
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503
| | - Yoshinori Ohsumi
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503.
| |
Collapse
|