101
|
Jones M, Beuron F, Borg A, Nans A, Earl CP, Briggs DC, Snijders AP, Bowles M, Morris EP, Linch M, McDonald NQ. Cryo-EM structures of the XPF-ERCC1 endonuclease reveal how DNA-junction engagement disrupts an auto-inhibited conformation. Nat Commun 2020; 11:1120. [PMID: 32111838 PMCID: PMC7048804 DOI: 10.1038/s41467-020-14856-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
The structure-specific endonuclease XPF-ERCC1 participates in multiple DNA damage repair pathways including nucleotide excision repair (NER) and inter-strand crosslink repair (ICLR). How XPF-ERCC1 is catalytically activated by DNA junction substrates is not currently understood. Here we report cryo-electron microscopy structures of both DNA-free and DNA-bound human XPF-ERCC1. DNA-free XPF-ERCC1 adopts an auto-inhibited conformation in which the XPF helical domain masks the ERCC1 (HhH)2 domain and restricts access to the XPF catalytic site. DNA junction engagement releases the ERCC1 (HhH)2 domain to couple with the XPF-ERCC1 nuclease/nuclease-like domains. Structure-function data indicate xeroderma pigmentosum patient mutations frequently compromise the structural integrity of XPF-ERCC1. Fanconi anaemia patient mutations in XPF often display substantial in-vitro activity but are resistant to activation by ICLR recruitment factor SLX4. Our data provide insights into XPF-ERCC1 architecture and catalytic activation.
Collapse
Affiliation(s)
- Morgan Jones
- Signalling and Structural Biology Laboratory, Francis Crick Institute, NW1 1AT, London, UK
| | - Fabienne Beuron
- Structural Electron Microscopy, The Institute of Cancer Research, SW7 3RP, London, UK
| | - Aaron Borg
- Mass Spectrometry Science Technology Platform, Francis Crick Institute, NW1 1AT, London, UK
| | - Andrea Nans
- Structural Biology of Cells and Viruses, Francis Crick Institute, NW1 1AT, London, UK
| | - Christopher P Earl
- Signalling and Structural Biology Laboratory, Francis Crick Institute, NW1 1AT, London, UK
| | - David C Briggs
- Signalling and Structural Biology Laboratory, Francis Crick Institute, NW1 1AT, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Science Technology Platform, Francis Crick Institute, NW1 1AT, London, UK
| | - Maureen Bowles
- Signalling and Structural Biology Laboratory, Francis Crick Institute, NW1 1AT, London, UK
| | - Edward P Morris
- Structural Electron Microscopy, The Institute of Cancer Research, SW7 3RP, London, UK
| | - Mark Linch
- Department of Oncology, University College London Cancer Institute, WC1E 6AG, London, England, UK
| | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, Francis Crick Institute, NW1 1AT, London, UK.
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
102
|
Tan W, Murphy VJ, Charron A, van Twest S, Sharp M, Constantinou A, Parker MW, Crismani W, Bythell-Douglas R, Deans AJ. Preparation and purification of mono-ubiquitinated proteins using Avi-tagged ubiquitin. PLoS One 2020; 15:e0229000. [PMID: 32092106 PMCID: PMC7039436 DOI: 10.1371/journal.pone.0229000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
Site-specific conjugation of ubiquitin onto a range of DNA repair proteins regulates their critical functions in the DNA damage response. Biochemical and structural characterization of these functions are limited by an absence of tools for the purification of DNA repair proteins in purely the ubiquitinated form. To overcome this barrier, we designed a ubiquitin fusion protein that is N-terminally biotinylated and can be conjugated by E3 RING ligases onto various substrates. Biotin affinity purification of modified proteins, followed by cleavage of the affinity tag leads to release of natively-mono-ubiquitinated substrates. As proof-of-principle, we applied this method to several substrates of mono-ubiquitination in the Fanconi anemia (FA)-BRCA pathway of DNA interstrand crosslink repair. These include the FANCI:FANCD2 complex, the PCNA trimer and BRCA1 modified nucleosomes. This method provides a simple approach to study the role of mono-ubiquitination in DNA repair or any other mono-ubiquitination signaling pathways.
Collapse
Affiliation(s)
- Winnie Tan
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| | - Vincent J. Murphy
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Aude Charron
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- National Graduate School of Chemistry of Montpellier (ENSCM), Montpellier, France
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Michael Sharp
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Angelos Constantinou
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Michael W. Parker
- Structural Biology Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| | - Andrew J. Deans
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| |
Collapse
|
103
|
Acetylation of XPF by TIP60 facilitates XPF-ERCC1 complex assembly and activation. Nat Commun 2020; 11:786. [PMID: 32034146 PMCID: PMC7005904 DOI: 10.1038/s41467-020-14564-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/17/2020] [Indexed: 01/27/2023] Open
Abstract
The XPF-ERCC1 heterodimer is a structure-specific endonuclease that is essential for nucleotide excision repair (NER) and interstrand crosslink (ICL) repair in mammalian cells. However, whether and how XPF binding to ERCC1 is regulated has not yet been established. Here, we show that TIP60, also known as KAT5, a haplo-insufficient tumor suppressor, directly acetylates XPF at Lys911 following UV irradiation or treatment with mitomycin C and that this acetylation is required for XPF-ERCC1 complex assembly and subsequent activation. Mechanistically, acetylation of XPF at Lys911 disrupts the Glu907-Lys911 salt bridge, thereby leading to exposure of a previously unidentified second binding site for ERCC1. Accordingly, loss of XPF acetylation impairs the damage-induced XPF-ERCC1 interaction, resulting in defects in both NER and ICL repair. Our results not only reveal a mechanism that regulates XPF-ERCC1 complex assembly and activation, but also provide important insight into the role of TIP60 in the maintenance of genome stability. The XPF-ERCC1 heterodimer is an endonuclease involved in nucleotide excision (NER) and interstrand crosslink (ICL) repair in mammalian cells. Here, the authors provide insights into its regulation by revealing that TIP60 regulates XPF-ERCC1 complex assembly and activation.
Collapse
|
104
|
Tan W, van Twest S, Murphy VJ, Deans AJ. ATR-Mediated FANCI Phosphorylation Regulates Both Ubiquitination and Deubiquitination of FANCD2. Front Cell Dev Biol 2020; 8:2. [PMID: 32117957 PMCID: PMC7010609 DOI: 10.3389/fcell.2020.00002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/03/2020] [Indexed: 01/02/2023] Open
Abstract
DNA interstrand crosslinks (ICLs) are a physical barrier to replication and therefore toxic to cell viability. An important mechanism for the removal of ICLs is the Fanconi Anemia DNA repair pathway, which is initiated by mono-ubiquitination of FANCD2 and its partner protein FANCI. Here, we show that maintenance of FANCD2 and FANCI proteins in a monoubiquitinated form is regulated by the ATR-kinase. Using recombinant proteins in biochemical reconstitution experiments we show that ATR directly phosphorylates FANCI on serine 556, 559, and 565 to stabilize its association with DNA and FANCD2. This increased association with DNA stimulates the conjugation of ubiquitin to both FANCI and FANCD2, but also inhibits ubiquitin deconjugation. Using phosphomimetic and phosphodead mutants of FANCI we show that S559 and S565 are particularly important for protecting the complex from the activity of the deubiquitinating enzyme USP1:UAF1. Our results reveal a major mechanism by which ATR kinase maintains the activation of the FA pathway, by promoting the accumulation of FANCD2 in the ubiquitinated form active in DNA repair.
Collapse
Affiliation(s)
- Winnie Tan
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent’s Hospital), The University of Melbourne, Melbourne, VIC, Australia
| | - Sylvie van Twest
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Vincent J. Murphy
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J. Deans
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent’s Hospital), The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
105
|
Zhang L, Pradhan B, Guo L, Meng F, Zhong D. EGFR exon 19-deletion aberrantly regulate ERCC1 expression that may partly impaired DNA damage repair ability in non-small cell lung cancer. Thorac Cancer 2019; 11:277-285. [PMID: 31875360 PMCID: PMC6996978 DOI: 10.1111/1759-7714.13253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) activating mutations are usually associated with DNA damage repair (DDR) deficiency. However, the precise mechanism has remained elusive. In this study, we aimed to investigate whether EGFR exon 19 deletion mutation downstream signals contributed to DDR deficiency by downregulation of excision repair cross-complementation group-1 (ERCC1), a key factor in DDR, expression and function. METHODS We first measured cell survival, DNA damage (γ-H2AX foci formation) and damage repair (ERCC1 and RAD51 foci formation) ability in response to DNA cross-linking drug in EGFR exon 19 deletion and EGFR wild-type cells separately. We then investigated the involvement of EGFR downstream signals in regulating ERCC1 expression and function in EGFR exon 19 deletion cells as compared with EGFR wild-type ones. RESULTS We observed increased γ-H2AX, but impaired ERCC1 and RAD51 nuclear foci formation in EGFR exon 19 deletion cells as compared with EGFR wild-type ones treated with DNA cross-linker. In addition, we identified that inhibition of EGFR exon 19 deletion signals increased ERCC1 expression, whereas blocked wild-type EGFR signals decreased ERCC1 expression, on both mRNA and protein levels. Furthermore, EGFR exon 19 deletion downstream signals not only inhibited ERCC1 expression but also influenced ERCC1 foci formation in response to DNA cross-linker. CONCLUSION Our findings indicated that the aberrant EGFR exon 19 deletion signals were not only associated with decreased expression of ERCC1 but were also involved in impaired ERCC1 recruitment in response to DNA cross-link damage, thereby providing us with more evidence for exploring the mechanism of DDR deficiency in EGFR mutant NSCLC.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Barun Pradhan
- Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lili Guo
- Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanlu Meng
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
106
|
Mutreja K, Krietsch J, Hess J, Ursich S, Berti M, Roessler FK, Zellweger R, Patra M, Gasser G, Lopes M. ATR-Mediated Global Fork Slowing and Reversal Assist Fork Traverse and Prevent Chromosomal Breakage at DNA Interstrand Cross-Links. Cell Rep 2019; 24:2629-2642.e5. [PMID: 30184498 PMCID: PMC6137818 DOI: 10.1016/j.celrep.2018.08.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 01/02/2023] Open
Abstract
Interstrand cross-links (ICLs) are toxic DNA lesions interfering with DNA metabolism that are induced by widely used anticancer drugs. They have long been considered absolute roadblocks for replication forks, implicating complex DNA repair processes at stalled or converging replication forks. Recent evidence challenged this view, proposing that single forks traverse ICLs by yet elusive mechanisms. Combining ICL immunolabeling and single-molecule approaches in human cells, we now show that ICL induction leads to global replication fork slowing, involving forks not directly challenged by ICLs. Active fork slowing is linked to rapid recruitment of RAD51 to replicating chromatin and to RAD51/ZRANB3-mediated fork reversal. This global modulation of fork speed and architecture requires ATR activation, promotes single-fork ICL traverse—here, directly visualized by electron microscopy—and prevents chromosomal breakage by untimely ICL processing. We propose that global fork slowing by remodeling provides more time for template repair and promotes bypass of residual lesions, limiting fork-associated processing. Fork slowing and reversal are also observed at forks not directly challenged by ICLs Fork reversal assists ICL traverse and limits DSBs associated with ICL unhooking ICL traverse can be directly visualized in human cells by electron microscopy ATR mediates global fork slowing and reversal upon different genotoxic treatments
Collapse
Affiliation(s)
- Karun Mutreja
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jeannine Hess
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sebastian Ursich
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Matteo Berti
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Fabienne K Roessler
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Center for Microscopy and Image Analysis, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ralph Zellweger
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Malay Patra
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
107
|
Unhooking of an interstrand cross-link at DNA fork structures by the DNA glycosylase NEIL3. DNA Repair (Amst) 2019; 86:102752. [PMID: 31923807 DOI: 10.1016/j.dnarep.2019.102752] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 01/06/2023]
Abstract
Interstrand DNA-DNA cross-links (ICLs) are generated by endogenous processes, drugs, and environmental toxins. Understanding the cellular pathways by which various ICLs are repaired is critical to understanding their biological effects. Recent studies showed that replication-dependent repair of an ICL derived from the reaction of an abasic (AP) site with an adenine residue (dA) on the opposing strand of duplex DNA proceeds via a novel mechanism in which the DNA glycosylase NEIL3 unhooks the ICL. Here we examined the ability of the glycosylase domain of murine NEIL3 (MmuNEIL3-GD) to unhook dA-AP ICLs. The enzyme selectively unhooks the dA-AP ICL located at the duplex/single-strand junction of splayed duplexes that model the strand-separated DNA at the leading edge of a replication fork. We show that the ability to unhook the dA-AP ICL is a specialized function of NEIL3 as this activity is not observed in other BER enzymes. Importantly, NEIL3 only unhooks the dA-AP ICL when the AP residue is located on what would be the leading template strand of a model replication fork. The same specificity for the leading template strand was observed with a 5,6-dihydrothymine monoadduct, demonstrating that this preference is a general feature of the glycosylase and independent of the type of DNA damage. Overall, the results show that the glycosylase domain of NEIL3, lacking the C-terminal NPL4 and GRF zinc finger motifs, is competent to unhook the dA-AP ICL in splayed substrates and independently enforces important substrate preferences on the repair process.
Collapse
|
108
|
Zhou Y, Gan F, Zhang Y, He X, Shen C, Qiu H, Liu P. Selective Killing of Cancer Cells by Nonplanar Aromatic Hydrocarbon-Induced DNA Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901341. [PMID: 31728285 PMCID: PMC6839640 DOI: 10.1002/advs.201901341] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/26/2019] [Indexed: 05/05/2023]
Abstract
A large number of current chemotherapeutic agents prevent the growth of tumors by inhibiting DNA synthesis of cancer cells. It has been found recently that many planar polycyclic aromatic hydrocarbons (PAHs) derivatives, previously known as carcinogenic, display anticancer activity through DNA cross-linking. However, the practical use of these PAHs is substantially limited by their low therapeutic efficiency and selectivity toward most tumors. Herein, the anticancer property of a nonplanar PAH named [4]helicenium, which exhibits highly selective cytotoxicity toward liver, lung cancer, and leukemia cells compared with normal cells, is reported. Moreover, [4]helicenium effectively inhibits tumor growth in liver cancer-bearing mice and shows little side effects in normal mice. RNA sequencing and confirmatory results demonstrate that [4]helicenium induces more DNA damage in tumor cells than in normal cells, resulting in tumor cell cycle arrest and apoptosis increment. This study reveals an unexpected role and molecular mechanism for PAHs in selectively killing tumor cells and provides an effective strategy for precision cancer therapies.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Fuwei Gan
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghai200240China
| | - Yuanliang Zhang
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRuijin HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Xiaozhen He
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Chengshuo Shen
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghai200240China
| | - Huibin Qiu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghai200240China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Central LaboratoryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
109
|
Codilupi T, Taube D, Naegeli H. CRL4 ubiquitin ligase stimulates Fanconi anemia pathway-induced single-stranded DNA-RPA signaling. BMC Cancer 2019; 19:1042. [PMID: 31690264 PMCID: PMC6833152 DOI: 10.1186/s12885-019-6305-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/28/2019] [Indexed: 11/10/2022] Open
Abstract
Background DNA-crosslinking agents like cisplatin and mitomycin C (MMC) are indispensible for the treatment of many solid malignancies. These anticancer drugs generate DNA interstrand crosslinks (ICLs) that cause cell death by blocking replication forks. Many factors counteracting ICL-induced DNA replication stress, including the Fanconi anemia (FA) pathway, are regulated by ubiquitination and, therefore, ubiquitin ligases are potential targets for the sensitization of cancer cells to crosslinking agents. In this study, we investigated the function of the CRL4 ubiquitin ligase in modulating the response of cancer cells to ICL induction. Methods The two cullin paralogs CUL4A and CUL4B, which form the CRL4 ligase scaffold, were depleted in cancer cells by small interfering RNA followed by analysis of the cellular and biochemical responses to ICLs elicited upon cisplatin or MMC treatment. Results We report that the combined depletion of CUL4A and CUL4B weakens an FA pathway-dependent S phase checkpoint response. CRL4 positively stimulates the monoubiquitination of FANCD2 required for the recruitment of XPF-ERCC1, a structure-specific endonuclease that, in turn, contributes to the display of single-stranded DNA (ssDNA) at ICLs. After CRL4 down regulation, the missing ssDNA results in reduced recruitment of RPA, thereby dampening activation of ATR and CHK1 checkpoint kinases and allowing for S phase progression despite ICL induction. Conclusion Our findings indicate that CRL4 promotes cell survival by potentiating an FA pathway-dependent ssDNA-RPA signaling platform installed at ICLs. The anticancer efficacy of crosslinking agents may, therefore, be enhanced by down regulating CRL4 activity.
Collapse
Affiliation(s)
- Tamara Codilupi
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Doreen Taube
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| |
Collapse
|
110
|
Zhang H, Chen Z, Ye Y, Ye Z, Cao D, Xiong Y, Srivastava M, Feng X, Tang M, Wang C, Tainer JA, Chen J. SLX4IP acts with SLX4 and XPF-ERCC1 to promote interstrand crosslink repair. Nucleic Acids Res 2019; 47:10181-10201. [PMID: 31495888 PMCID: PMC6821277 DOI: 10.1093/nar/gkz769] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/03/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Interstrand crosslinks (ICLs) are highly toxic DNA lesions that are repaired via a complex process requiring the coordination of several DNA repair pathways. Defects in ICL repair result in Fanconi anemia, which is characterized by bone marrow failure, developmental abnormalities, and a high incidence of malignancies. SLX4, also known as FANCP, acts as a scaffold protein and coordinates multiple endonucleases that unhook ICLs, resolve homologous recombination intermediates, and perhaps remove unhooked ICLs. In this study, we explored the role of SLX4IP, a constitutive factor in the SLX4 complex, in ICL repair. We found that SLX4IP is a novel regulatory factor; its depletion sensitized cells to treatment with ICL-inducing agents and led to accumulation of cells in the G2/M phase. We further discovered that SLX4IP binds to SLX4 and XPF-ERCC1 simultaneously and that disruption of one interaction also disrupts the other. The binding of SLX4IP to both SLX4 and XPF-ERCC1 not only is vital for maintaining the stability of SLX4IP protein, but also promotes the interaction between SLX4 and XPF-ERCC1, especially after DNA damage. Collectively, these results demonstrate a new regulatory role for SLX4IP in maintaining an efficient SLX4-XPF-ERCC1 complex in ICL repair.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yin Ye
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zu Ye
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Cao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
111
|
Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 2019; 20:698-714. [PMID: 31263220 PMCID: PMC7315405 DOI: 10.1038/s41580-019-0152-0] [Citation(s) in RCA: 940] [Impact Index Per Article: 156.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 11/09/2022]
Abstract
The major pathways of DNA double-strand break (DSB) repair are crucial for maintaining genomic stability. However, if deployed in an inappropriate cellular context, these same repair functions can mediate chromosome rearrangements that underlie various human diseases, ranging from developmental disorders to cancer. The two major mechanisms of DSB repair in mammalian cells are non-homologous end joining (NHEJ) and homologous recombination. In this Review, we consider DSB repair-pathway choice in somatic mammalian cells as a series of 'decision trees', and explore how defective pathway choice can lead to genomic instability. Stalled, collapsed or broken DNA replication forks present a distinctive challenge to the DSB repair system. Emerging evidence suggests that the 'rules' governing repair-pathway choice at stalled replication forks differ from those at replication-independent DSBs.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
112
|
Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood) 2019; 244:1382-1406. [PMID: 31581813 PMCID: PMC6880146 DOI: 10.1177/1535370219876651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Three major proteins in the nucleoskeleton, lamins, actin, and spectrin, play essential roles in maintenance of nuclear architecture and the integrity of the nuclear envelope, in mechanotransduction and mechanical coupling between the nucleoskeleton and cytoskeleton, and in nuclear functions such as regulation of gene expression, transcription and DNA replication. Less well known, but critically important, are the role these proteins play in DNA repair. The A-type and B-type lamins, nuclear actin and myosin, spectrin and the LINC (linker of nucleoskeleton and cytoskeleton) complex each function in repair of DNA damage utilizing various repair pathways. The lamins play a role in repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) or homologous recombination (HR). Actin is involved in repair of DNA DSBs and interacts with myosin in facilitating relocalization of these DSBs in heterochromatin for HR repair. Nonerythroid alpha spectrin (αSpII) plays a critical role in repair of DNA interstrand cross-links (ICLs) where it acts as a scaffold in recruitment of repair proteins to sites of damage and is important in the initial damage recognition and incision steps of the repair process. The LINC complex contributes to the repair of DNA DSBs and ICLs. This review will address the important functions of these proteins in the DNA repair process, their mechanism of action, and the profound impact a defect or deficiency in these proteins has on cellular function. The critical roles of these proteins in DNA repair will be further emphasized by discussing the human disorders and the pathophysiological changes that result from or are related to deficiencies in these proteins. The demonstrated function for each of these proteins in the DNA repair process clearly indicates that there is another level of complexity that must be considered when mechanistically examining factors crucial for DNA repair.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory
Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
113
|
Hoogenboom WS, Boonen RACM, Knipscheer P. The role of SLX4 and its associated nucleases in DNA interstrand crosslink repair. Nucleic Acids Res 2019; 47:2377-2388. [PMID: 30576517 PMCID: PMC6411836 DOI: 10.1093/nar/gky1276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022] Open
Abstract
A key step in the Fanconi anemia pathway of DNA interstrand crosslink (ICL) repair is the ICL unhooking by dual endonucleolytic incisions. SLX4/FANCP is a large scaffold protein that plays a central role in ICL unhooking. It contains multiple domains that interact with many proteins including three different endonucleases and also acts in several other DNA repair pathways. While it is known that its interaction with the endonuclease XPF-ERCC1 is required for its function in ICL repair, which other domains act in this process is unclear. Here, we used Xenopus egg extracts to determine ICL repair specific features of SLX4. We show that the SLX4-interacting endonuclease SLX1 is not required for ICL repair and demonstrate that all essential SLX4 domains are located at the N-terminal half of the protein. The MLR domain is crucial for the recruitment of XPF-ERCC1 but also has an unanticipated function in recruiting SLX4 to the site of damage. Although we find the BTB is not essential for ICL repair in our system, dimerization of SLX4 could be important. Our data provide new insights into the mechanism by which SLX4 acts in ICL repair.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rick A C M Boonen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
114
|
Xu M, Qin J, Wang L, Lee HJ, Kao CY, Liu D, Songyang Z, Chen J, Tsai MJ, Tsai SY. Nuclear receptors regulate alternative lengthening of telomeres through a novel noncanonical FANCD2 pathway. SCIENCE ADVANCES 2019; 5:eaax6366. [PMID: 31633027 PMCID: PMC6785246 DOI: 10.1126/sciadv.aax6366] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/14/2019] [Indexed: 05/07/2023]
Abstract
Alternative lengthening of telomeres (ALT) is known to use homologous recombination (HR) to replicate telomeric DNA in a telomerase-independent manner. However, the detailed process remains largely undefined. It was reported that nuclear receptors COUP-TFII and TR4 are recruited to the enriched GGGTCA variant repeats embedded within ALT telomeres, implicating nuclear receptors in regulating ALT activity. Here, we identified a function of nuclear receptors in ALT telomere maintenance that involves a direct interaction between COUP-TFII/TR4 and FANCD2, the key protein in the Fanconi anemia (FA) DNA repair pathway. The COUP-TFII/TR4-FANCD2 complex actively induces the DNA damage response by recruiting endonuclease MUS81 and promoting the loading of the PCNA-POLD3 replication complex in ALT telomeres. Furthermore, the COUP-TFII/TR4-mediated ALT telomere pathway does not require the FA core complex or the monoubiquitylation of FANCD2, key steps in the canonical FA pathway. Thus, our findings reveal that COUP-TFII/TR4 regulates ALT telomere maintenance through a novel noncanonical FANCD2 pathway.
Collapse
Affiliation(s)
- Mafei Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Leiming Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hui-Ju Lee
- Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Chung-Yang Kao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Dan Liu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zhou Songyang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Junjie Chen
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sophia Y. Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
115
|
Taylor AMR, Rothblum-Oviatt C, Ellis NA, Hickson ID, Meyer S, Crawford TO, Smogorzewska A, Pietrucha B, Weemaes C, Stewart GS. Chromosome instability syndromes. Nat Rev Dis Primers 2019; 5:64. [PMID: 31537806 PMCID: PMC10617425 DOI: 10.1038/s41572-019-0113-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 01/28/2023]
Abstract
Fanconi anaemia (FA), ataxia telangiectasia (A-T), Nijmegen breakage syndrome (NBS) and Bloom syndrome (BS) are clinically distinct, chromosome instability (or breakage) disorders. Each disorder has its own pattern of chromosomal damage, with cells from these patients being hypersensitive to particular genotoxic drugs, indicating that the underlying defect in each case is likely to be different. In addition, each syndrome shows a predisposition to cancer. Study of the molecular and genetic basis of these disorders has revealed mechanisms of recognition and repair of DNA double-strand breaks, DNA interstrand crosslinks and DNA damage during DNA replication. Specialist clinics for each disorder have provided the concentration of expertise needed to tackle their characteristic clinical problems and improve outcomes. Although some treatments of the consequences of a disorder may be possible, for example, haematopoietic stem cell transplantation in FA and NBS, future early intervention to prevent complications of disease will depend on a greater understanding of the roles of the affected DNA repair pathways in development. An important realization has been the predisposition to cancer in carriers of some of these gene mutations.
Collapse
Affiliation(s)
- A Malcolm R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | | | - Nathan A Ellis
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, and Paediatric and Adolescent Oncology, Institute of Cancer Sciences, University of Manchester, Manchester, UK
- Department of Paediatric and Adolescent Haematology and Oncology, Royal Manchester Children's Hospital and The Christie NHS Trust, Manchester, UK
| | - Thomas O Crawford
- Department of Neurology and Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Corry Weemaes
- Department of Pediatrics (Pediatric Immunology), Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
116
|
Liu X, Jiang Y, Takata KI, Nowak B, Liu C, Wood RD, Hittelman WN, Plunkett W. CNDAC-Induced DNA Double-Strand Breaks Cause Aberrant Mitosis Prior to Cell Death. Mol Cancer Ther 2019; 18:2283-2295. [PMID: 31501277 DOI: 10.1158/1535-7163.mct-18-1380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/14/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022]
Abstract
Incorporation of the clinically active deoxycytidine analogue 2'-C-cyano-2'-deoxy-1-β-D-arabino-pentofuranosyl-cytosine (CNDAC) into DNA generates single-strand breaks that are subsequently converted to double-strand breaks (DSB). Here, we investigated the cellular manifestations of these breaks that link these mechanisms to cell death, and we further tested the relevance of DNA repair pathways in protection of cells against CNDAC damage. The present investigations demonstrate that following exposure to CNDAC and a wash into drug-free medium, chromosomal aberrations, DNA strand breaks, and multinucleate cells arose. These portended loss of viability and were dependent upon exposure time, CNDAC concentration, and passage through mitosis. Following a pulse incubation with CNDAC, live cell imaging using GFP-tagged histone H2B as a marker demonstrated a normal rate of progression to mitosis, but a concentration-dependent delay in passage to a second mitosis. Progression through mitosis was also delayed and accompanied by formation of multinucleate cells. CNDAC-treated cells lacking XPF-ERCC1 nuclease function showed a 16-fold increase in chromosome aberrations. Chromosomal damage in Rad51D-mutant cells (homologous recombination repair deficient) were even more severely affected with extensive aberrations. Rodent or human Polq (POLQ) mutant cells, defective in Pol θ-mediated alternative end joining, did not show enhanced cellular sensitivity to CNDAC. These findings are consistent with formation of DSBs in the second S-phase following exposure, resulting in chromosome aberrations, aberrant mitoses, and subsequent apoptosis.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yingjun Jiang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kei-Ichi Takata
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Billie Nowak
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chaomei Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Walter N Hittelman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
117
|
Domingues-Silva B, Silva B, Azzalin CM. ALTernative Functions for Human FANCM at Telomeres. Front Mol Biosci 2019; 6:84. [PMID: 31552268 PMCID: PMC6743340 DOI: 10.3389/fmolb.2019.00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/26/2019] [Indexed: 01/13/2023] Open
Abstract
The human FANCM ATPase/translocase is involved in various cellular pathways including DNA damage repair, replication fork remodeling and R-loop resolution. Recently, reports from three independent laboratories have disclosed a previously unappreciated role for FANCM in telomerase-negative human cancer cells that maintain their telomeres through the Alternative Lengthening of Telomeres (ALT) pathway. In ALT cells, FANCM limits telomeric replication stress and damage, and, in turn, ALT activity by suppressing accumulation of telomeric R-loops and by regulating the action of the BLM helicase. As a consequence, FANCM inactivation leads to exaggerated ALT activity and ultimately cell death. The studies reviewed here not only unveil a novel function for human FANCM, but also point to this enzyme as a promising target for anti-ALT cancer therapy.
Collapse
Affiliation(s)
- Beatriz Domingues-Silva
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Bruno Silva
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
118
|
Abstract
Faithful duplication of the genome is critical for the survival of an organism and prevention of malignant transformation. Accurate replication of a large amount of genetic information in a timely manner is one of the most challenging cellular processes and is often perturbed by intrinsic and extrinsic barriers to DNA replication fork progression, a phenomenon referred to as DNA replication stress. Elevated DNA replication stress is a primary source of genomic instability and one of the key hallmarks of cancer. Therefore, targeting DNA replication stress is an emerging concept for cancer therapy. The replication machinery associated with PCNA and other regulatory factors coordinates the synthesis and repair of DNA strands at the replication fork. The dynamic interaction of replication protein complexes with DNA is essential for sensing and responding to various signaling events relevant to DNA replication and damage. Thus, the disruption of the spatiotemporal regulation of protein homeostasis at the replication fork impairs genome integrity, which often involves the deregulation of ubiquitin-mediated proteolytic signaling. Notably, emerging evidence has highlighted the role of the AAA+ATPase VCP/p97 in extracting ubiquitinated protein substrates from the chromatin and facilitating the turnover of genome surveillance factors during DNA replication and repair. Here, we review recent advances in our understanding of chromatin-associated degradation pathways at the replication fork and the implication of these findings for cancer therapy.
Collapse
Affiliation(s)
- Julie Rageul
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | - Alexandra S Weinheimer
- Biochemistry and Structural Biology graduate program, Stony Brook University, New York 11794, USA
| | - Jennifer J Park
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA; Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, 11794, USA.
| |
Collapse
|
119
|
Abstract
Fanconi anemia (FA) is a rare inherited disease that is associated with bone marrow failure and a predisposition to cancer. Previous clinical trials emphasized the difficulties that accompany the use of gene therapy to treat bone marrow failure in patients with FA. Nevertheless, the discovery of new drugs that can efficiently mobilize hematopoietic stem cells (HSCs) and the development of optimized procedures for transducing HSCs, using safe, integrative vectors, markedly improved the efficiency by which the phenotype of hematopoietic repopulating cells from patients with FA can be corrected. In addition, these achievements allowed the demonstration of the in vivo proliferation advantage of gene-corrected FA repopulating cells in immunodeficient mice. Significantly, new gene therapy trials are currently ongoing to investigate the progressive restoration of hematopoiesis in patients with FA by gene-corrected autologous HSCs. Further experimental studies are focused on the ex vivo transduction of unpurified FA HSCs, using new pseudotyped vectors that have HSC tropism. Because of the resistance of some of these vectors to serum complement, new strategies for in vivo gene therapy for FA HSCs are in development. Finally, because of the rapid advancements in gene-editing techniques, correction of CD34+ cells isolated from patients with FA is now feasible, using gene-targeting strategies. Taken together, these advances indicate that gene therapy can soon be used as an efficient and safe alternative for the hematopoietic treatment of patients with FA.
Collapse
Affiliation(s)
- Paula Río
- 1 Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; and Madrid, Spain .,3 Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD) , Madrid, Spain
| | - Susana Navarro
- 1 Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; and Madrid, Spain .,3 Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD) , Madrid, Spain
| | - Juan A Bueren
- 1 Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; and Madrid, Spain .,3 Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD) , Madrid, Spain
| |
Collapse
|
120
|
FANCD2 Binding to H4K20me2 via a Methyl-Binding Domain Is Essential for Efficient DNA Cross-Link Repair. Mol Cell Biol 2019; 39:MCB.00194-19. [PMID: 31085681 DOI: 10.1128/mcb.00194-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023] Open
Abstract
Fanconi anemia (FA) is an inherited disease characterized by bone marrow failure and increased cancer risk. FA is caused by mutation of any 1 of 22 genes, and the FA proteins function cooperatively to repair DNA interstrand cross-links (ICLs). A central step in the activation of the FA pathway is the monoubiquitination of the FANCD2 and FANCI proteins, which occurs within chromatin. How FANCD2 and FANCI are anchored to chromatin remains unknown. In this study, we identify and characterize a FANCD2 histone-binding domain (HBD) and embedded methyl-lysine-binding domain (MBD) and demonstrate binding specificity for H4K20me2. Disruption of the HBD/MBD compromises FANCD2 chromatin binding and nuclear focus formation and its ability to promote error-free DNA interstrand cross-link repair, leading to increased error-prone repair and genome instability. Our study functionally describes the first FA protein chromatin reader domain and establishes an important link between this human genetic disease and chromatin plasticity.
Collapse
|
121
|
Slyskova J, Sabatella M, Ribeiro-Silva C, Stok C, Theil AF, Vermeulen W, Lans H. Base and nucleotide excision repair facilitate resolution of platinum drugs-induced transcription blockage. Nucleic Acids Res 2019; 46:9537-9549. [PMID: 30137419 PMCID: PMC6182164 DOI: 10.1093/nar/gky764] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
Sensitivity and resistance of cells to platinum drug chemotherapy are to a large extent determined by activity of the DNA damage response (DDR). Combining chemotherapy with inhibition of specific DDR pathways could therefore improve treatment efficacy. Multiple DDR pathways have been implicated in removal of platinum-DNA lesions, but it is unclear which exact pathways are most important to cellular platinum drug resistance. Here, we used CRISPR/Cas9 screening to identify DDR proteins that protect colorectal cancer cells against the clinically applied platinum drug oxaliplatin. We find that besides the expected homologous recombination, Fanconi anemia and translesion synthesis pathways, in particular also transcription-coupled nucleotide excision repair (TC-NER) and base excision repair (BER) protect against platinum-induced cytotoxicity. Both repair pathways are required to overcome oxaliplatin- and cisplatin-induced transcription arrest. In addition to the generation of DNA crosslinks, exposure to platinum drugs leads to reactive oxygen species production that induces oxidative DNA lesions, explaining the requirement for BER. Our findings highlight the importance of transcriptional integrity in cells exposed to platinum drugs and suggest that both TC-NER and BER should be considered as targets for novel combinatorial treatment strategies.
Collapse
Affiliation(s)
- Jana Slyskova
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Mariangela Sabatella
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Cristina Ribeiro-Silva
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Colin Stok
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- To whom correspondence should be addressed. Tel: +31 10 7038169; Fax: +31 10 7044743;
| |
Collapse
|
122
|
Buzon B, Grainger R, Huang S, Rzadki C, Junop MS. Structure-specific endonuclease activity of SNM1A enables processing of a DNA interstrand crosslink. Nucleic Acids Res 2019; 46:9057-9066. [PMID: 30165656 PMCID: PMC6158701 DOI: 10.1093/nar/gky759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/20/2018] [Indexed: 01/09/2023] Open
Abstract
DNA interstrand crosslinks (ICLs) covalently join opposing strands, blocking both replication and transcription, therefore making ICL-inducing compounds highly toxic and ideal anti-cancer agents. While incisions surrounding the ICL are required to remove damaged DNA, it is currently unclear which endonucleases are needed for this key event. SNM1A has been shown to play an important function in human ICL repair, however its suggested role has been limited to exonuclease activity and not strand incision. Here we show that SNM1A has endonuclease activity, having the ability to cleave DNA structures that arise during the initiation of ICL repair. In particular, this endonuclease activity cleaves single-stranded DNA. Given that unpaired DNA regions occur 5′ to an ICL, these findings suggest SNM1A may act as either an endonuclease and/or exonuclease during ICL repair. This finding is significant as it expands the potential role of SNM1A in ICL repair.
Collapse
Affiliation(s)
- Beverlee Buzon
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Ryan Grainger
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Simon Huang
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada
| | - Cameron Rzadki
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada
| | - Murray S Junop
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
123
|
Lopez-Martinez D, Kupculak M, Yang D, Yoshikawa Y, Liang CC, Wu R, Gygi SP, Cohn MA. Phosphorylation of FANCD2 Inhibits the FANCD2/FANCI Complex and Suppresses the Fanconi Anemia Pathway in the Absence of DNA Damage. Cell Rep 2019; 27:2990-3005.e5. [PMID: 31167143 PMCID: PMC6581795 DOI: 10.1016/j.celrep.2019.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
Interstrand crosslinks (ICLs) of the DNA helix are a deleterious form of DNA damage. ICLs can be repaired by the Fanconi anemia pathway. At the center of the pathway is the FANCD2/FANCI complex, recruitment of which to DNA is a critical step for repair. After recruitment, monoubiquitination of both FANCD2 and FANCI leads to their retention on chromatin, ensuring subsequent repair. However, regulation of recruitment is poorly understood. Here, we report a cluster of phosphosites on FANCD2 whose phosphorylation by CK2 inhibits both FANCD2 recruitment to ICLs and its monoubiquitination in vitro and in vivo. We have found that phosphorylated FANCD2 possesses reduced DNA binding activity, explaining the previous observations. Thus, we describe a regulatory mechanism operating as a molecular switch, where in the absence of DNA damage, the FANCD2/FANCI complex is prevented from loading onto DNA, effectively suppressing the FA pathway.
Collapse
Affiliation(s)
| | - Marian Kupculak
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Di Yang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Chih-Chao Liang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Ronghu Wu
- Department of Cell Biology, Harvard Medical School, Boston, MA 01125, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 01125, USA
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
124
|
Li S, Lu H, Wang Z, Hu Q, Wang H, Xiang R, Chiba T, Wu X. ERCC1/XPF Is Important for Repair of DNA Double-Strand Breaks Containing Secondary Structures. iScience 2019; 16:63-78. [PMID: 31153042 PMCID: PMC6543133 DOI: 10.1016/j.isci.2019.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/02/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
The structure-specific endonuclease ERCC1/XPF plays an important role in nucleotide excision repair and interstrand cross-link repair. In this study, we identified new functions of ERCC1/XPF in DNA double-strand break (DSB) repair. We found that the conserved function of ERCC1/XPF to remove non-homologous sequences at DSBs is a rate-limiting step for homologous recombination in mammalian cells, and more importantly, we uncovered an indispensable role of ERCC1/XPF in repair of DSBs containing DNA secondary structures, including the structure-prone AT-rich DNA sequences derived from common fragile sites and G-quadruplexes (G4s). We also demonstrated a synthetic lethal interaction of XPF with DNA translocase FANCM that is involved in removing DNA secondary structures. Furthermore, inactivation of XPF sensitizes FANCM-deficient cells to G4-interacting compounds. These results suggest an important function of ERCC1/XPF in protecting DNA secondary structures and provide a rationale for targeted treatment of FANCM-deficient tumors through inhibition of XPF.
Collapse
Affiliation(s)
- Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hongyan Lu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zi Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Qing Hu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hongjun Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rong Xiang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
125
|
Huang J, Zhang J, Bellani MA, Pokharel D, Gichimu J, James RC, Gali H, Ling C, Yan Z, Xu D, Chen J, Meetei AR, Li L, Wang W, Seidman MM. Remodeling of Interstrand Crosslink Proximal Replisomes Is Dependent on ATR, FANCM, and FANCD2. Cell Rep 2019; 27:1794-1808.e5. [PMID: 31067464 PMCID: PMC6676478 DOI: 10.1016/j.celrep.2019.04.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 12/19/2018] [Accepted: 04/04/2019] [Indexed: 11/23/2022] Open
Abstract
Eukaryotic replisomes are driven by the mini chromosome maintenance (MCM [M]) helicase complex, an offset ring locked around the template for leading strand synthesis by CDC45 (C) and GINS (G) proteins. Although the CDC45 MCM GINS (CMG) structure implies that interstrand crosslinks (ICLs) are absolute blocks to replisomes, recent studies indicate that cells can restart DNA synthesis on the side of the ICL distal to the initial encounter. Here, we report that restart requires ATR and is promoted by FANCD2 and phosphorylated FANCM. Following introduction of genomic ICLs and dependent on ATR and FANCD2 but not on the Fanconi anemia core proteins or FAAP24, FANCM binds the replisome complex, with concomitant release of the GINS proteins. In situ analysis of replisomes proximal to ICLs confirms the ATR-dependent release of GINS proteins while CDC45 is retained on the remodeled replisome. The results demonstrate the plasticity of CMG composition in response to replication stress.
Collapse
Affiliation(s)
- Jing Huang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China.
| | - Jing Zhang
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Durga Pokharel
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Julia Gichimu
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Ryan C James
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Himabindu Gali
- Department of Pharmacology & Experimental Therapeutics and Medicine, Boston University School of Medicine, 72 East Concord St., K-712D, Boston, MA 02118-2526
| | - Chen Ling
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Zhijiang Yan
- Institute of DNA Repair Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dongyi Xu
- Peking University, Beijing 100871, China
| | - Junjie Chen
- Department Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77225-0334, USA
| | - Amom Ruhikanta Meetei
- Division of Experimental Hematology and Cancer Biology and Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lei Li
- Department Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77225-0334, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
126
|
Inactivation of XPF Sensitizes Cancer Cells to Gemcitabine. J Nucleic Acids 2019; 2019:6357609. [PMID: 30941207 PMCID: PMC6421022 DOI: 10.1155/2019/6357609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/26/2018] [Accepted: 02/03/2019] [Indexed: 12/22/2022] Open
Abstract
Gemcitabine (2′, 2′-difluorodeoxycytidine; dFdC) is a deoxycytidine analog and is used primarily against pancreatic cancer. The cytotoxicity of gemcitabine is due to the inhibition of DNA replication. However, a mechanism of removal of the incorporated dFdC is largely unknown. In this report, we discovered that nucleotide excision repair protein XPF-ERCC1 participates in the repair of gemcitabine-induced DNA damage and inactivation of XPF sensitizes cells to gemcitabine. Further analysis identified that XPF-ERCC1 functions together with apurinic/apyrimidinic endonuclease (APE) in the repair of gemcitabine-induced DNA damage. Our results demonstrate the importance of the evaluation of DNA repair activities in gemcitabine treatment.
Collapse
|
127
|
Deng L, Wu RA, Sonneville R, Kochenova OV, Labib K, Pellman D, Walter JC. Mitotic CDK Promotes Replisome Disassembly, Fork Breakage, and Complex DNA Rearrangements. Mol Cell 2019; 73:915-929.e6. [PMID: 30849395 PMCID: PMC6410736 DOI: 10.1016/j.molcel.2018.12.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
DNA replication errors generate complex chromosomal rearrangements and thereby contribute to tumorigenesis and other human diseases. One mechanism that triggers these errors is mitotic entry before the completion of DNA replication. To address how mitosis might affect DNA replication, we used Xenopus egg extracts. When mitotic CDK (Cyclin B1-CDK1) is used to drive interphase egg extracts into a mitotic state, the replicative CMG (CDC45/MCM2-7/GINS) helicase undergoes ubiquitylation on its MCM7 subunit, dependent on the E3 ubiquitin ligase TRAIP. Whether replisomes have stalled or undergone termination, CMG ubiquitylation is followed by its extraction from chromatin by the CDC48/p97 ATPase. TRAIP-dependent CMG unloading during mitosis is also seen in C. elegans early embryos. At stalled forks, CMG removal results in fork breakage and end joining events involving deletions and templated insertions. Our results identify a mitotic pathway of global replisome disassembly that can trigger replication fork collapse and DNA rearrangements.
Collapse
Affiliation(s)
- Lin Deng
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Remi Sonneville
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Olga V Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
128
|
Wu RA, Semlow DR, Kamimae-Lanning AN, Kochenova OV, Chistol G, Hodskinson MR, Amunugama R, Sparks JL, Wang M, Deng L, Mimoso CA, Low E, Patel KJ, Walter JC. TRAIP is a master regulator of DNA interstrand crosslink repair. Nature 2019; 567:267-272. [PMID: 30842657 PMCID: PMC6417926 DOI: 10.1038/s41586-019-1002-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
Cells often use multiple pathways to repair the same DNA lesion, and the choice of pathway has substantial implications for the fidelity of genome maintenance. DNA interstrand crosslinks covalently link the two strands of DNA, and thereby block replication and transcription; the cytotoxicity of these crosslinks is exploited for chemotherapy. In Xenopus egg extracts, the collision of replication forks with interstrand crosslinks initiates two distinct repair pathways. NEIL3 glycosylase can cleave the crosslink1; however, if this fails, Fanconi anaemia proteins incise the phosphodiester backbone that surrounds the interstrand crosslink, generating a double-strand-break intermediate that is repaired by homologous recombination2. It is not known how the simpler NEIL3 pathway is prioritized over the Fanconi anaemia pathway, which can cause genomic rearrangements. Here we show that the E3 ubiquitin ligase TRAIP is required for both pathways. When two replisomes converge at an interstrand crosslink, TRAIP ubiquitylates the replicative DNA helicase CMG (the complex of CDC45, MCM2-7 and GINS). Short ubiquitin chains recruit NEIL3 through direct binding, whereas longer chains are required for the unloading of CMG by the p97 ATPase, which enables the Fanconi anaemia pathway. Thus, TRAIP controls the choice between the two known pathways of replication-coupled interstrand-crosslink repair. These results, together with our other recent findings3,4 establish TRAIP as a master regulator of CMG unloading and the response of the replisome to obstacles.
Collapse
Affiliation(s)
- R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Daniel R Semlow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Olga V Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gheorghe Chistol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Ravindra Amunugama
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Justin L Sparks
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Meng Wang
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Lin Deng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Emily Low
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ketan J Patel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
129
|
Datta A, Brosh RM. Holding All the Cards-How Fanconi Anemia Proteins Deal with Replication Stress and Preserve Genomic Stability. Genes (Basel) 2019; 10:genes10020170. [PMID: 30813363 PMCID: PMC6409899 DOI: 10.3390/genes10020170] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Fanconi anemia (FA) is a hereditary chromosomal instability disorder often displaying congenital abnormalities and characterized by a predisposition to progressive bone marrow failure (BMF) and cancer. Over the last 25 years since the discovery of the first linkage of genetic mutations to FA, its molecular genetic landscape has expanded tremendously as it became apparent that FA is a disease characterized by a defect in a specific DNA repair pathway responsible for the correction of covalent cross-links between the two complementary strands of the DNA double helix. This pathway has become increasingly complex, with the discovery of now over 20 FA-linked genes implicated in interstrand cross-link (ICL) repair. Moreover, gene products known to be involved in double-strand break (DSB) repair, mismatch repair (MMR), and nucleotide excision repair (NER) play roles in the ICL response and repair of associated DNA damage. While ICL repair is predominantly coupled with DNA replication, it also can occur in non-replicating cells. DNA damage accumulation and hematopoietic stem cell failure are thought to contribute to the increased inflammation and oxidative stress prevalent in FA. Adding to its confounding nature, certain FA gene products are also engaged in the response to replication stress, caused endogenously or by agents other than ICL-inducing drugs. In this review, we discuss the mechanistic aspects of the FA pathway and the molecular defects leading to elevated replication stress believed to underlie the cellular phenotypes and clinical features of FA.
Collapse
Affiliation(s)
- Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD 21224, USA.
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD 21224, USA.
| |
Collapse
|
130
|
Basbous J, Constantinou A. A tumor suppressive DNA translocase named FANCM. Crit Rev Biochem Mol Biol 2019; 54:27-40. [DOI: 10.1080/10409238.2019.1568963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jihane Basbous
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Angelos Constantinou
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| |
Collapse
|
131
|
Functional Comparison of XPF Missense Mutations Associated to Multiple DNA Repair Disorders. Genes (Basel) 2019; 10:genes10010060. [PMID: 30658521 PMCID: PMC6357085 DOI: 10.3390/genes10010060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 11/23/2022] Open
Abstract
XPF endonuclease is one of the most important DNA repair proteins. Encoded by XPF/ERCC4, XPF provides the enzymatic activity of XPF-ERCC1 heterodimer, an endonuclease that incises at the 5’ side of various DNA lesions. XPF is essential for nucleotide excision repair (NER) and interstrand crosslink repair (ICLR). XPF/ERCC4 mutations are associated with several human diseases: Xeroderma Pigmentosum (XP), Segmental Progeria (XFE), Fanconi Anemia (FA), Cockayne Syndrome (CS), and XP/CS combined disease (XPCSCD). Most affected individuals are compound heterozygotes for XPF/ERCC4 mutations complicating the identification of genotype/phenotype correlations. We report a detailed overview of NER and ICLR functional studies in human XPF-KO (knock-out) isogenic cells expressing six disease-specific pathogenic XPF amino acid substitution mutations. Ultraviolet (UV) sensitivity and unscheduled DNA synthesis (UDS) assays provide the most reliable information to discern mutations associated with ICLR impairment from mutations related to NER deficiency, whereas recovery of RNA synthesis (RRS) assays results hint to a possible role of XPF in resolving R-loops. Our functional studies demonstrate that a defined cellular phenotype cannot be easily correlated to each XPF mutation. Substituted positions along XPF sequences are not predictive of cellular phenotype nor reflect a particular disease. Therefore, in addition to mutation type, allelic interactions, protein stability and intracellular distribution of mutant proteins may also contribute to alter DNA repair pathways balance leading to clinically distinct disorders.
Collapse
|
132
|
Lambert MW. Spectrin and its interacting partners in nuclear structure and function. Exp Biol Med (Maywood) 2019; 243:507-524. [PMID: 29557213 DOI: 10.1177/1535370218763563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonerythroid αII-spectrin is a structural protein whose roles in the nucleus have just begun to be explored. αII-spectrin is an important component of the nucleoskelelton and has both structural and non-structural functions. Its best known role is in repair of DNA ICLs both in genomic and telomeric DNA. αII-spectrin aids in the recruitment of repair proteins to sites of damage and a proposed mechanism of action is presented. It interacts with a number of different groups of proteins in the nucleus, indicating it has roles in additional cellular functions. αII-spectrin, in its structural role, associates/co-purifies with proteins important in maintaining the architecture and mechanical properties of the nucleus such as lamin, emerin, actin, protein 4.1, nuclear myosin, and SUN proteins. It is important for the resilience and elasticity of the nucleus. Thus, αII-spectrin's role in cellular functions is complex due to its structural as well as non-structural roles and understanding the consequences of a loss or deficiency of αII-spectrin in the nucleus is a significant challenge. In the bone marrow failure disorder, Fanconi anemia, there is a deficiency in αII-spectrin and, among other characteristics, there is defective DNA repair, chromosome instability, and congenital abnormalities. One may speculate that a deficiency in αII-spectrin plays an important role not only in the DNA repair defect but also in the congenital anomalies observed in Fanconi anemia , particularly since αII-spectrin has been shown to be important in embryonic development in a mouse model. The dual roles of αII-spectrin in the nucleus in both structural and non-structural functions make this an extremely important protein which needs to be investigated further. Such investigations should help unravel the complexities of αII-spectrin's interactions with other nuclear proteins and enhance our understanding of the pathogenesis of disorders, such as Fanconi anemia , in which there is a deficiency in αII-spectrin. Impact statement The nucleoskeleton is critical for maintaining the architecture and functional integrity of the nucleus. Nonerythroid α-spectrin (αIISp) is an essential nucleoskeletal protein; however, its interactions with other structural and non-structural nuclear proteins and its functional importance in the nucleus have only begun to be explored. This review addresses these issues. It describes αIISp's association with DNA repair proteins and at least one proposed mechanism of action for its role in DNA repair. Specific interactions of αIISp with other nucleoskeletal proteins as well as its important role in the biomechanical properties of the nucleus are reviewed. The consequences of loss of αIISp, in disorders such as Fanconi anemia, are examined, providing insights into the profound impact of this loss on critical processes known to be abnormal in FA, such as development, carcinogenesis, cancer progression and cellular functions dependent upon αIISp's interactions with other nucleoskeletal proteins.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
133
|
Kim SM, Forsburg SL. Regulation of Structure-Specific Endonucleases in Replication Stress. Genes (Basel) 2018; 9:genes9120634. [PMID: 30558228 PMCID: PMC6316474 DOI: 10.3390/genes9120634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022] Open
Abstract
Replication stress results in various forms of aberrant replication intermediates that need to be resolved for faithful chromosome segregation. Structure-specific endonucleases (SSEs) recognize DNA secondary structures rather than primary sequences and play key roles during DNA repair and replication stress. Holliday junction resolvase MUS81 (methyl methane sulfonate (MMS), and UV-sensitive protein 81) and XPF (xeroderma pigmentosum group F-complementing protein) are a subset of SSEs that resolve aberrant replication structures. To ensure genome stability and prevent unnecessary DNA breakage, these SSEs are tightly regulated by the cell cycle and replication checkpoints. We discuss the regulatory network that control activities of MUS81 and XPF and briefly mention other SSEs involved in the resolution of replication intermediates.
Collapse
Affiliation(s)
- Seong Min Kim
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
134
|
Heyza JR, Lei W, Watza D, Zhang H, Chen W, Back JB, Schwartz AG, Bepler G, Patrick SM. Identification and Characterization of Synthetic Viability with ERCC1 Deficiency in Response to Interstrand Crosslinks in Lung Cancer. Clin Cancer Res 2018; 25:2523-2536. [PMID: 30538112 DOI: 10.1158/1078-0432.ccr-18-3094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE ERCC1/XPF is a DNA endonuclease with variable expression in primary tumor specimens, and has been investigated as a predictive biomarker for efficacy of platinum-based chemotherapy. The failure of clinical trials utilizing ERCC1 expression to predict response to platinum-based chemotherapy suggests additional mechanisms underlying the basic biology of ERCC1 in the response to interstrand crosslinks (ICLs) remain unknown. We aimed to characterize a panel of ERCC1 knockout (Δ) cell lines, where we identified a synthetic viable phenotype in response to ICLs with ERCC1 deficiency. EXPERIMENTAL DESIGN We utilized the CRISPR-Cas9 system to create a panel of ERCC1Δ lung cancer cell lines which we characterized. RESULTS We observe that loss of ERCC1 hypersensitizes cells to cisplatin when wild-type (WT) p53 is retained, whereas there is only modest sensitivity in cell lines that are p53mutant/null. In addition, when p53 is disrupted by CRISPR-Cas9 (p53*) in ERCC1Δ/p53WT cells, there is reduced apoptosis and increased viability after platinum treatment. These results were recapitulated in 2 patient data sets utilizing p53 mutation analysis and ERCC1 expression to assess overall survival. We also show that kinetics of ICL-repair (ICL-R) differ between ERCC1Δ/p53WT and ERCC1Δ/p53* cells. Finally, we provide evidence that cisplatin tolerance in the context of ERCC1 deficiency relies on DNA-PKcs and BRCA1 function. CONCLUSIONS Our findings implicate p53 as a potential confounding variable in clinical assessments of ERCC1 as a platinum biomarker via promoting an environment in which error-prone mechanisms of ICL-R may be able to partially compensate for loss of ERCC1.See related commentary by Friboulet et al., p. 2369.
Collapse
Affiliation(s)
- Joshua R Heyza
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Wen Lei
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Donovan Watza
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Hao Zhang
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Wei Chen
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan.,Biostatistics Core, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Jessica B Back
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Ann G Schwartz
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Gerold Bepler
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan.
| | - Steve M Patrick
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan.
| |
Collapse
|
135
|
Faridounnia M, Folkers GE, Boelens R. Function and Interactions of ERCC1-XPF in DNA Damage Response. Molecules 2018; 23:E3205. [PMID: 30563071 PMCID: PMC6320978 DOI: 10.3390/molecules23123205] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/28/2022] Open
Abstract
Numerous proteins are involved in the multiple pathways of the DNA damage response network and play a key role to protect the genome from the wide variety of damages that can occur to DNA. An example of this is the structure-specific endonuclease ERCC1-XPF. This heterodimeric complex is in particular involved in nucleotide excision repair (NER), but also in double strand break repair and interstrand cross-link repair pathways. Here we review the function of ERCC1-XPF in various DNA repair pathways and discuss human disorders associated with ERCC1-XPF deficiency. We also overview our molecular and structural understanding of XPF-ERCC1.
Collapse
Affiliation(s)
- Maryam Faridounnia
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Gert E Folkers
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
136
|
Okamoto Y, Abe M, Itaya A, Tomida J, Ishiai M, Takaori-Kondo A, Taoka M, Isobe T, Takata M. FANCD2 protects genome stability by recruiting RNA processing enzymes to resolve R-loops during mild replication stress. FEBS J 2018; 286:139-150. [PMID: 30431240 DOI: 10.1111/febs.14700] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 01/19/2023]
Abstract
R-loops, which consist of DNA : RNA hybrids and displaced single-strand DNA, are a major threat to genome stability. We have previously reported that a key Fanconi anemia protein, FANCD2, accumulates on large fragile genes during mild replication stress in a manner depending on R-loops. In this study, we found that FANCD2 suppresses R-loop levels. Furthermore, we identified FANCD2 interactions with RNA processing factors, including hnRNP U and DDX47. Our data suggest that FANCD2, which accumulates with R-loops in chromatin, recruits these factors and thereby promotes efficient processing of long RNA transcripts. This may lead to a reduction in transcription-replication collisions, as detected by PLA between PCNA and RNA Polymerase II, and hence, lowered R-loop levels. We propose that this mechanism might contribute to maintenance of genome stability during mild replication stress.
Collapse
Affiliation(s)
- Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Masako Abe
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Japan
| | - Akiko Itaya
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Japan
| | - Junya Tomida
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Japan.,Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Japan.,National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Japan
| |
Collapse
|
137
|
Sabatella M, Theil AF, Ribeiro-Silva C, Slyskova J, Thijssen K, Voskamp C, Lans H, Vermeulen W. Repair protein persistence at DNA lesions characterizes XPF defect with Cockayne syndrome features. Nucleic Acids Res 2018; 46:9563-9577. [PMID: 30165384 PMCID: PMC6182131 DOI: 10.1093/nar/gky774] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/19/2018] [Accepted: 08/16/2018] [Indexed: 12/28/2022] Open
Abstract
The structure-specific ERCC1-XPF endonuclease plays a key role in DNA damage excision by nucleotide excision repair (NER) and interstrand crosslink repair. Mutations in this complex can either cause xeroderma pigmentosum (XP) or XP combined with Cockayne syndrome (XPCS-complex) or Fanconi anemia. However, most patients carry compound heterozygous mutations, which confounds the dissection of the phenotypic consequences for each of the identified XPF alleles. Here, we analyzed the functional impact of individual pathogenic XPF alleles on NER. We show that XP-causing mutations diminish XPF recruitment to DNA damage and only mildly affect global genome NER. In contrast, an XPCS-complex-specific mutation causes persistent recruitment of XPF and the upstream core NER machinery to DNA damage and severely impairs both global genome and transcription-coupled NER. Remarkably, persistence of NER factors at DNA damage appears to be a common feature of XPCS-complex cells, suggesting that this could be a determining factor contributing to the development of additional developmental and/or neurodegenerative features in XP patients.
Collapse
Affiliation(s)
- Mariangela Sabatella
- Department of Molecular Genetics, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
- Oncode Institute, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
- Oncode Institute, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
| | - Cristina Ribeiro-Silva
- Department of Molecular Genetics, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
- Oncode Institute, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
| | - Jana Slyskova
- Department of Molecular Genetics, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
- Oncode Institute, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
| | - Karen Thijssen
- Department of Molecular Genetics, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
- Oncode Institute, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
| | - Chantal Voskamp
- Department of Molecular Genetics, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
- Oncode Institute, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
- Oncode Institute, Erasmus MC, University Erasmus Medical Center Rotterdam, 3000 CA, The Netherlands
| |
Collapse
|
138
|
Abstract
The SLX4/FANCP tumor suppressor has emerged as a key player in the maintenance of genome stability, making pivotal contributions to the repair of interstrand cross-links, homologous recombination, and in response to replication stress genome-wide as well as at specific loci such as common fragile sites and telomeres. SLX4 does so in part by acting as a scaffold that controls and coordinates the XPF-ERCC1, MUS81-EME1, and SLX1 structure-specific endonucleases in different DNA repair and recombination mechanisms. It also interacts with other important DNA repair and cell cycle control factors including MSH2, PLK1, TRF2, and TOPBP1 as well as with ubiquitin and SUMO. This review aims at providing an up-to-date and comprehensive view on the key functions that SLX4 fulfills to maintain genome stability as well as to highlight and discuss areas of uncertainty and emerging concepts.
Collapse
Affiliation(s)
- Jean-Hugues Guervilly
- a CRCM, CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes , Marseille , France
| | - Pierre Henri Gaillard
- a CRCM, CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes , Marseille , France
| |
Collapse
|
139
|
Yates M, Maréchal A. Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication. Int J Mol Sci 2018; 19:E2909. [PMID: 30257459 PMCID: PMC6213728 DOI: 10.3390/ijms19102909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
The complete and accurate replication of the genome is a crucial aspect of cell proliferation that is often perturbed during oncogenesis. Replication stress arising from a variety of obstacles to replication fork progression and processivity is an important contributor to genome destabilization. Accordingly, cells mount a complex response to this stress that allows the stabilization and restart of stalled replication forks and enables the full duplication of the genetic material. This response articulates itself on three important platforms, Replication Protein A/RPA-coated single-stranded DNA, the DNA polymerase processivity clamp PCNA and the FANCD2/I Fanconi Anemia complex. On these platforms, the recruitment, activation and release of a variety of genome maintenance factors is regulated by post-translational modifications including mono- and poly-ubiquitylation. Here, we review recent insights into the control of replication fork stability and restart by the ubiquitin system during replication stress with a particular focus on human cells. We highlight the roles of E3 ubiquitin ligases, ubiquitin readers and deubiquitylases that provide the required flexibility at stalled forks to select the optimal restart pathways and rescue genome stability during stressful conditions.
Collapse
Affiliation(s)
- Maïlyn Yates
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Alexandre Maréchal
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
140
|
Bhattacharjee S, Nandi S. Rare Genetic Diseases with Defects in DNA Repair: Opportunities and Challenges in Orphan Drug Development for Targeted Cancer Therapy. Cancers (Basel) 2018; 10:E298. [PMID: 30200453 PMCID: PMC6162646 DOI: 10.3390/cancers10090298] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022] Open
Abstract
A better understanding of mechanistic insights into genes and enzymes implicated in rare diseases provide a unique opportunity for orphan drug development. Advances made in identification of synthetic lethal relationships between rare disorder genes with oncogenes and tumor suppressor genes have brought in new anticancer therapeutic opportunities. Additionally, the rapid development of small molecule inhibitors against enzymes that participate in DNA damage response and repair has been a successful strategy for targeted cancer therapeutics. Here, we discuss the recent advances in our understanding of how many rare disease genes participate in promoting genome stability. We also summarize the latest developments in exploiting rare diseases to uncover new biological mechanisms and identify new synthetic lethal interactions for anticancer drug discovery that are in various stages of preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Saikat Nandi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| |
Collapse
|
141
|
Rycenga HB, Long DT. The evolving role of DNA inter-strand crosslinks in chemotherapy. Curr Opin Pharmacol 2018; 41:20-26. [PMID: 29679802 PMCID: PMC6108900 DOI: 10.1016/j.coph.2018.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
Abstract
DNA crosslinking agents make up a broad class of chemotherapy agents that target rapidly dividing cancer cells by disrupting DNA synthesis. These drugs differ widely in both chemical structure and biological effect. In cells, crosslinking agents can form multiple types of DNA lesions with varying efficiencies. Inter-strand crosslinks (ICLs) are considered to be the most cytotoxic lesion, creating a covalent roadblock to replication and transcription. Despite over 50 years in the clinic, the use of crosslinking agents that specialize in the formation of ICLs remains limited, largely due to high toxicity in patients. Current ICL-based therapeutics have focused on late-stage and drug-resistant tumors, or localized treatments that limit exposure. In this article, we review the development of clinical crosslinking agents, our understanding of how cells respond to different lesions, and the potential to improve ICL-based chemotherapeutics in the future.
Collapse
Affiliation(s)
- Halley B Rycenga
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - David T Long
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
142
|
A senataxin-associated exonuclease SAN1 is required for resistance to DNA interstrand cross-links. Nat Commun 2018; 9:2592. [PMID: 29968717 PMCID: PMC6030175 DOI: 10.1038/s41467-018-05008-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/07/2018] [Indexed: 02/02/2023] Open
Abstract
Interstrand DNA cross-links (ICLs) block both replication and transcription, and are commonly repaired by the Fanconi anemia (FA) pathway. However, FA-independent repair mechanisms of ICLs remain poorly understood. Here we report a previously uncharacterized protein, SAN1, as a 5′ exonuclease that acts independently of the FA pathway in response to ICLs. Deletion of SAN1 in HeLa cells and mouse embryonic fibroblasts causes sensitivity to ICLs, which is prevented by re-expression of wild type but not nuclease-dead SAN1. SAN1 deletion causes DNA damage and radial chromosome formation following treatment with Mitomycin C, phenocopying defects in the FA pathway. However, SAN1 deletion is not epistatic with FANCD2, a core FA pathway component. Unexpectedly, SAN1 binds to Senataxin (SETX), an RNA/DNA helicase that resolves R-loops. SAN1-SETX binding is increased by ICLs, and is required to prevent cross-link sensitivity. We propose that SAN1 functions with SETX in a pathway necessary for resistance to ICLs. When DNA interstrand cross-links damage occurs, it causes disruption of replication and transcription. Here the authors identify FAM120B/SAN1, a 5′ exonuclease involved in the repair process of Interstrand Crosslinks independently of the Fanconi Anemia pathway.
Collapse
|
143
|
Amunugama R, Willcox S, Wu RA, Abdullah UB, El-Sagheer AH, Brown T, McHugh PJ, Griffith JD, Walter JC. Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading. Cell Rep 2018; 23:3419-3428. [PMID: 29924986 PMCID: PMC6086610 DOI: 10.1016/j.celrep.2018.05.061] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 03/29/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023] Open
Abstract
DNA interstrand crosslinks (ICLs) are extremely cytotoxic, but the mechanism of their repair remains incompletely understood. Using Xenopus egg extracts, we previously showed that repair of a cisplatin ICL is triggered when two replication forks converge on the lesion. After CDC45/MCM2-7/GINS (CMG) ubiquitylation and unloading by the p97 segregase, FANCI-FANCD2 promotes DNA incisions by XPF-ERCC1, leading to ICL unhooking. Here, we report that, during this cell-free ICL repair reaction, one of the two converged forks undergoes reversal. Fork reversal fails when CMG unloading is inhibited, but it does not require FANCI-FANCD2. After one fork has undergone reversal, the opposing fork that still abuts the ICL undergoes incisions. Our data show that replication fork reversal at an ICL requires replisome disassembly. We present a revised model of ICL repair that involves a reversed fork intermediate.
Collapse
Affiliation(s)
- Ravindra Amunugama
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - R Alex Wu
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ummi B Abdullah
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | - Tom Brown
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK; Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Peter J McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Johannes C Walter
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
144
|
Distinct roles of XPF-ERCC1 and Rad1-Rad10-Saw1 in replication-coupled and uncoupled inter-strand crosslink repair. Nat Commun 2018; 9:2025. [PMID: 29795289 PMCID: PMC5966407 DOI: 10.1038/s41467-018-04327-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/20/2018] [Indexed: 01/17/2023] Open
Abstract
Yeast Rad1-Rad10 (XPF-ERCC1 in mammals) incises UV, oxidation, and cross-linking agent-induced DNA lesions, and contributes to multiple DNA repair pathways. To determine how Rad1-Rad10 catalyzes inter-strand crosslink repair (ICLR), we examined sensitivity to ICLs from yeast deleted for SAW1 and SLX4, which encode proteins that interact physically with Rad1-Rad10 and bind stalled replication forks. Saw1, Slx1, and Slx4 are critical for replication-coupled ICLR in mus81 deficient cells. Two rad1 mutations that disrupt interactions between Rpa1 and Rad1-Rad10 selectively disable non-nucleotide excision repair (NER) function, but retain UV lesion repair. Mutations in the analogous region of XPF also compromised XPF interactions with Rpa1 and Slx4, and are proficient in NER but deficient in ICLR and direct repeat recombination. We propose that Rad1-Rad10 makes distinct contributions to ICLR depending on cell cycle phase: in G1, Rad1-Rad10 removes ICL via NER, whereas in S/G2, Rad1-Rad10 facilitates NER-independent replication-coupled ICLR.
Collapse
|
145
|
XPF plays an indispensable role in relieving silver nanoparticle induced DNA damage stress in human cells. Toxicol Lett 2018; 288:44-54. [DOI: 10.1016/j.toxlet.2018.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 11/23/2022]
|
146
|
Jin H, Roy U, Lee G, Schärer OD, Cho Y. Structural mechanism of DNA interstrand cross-link unhooking by the bacterial FAN1 nuclease. J Biol Chem 2018; 293:6482-6496. [PMID: 29514982 PMCID: PMC5925792 DOI: 10.1074/jbc.ra118.002171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/05/2018] [Indexed: 01/04/2023] Open
Abstract
DNA interstrand cross-links (ICLs) block the progress of the replication and transcription machineries and can weaken chromosomal stability, resulting in various diseases. FANCD2-FANCI-associated nuclease (FAN1) is a conserved structure-specific nuclease that unhooks DNA ICLs independently of the Fanconi anemia pathway. Recent structural studies have proposed two different mechanistic features for ICL unhooking by human FAN1: a specific basic pocket that recognizes the terminal phosphate of a 1-nucleotide (nt) 5' flap or FAN1 dimerization. Herein, we show that despite lacking these features, Pseudomonas aeruginosa FAN1 (PaFAN1) cleaves substrates at ∼3-nt intervals and resolves ICLs. Crystal structures of PaFAN1 bound to various DNA substrates revealed that its conserved basic Arg/Lys patch comprising Arg-228 and Lys-260 recognizes phosphate groups near the 5' terminus of a DNA substrate with a 1-nt flap or a nick. Substitution of Lys-260 did not affect PaFAN1's initial endonuclease activity but significantly decreased its subsequent exonuclease activity and ICL unhooking. The Arg/Lys patch also interacted with phosphates at a 3-nt gap, and this interaction could drive movement of the scissile phosphates into the PaFAN1-active site. In human FAN1, the ICL-resolving activity was not affected by individual disruption of the Arg/Lys patch or basic pocket. However, simultaneous substitution of both FAN1 regions significantly reduced its ICL-resolving activity, suggesting that these two basic regions play a complementary role in ICL repair. On the basis of these findings, we propose a conserved role for two basic regions in FAN1 to guide ICL unhooking and to maintain genomic stability.
Collapse
Affiliation(s)
- Hyeonseok Jin
- From the Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbook 37673, South Korea
| | - Upasana Roy
- the Departments of Chemistry and Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
| | - Gwangrog Lee
- the Department of Biology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Orlando D Schärer
- the Departments of Chemistry and Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
- the Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, South Korea, and
- the Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Yunje Cho
- From the Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbook 37673, South Korea,
| |
Collapse
|
147
|
García-Calderón CB, Bejarano-García JA, Tinoco-Gago I, Castro MJ, Moreno-Gordillo P, Piruat JI, Caballero-Velázquez T, Pérez-Simón JA, Rosado IV. Genotoxicity of tetrahydrofolic acid to hematopoietic stem and progenitor cells. Cell Death Differ 2018; 25:1967-1979. [PMID: 29511342 DOI: 10.1038/s41418-018-0089-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/19/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolically reactive formaldehyde is a genotoxin and a carcinogen. Mice lacking the main formaldehyde-detoxifying gene Adh5 combined with the loss of the Fanconi anemia (FA) DNA repair pathway rapidly succumbed to bone marrow failure (BMF) primarily due to the extensive ablation of the hematopoietic stem cell (HSC) pool. However, the mechanism by which formaldehyde mediates these toxic effects is still unknown. We uncover a detrimental role of tetrahydrofolic acid (THF) in cells lacking Adh5 or the FA repair pathway. We show that Adh5- or FA-deficient cells are hypersensitive to formaldehyde and to THF, presenting DNA damage and genome instability. THF cytotoxicity involved imbalance of the nucleotide pool by deregulation of the thymidylate synthase (TYMS) enzyme, which stalled replication forks. In mice, THF exposure had widespread effects on hematopoiesis, affecting the frequency and the viability of myeloid- and lymphoid-committed precursor cells. Moreover, the hematopoietic stem and progenitor cells (HSPC) showed genomic instability, reduced colony-forming capacity and increased frequency of cycling and apoptotic HSCs upon THF exposure. Overall, our data reveal that the physiological pool of THF and formaldehyde challenge the stability of the genome of HSPCs that might lead to blood disorders.
Collapse
Affiliation(s)
- Clara B García-Calderón
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain
| | - José Antonio Bejarano-García
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain
| | - Isabel Tinoco-Gago
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain
| | - María José Castro
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain
| | - Paula Moreno-Gordillo
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain
| | - José I Piruat
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain.,Departamento de Hematología, Hospital Universitario Virgen del Rocío, 41013, Seville, Spain
| | - Teresa Caballero-Velázquez
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain.,Departamento de Hematología, Hospital Universitario Virgen del Rocío, 41013, Seville, Spain
| | - José A Pérez-Simón
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain.,Departamento de Hematología, Hospital Universitario Virgen del Rocío, 41013, Seville, Spain
| | - Iván V Rosado
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, 41013, Seville, Spain.
| |
Collapse
|
148
|
Kurzbauer MT, Pradillo M, Kerzendorfer C, Sims J, Ladurner R, Oliver C, Janisiw MP, Mosiolek M, Schweizer D, Copenhaver GP, Schlögelhofer P. Arabidopsis thaliana FANCD2 Promotes Meiotic Crossover Formation. THE PLANT CELL 2018; 30:415-428. [PMID: 29352063 PMCID: PMC5868695 DOI: 10.1105/tpc.17.00745] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/06/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
Fanconi anemia (FA) is a human autosomal recessive disorder characterized by chromosomal instability, developmental pathologies, predisposition to cancer, and reduced fertility. So far, 19 genes have been implicated in FA, most of them involved in DNA repair. Some are conserved across higher eukaryotes, including plants. The Arabidopsis thaliana genome encodes a homolog of the Fanconi anemia D2 gene (FANCD2) whose function in DNA repair is not yet fully understood. Here, we provide evidence that AtFANCD2 is required for meiotic homologous recombination. Meiosis is a specialized cell division that ensures reduction of genomic content by half and DNA exchange between homologous chromosomes via crossovers (COs) prior to gamete formation. In plants, a mutation in AtFANCD2 results in a 14% reduction of CO numbers. Genetic analysis demonstrated that AtFANCD2 acts in parallel to both MUTS HOMOLOG4 (AtMSH4), known for its role in promoting interfering COs and MMS AND UV SENSITIVE81 (AtMUS81), known for its role in the formation of noninterfering COs. AtFANCD2 promotes noninterfering COs in a MUS81-independent manner and is therefore part of an uncharted meiotic CO-promoting mechanism, in addition to those described previously.
Collapse
Affiliation(s)
- Marie-Therese Kurzbauer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Claudia Kerzendorfer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Jason Sims
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Rene Ladurner
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Cecilia Oliver
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Michael Peter Janisiw
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Magdalena Mosiolek
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Dieter Schweizer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
149
|
Lehmann J, Schubert S, Seebode C, Apel A, Ohlenbusch A, Emmert S. Splice variants of the endonucleases XPF and XPG contain residual DNA repair capabilities and could be a valuable tool for personalized medicine. Oncotarget 2018; 9:1012-1027. [PMID: 29416673 PMCID: PMC5787415 DOI: 10.18632/oncotarget.23105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
The two endonucleases XPF and XPG are essentially involved in nucleotide excision repair (NER) and interstrand crosslink (ICL) repair. Defects in these two proteins result in severe diseases like xeroderma pigmentosum (XP). We applied our newly CRISPR/Cas9 generated human XPF knockout cell line with complete loss of XPF and primary fibroblasts from an XP-G patient (XP20BE) to analyze until now uncharacterized spontaneous mRNA splice variants of these two endonucleases. Functional analyses of these variants were performed using luciferase-based reporter gene assays. Two XPF and XPG splice variants with residual repair capabilities in NER, as well as ICL repair could be identified. Almost all variants are severely C-terminally truncated and lack important protein-protein interaction domains. Interestingly, XPF-202, differing to XPF-003 in the first 12 amino acids only, had no repair capability at all, suggesting an important role of this region during DNA repair, potentially concerning protein-protein interaction. We also identified splice variants of XPF and XPG exerting inhibitory effects on NER. Moreover, we showed that the XPF and XPG splice variants presented with different inter-individual expression patterns in healthy donors, as well as in various tissues. With regard to their residual repair capability and dominant-negative effects, functionally relevant spontaneous XPF and XPG splice variants present promising prognostic marker candidates for individual cancer risk, disease outcome, or therapeutic success. This merits further investigations, large association studies, and translational research within clinical trials in the future.
Collapse
Affiliation(s)
- Janin Lehmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Steffen Schubert
- Information Network of Departments of Dermatology (IVDK), University Medical Center Goettingen, Goettingen, Germany
| | - Christina Seebode
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Antje Apel
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany
| | - Andreas Ohlenbusch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
150
|
Chan YW, Fugger K, West SC. Unresolved recombination intermediates lead to ultra-fine anaphase bridges, chromosome breaks and aberrations. Nat Cell Biol 2018; 20:92-103. [PMID: 29255170 PMCID: PMC5742284 DOI: 10.1038/s41556-017-0011-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/16/2017] [Indexed: 01/21/2023]
Abstract
The resolution of joint molecules that link recombining sister chromatids is essential for chromosome segregation. Here, we determine the fate of unresolved recombination intermediates arising in cells lacking two nucleases required for resolution (GEN1 -/- knockout cells depleted of MUS81). We find that intermediates persist until mitosis and form a distinct class of anaphase bridges, which we term homologous recombination ultra-fine bridges (HR-UFBs). HR-UFBs are distinct from replication stress-associated UFBs, which arise at common fragile sites, and from centromeric UFBs. HR-UFBs are processed by BLM helicase to generate single-stranded RPA-coated bridges that are broken during mitosis. In the next cell cycle, DNA breaks activate the DNA damage checkpoint response, and chromosome fusions arise by non-homologous end joining. Consequently, the cells undergo cell cycle delay and massive cell death. These results lead us to present a model detailing how unresolved recombination intermediates can promote DNA damage and chromosomal instability.
Collapse
|