101
|
Grüner S, Peter D, Weber R, Wohlbold L, Chung MY, Weichenrieder O, Valkov E, Igreja C, Izaurralde E. The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation. Mol Cell 2016; 64:467-479. [DOI: 10.1016/j.molcel.2016.09.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/22/2016] [Accepted: 09/14/2016] [Indexed: 10/20/2022]
|
102
|
Kamenska A, Simpson C, Vindry C, Broomhead H, Bénard M, Ernoult-Lange M, Lee BP, Harries LW, Weil D, Standart N. The DDX6-4E-T interaction mediates translational repression and P-body assembly. Nucleic Acids Res 2016; 44:6318-34. [PMID: 27342281 PMCID: PMC5291280 DOI: 10.1093/nar/gkw565] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
4E-Transporter binds eIF4E via its consensus sequence YXXXXLΦ, shared with eIF4G, and is a nucleocytoplasmic shuttling protein found enriched in P-(rocessing) bodies. 4E-T inhibits general protein synthesis by reducing available eIF4E levels. Recently, we showed that 4E-T bound to mRNA however represses its translation in an eIF4E-independent manner, and contributes to silencing of mRNAs targeted by miRNAs. Here, we address further the mechanism of translational repression by 4E-T by first identifying and delineating the interacting sites of its major partners by mass spectrometry and western blotting, including DDX6, UNR, unrip, PAT1B, LSM14A and CNOT4. Furthermore, we document novel binding between 4E-T partners including UNR-CNOT4 and unrip-LSM14A, altogether suggesting 4E-T nucleates a complex network of RNA-binding protein interactions. In functional assays, we demonstrate that joint deletion of two short conserved motifs that bind UNR and DDX6 relieves repression of 4E-T-bound mRNA, in part reliant on the 4E-T-DDX6-CNOT1 axis. We also show that the DDX6-4E-T interaction mediates miRNA-dependent translational repression and de novo P-body assembly, implying that translational repression and formation of new P-bodies are coupled processes. Altogether these findings considerably extend our understanding of the role of 4E-T in gene regulation, important in development and neurogenesis.
Collapse
Affiliation(s)
- Anastasiia Kamenska
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, UK
| | - Clare Simpson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, UK
| | - Caroline Vindry
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, UK
| | - Helen Broomhead
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, UK
| | - Marianne Bénard
- Sorbonne Universités, UPMC, CNRS, IBPS, Developmental Biology Laboratory, 75005 Paris, France
| | - Michèle Ernoult-Lange
- Sorbonne Universités, UPMC, CNRS, IBPS, Developmental Biology Laboratory, 75005 Paris, France
| | - Benjamin P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW
| | - Dominique Weil
- Sorbonne Universités, UPMC, CNRS, IBPS, Developmental Biology Laboratory, 75005 Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, UK
| |
Collapse
|
103
|
Mitotic protein kinase CDK1 phosphorylation of mRNA translation regulator 4E-BP1 Ser83 may contribute to cell transformation. Proc Natl Acad Sci U S A 2016; 113:8466-71. [PMID: 27402756 DOI: 10.1073/pnas.1607768113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian target of rapamycin (mTOR)-directed eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) phosphorylation promotes cap-dependent translation and tumorigenesis. During mitosis, cyclin-dependent kinase 1 (CDK1) substitutes for mTOR and fully phosphorylates 4E-BP1 at canonical sites (T37, T46, S65, and T70) and the noncanonical S83 site, resulting in a mitosis-specific hyperphosphorylated δ isoform. Colocalization studies with a phospho-S83 specific antibody indicate that 4E-BP1 S83 phosphorylation accumulates at centrosomes during prophase, peaks at metaphase, and decreases through telophase. Although S83 phosphorylation of 4E-BP1 does not affect general cap-dependent translation, expression of an alanine substitution mutant 4E-BP1.S83A partially reverses rodent cell transformation induced by Merkel cell polyomavirus small T antigen viral oncoprotein. In contrast to inhibitory mTOR 4E-BP1 phosphorylation, these findings suggest that mitotic CDK1-directed phosphorylation of δ-4E-BP1 may yield a gain of function, distinct from translation regulation, that may be important in tumorigenesis and mitotic centrosome function.
Collapse
|
104
|
Schmidlin T, Garrigues L, Lane CS, Mulder TC, van Doorn S, Post H, de Graaf EL, Lemeer S, Heck AJR, Altelaar AFM. Assessment of SRM, MRM3, and DIA for the targeted analysis of phosphorylation dynamics in non-small cell lung cancer. Proteomics 2016; 16:2193-205. [DOI: 10.1002/pmic.201500453] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/12/2016] [Accepted: 05/20/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Thierry Schmidlin
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Luc Garrigues
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | | | - T. Celine Mulder
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Sander van Doorn
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Erik L. de Graaf
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
- Current address: Erik L. de Graaf, Fondazione Pisana per la Scienza ONLUS; Via Panfilo Castaldi 2; 56121 Pisa Italy
| | - Simone Lemeer
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - A. F. Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| |
Collapse
|
105
|
Salvi N, Papadopoulos E, Blackledge M, Wagner G. The Role of Dynamics and Allostery in the Inhibition of the eIF4E/eIF4G Translation Initiation Factor Complex. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nicola Salvi
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston USA
- Univ. Grenoble Alpes, CNRS; CEA; Institut de Biologie Structurale; Grenoble France
| | - Evangelos Papadopoulos
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston USA
| | - Martin Blackledge
- Univ. Grenoble Alpes, CNRS; CEA; Institut de Biologie Structurale; Grenoble France
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston USA
| |
Collapse
|
106
|
Salvi N, Papadopoulos E, Blackledge M, Wagner G. The Role of Dynamics and Allostery in the Inhibition of the eIF4E/eIF4G Translation Initiation Factor Complex. Angew Chem Int Ed Engl 2016; 55:7176-9. [PMID: 27162083 DOI: 10.1002/anie.201603254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Indexed: 01/09/2023]
Abstract
Lack of regulation of the interaction between the eIF4E/eIF4G subunits of the translation initiation factor complex eIF4F is a hallmark of cancer. The inhibitor 4EGI-1 binds to eIF4E, thereby preventing association with eIF4G through an allosteric mechanism. NMR spectroscopy and MD simulations were used to obtain a mechanistic description of the role of correlated dynamics in this allosteric regulation. We show that binding of 4EGI-1 perturbs native correlated motions and increases correlated fluctuations in part of the eIF4G binding site.
Collapse
Affiliation(s)
- Nicola Salvi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA. .,Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France.
| | - Evangelos Papadopoulos
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Martin Blackledge
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA.
| |
Collapse
|
107
|
Burger VM, Nolasco DO, Stultz CM. Expanding the Range of Protein Function at the Far End of the Order-Structure Continuum. J Biol Chem 2016; 291:6706-13. [PMID: 26851282 PMCID: PMC4807258 DOI: 10.1074/jbc.r115.692590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The traditional view of the structure-function paradigm is that a protein's function is inextricably linked to a well defined, three-dimensional structure, which is determined by the protein's primary amino acid sequence. However, it is now accepted that a number of proteins do not adopt a unique tertiary structure in solution and that some degree of disorder is required for many proteins to perform their prescribed functions. In this review, we highlight how a number of protein functions are facilitated by intrinsic disorder and introduce a new protein structure taxonomy that is based on quantifiable metrics of a protein's disorder.
Collapse
Affiliation(s)
- Virginia M Burger
- From the Research Laboratory for Electronics, Department of Electrical Engineering & Computer Science, and
| | - Diego O Nolasco
- From the Research Laboratory for Electronics, Department of Electrical Engineering & Computer Science, and
| | - Collin M Stultz
- From the Research Laboratory for Electronics, Department of Electrical Engineering & Computer Science, and the Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138
| |
Collapse
|
108
|
Enhanced translation initiation factor 4G levels correlate with production levels of monoclonal antibodies in recombinant CHO cell lines. Biochem J 2016; 473:e11-3. [PMID: 26965386 DOI: 10.1042/bj20151314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using cells to manufacture protein-based therapeutics or biopharmaceuticals is a rapidly expanding industrial activity. Chinese hamster ovary (CHO) cells are the most frequently used mammalian host-expression system for the manufacture of biopharmaceuticals. Over the past ∼30 years academic and industrial researchers have studied cell expression characteristics with aims to improve product yield, quality, scalability and reproducibility. Although many steps in the gene expression and secretion pathways have been optimized, little attention has been paid to optimizing protein synthesis factors and regulators during this process. A new study in Biochemical Journal by Mead et al., provides a first systematic study of several protein synthesis factors and finds that the expression level of eIF4G1 correlates with the level of recombinant protein expressed in cultures. Optimizing levels and activities of protein synthesis factors may help to enhance recombinant protein expression of biopharmaceuticals.
Collapse
|
109
|
Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Chem Rev 2016; 116:6424-62. [PMID: 26922996 DOI: 10.1021/acs.chemrev.5b00548] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding signaling and other complex biological processes requires elucidating the critical roles of intrinsically disordered proteins (IDPs) and regions (IDRs), which represent ∼30% of the proteome and enable unique regulatory mechanisms. In this review, we describe the structural heterogeneity of disordered proteins that underpins these mechanisms and the latest progress in obtaining structural descriptions of conformational ensembles of disordered proteins that are needed for linking structure and dynamics to function. We describe the diverse interactions of IDPs that can have unusual characteristics such as "ultrasensitivity" and "regulated folding and unfolding". We also summarize the mounting data showing that large-scale assembly and protein phase separation occurs within a variety of signaling complexes and cellular structures. In addition, we discuss efforts to therapeutically target disordered proteins with small molecules. Overall, we interpret the remodeling of disordered state ensembles due to binding and post-translational modifications within an expanded framework for allostery that provides significant insights into how disordered proteins transmit biological information.
Collapse
Affiliation(s)
- Veronika Csizmok
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center , Memphis, Tennessee 38163, United States
| | - Julie D Forman-Kay
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto , Toronto, ON M5S 1A8, Canada
| |
Collapse
|
110
|
Bah A, Forman-Kay JD. Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications. J Biol Chem 2016; 291:6696-705. [PMID: 26851279 DOI: 10.1074/jbc.r115.695056] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications (PTMs) produce significant changes in the structural properties of intrinsically disordered proteins (IDPs) by affecting their energy landscapes. PTMs can induce a range of effects, from local stabilization or destabilization of transient secondary structure to global disorder-to-order transitions, potentially driving complete state changes between intrinsically disordered and folded states or dispersed monomeric and phase-separated states. Here, we discuss diverse biological processes that are dependent on PTM regulation of IDPs. We also present recent tools for generating homogenously modified IDPs for studies of PTM-mediated IDP regulatory mechanisms.
Collapse
Affiliation(s)
- Alaji Bah
- From the Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Julie D Forman-Kay
- From the Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
111
|
Lama D, Brown CJ, Lane DP, Verma CS. Gating by Tryptophan 73 Exposes a Cryptic Pocket at the Protein-Binding Interface of the Oncogenic eIF4E Protein. Biochemistry 2015; 54:6535-44. [DOI: 10.1021/acs.biochem.5b00812] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dilraj Lama
- Bioinformatics
Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis
Street, #07-01 Matrix, Singapore 138671
| | - Christopher J. Brown
- p53
Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - David P. Lane
- p53
Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Chandra S. Verma
- Bioinformatics
Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis
Street, #07-01 Matrix, Singapore 138671
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, Singapore 117543
- School
of Biological Sciences, Nanyang Technological University, 50 Nanyang
Drive, Singapore 637551
| |
Collapse
|
112
|
Abstract
Translational control plays a critical role in the regulation of gene expression in eukaryotes and affects many essential cellular processes, including proliferation, apoptosis and differentiation. Under most circumstances, translational control occurs at the initiation step at which the ribosome is recruited to the mRNA. The eukaryotic translation initiation factor 4E (eIF4E), as part of the eIF4F complex, interacts first with the mRNA and facilitates the recruitment of the 40S ribosomal subunit. The activity of eIF4E is regulated at many levels, most profoundly by two major signalling pathways: PI3K (phosphoinositide 3-kinase)/Akt (also known and Protein Kinase B, PKB)/mTOR (mechanistic/mammalian target of rapamycin) and Ras (rat sarcoma)/MAPK (mitogen-activated protein kinase)/Mnk (MAPK-interacting kinases). mTOR directly phosphorylates the 4E-BPs (eIF4E-binding proteins), which are inhibitors of eIF4E, to relieve translational suppression, whereas Mnk phosphorylates eIF4E to stimulate translation. Hyperactivation of these pathways occurs in the majority of cancers, which results in increased eIF4E activity. Thus, translational control via eIF4E acts as a convergence point for hyperactive signalling pathways to promote tumorigenesis. Consequently, recent works have aimed to target these pathways and ultimately the translational machinery for cancer therapy.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, Canada H3A 1A3
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, Canada H3A 1A3
| |
Collapse
|
113
|
Abstract
The original purification of the heterotrimeric eIF4F was published over 30 years ago (Grifo, J. A., Tahara, S. M., Morgan, M. A., Shatkin, A. J., and Merrick, W. C. (1983) J. Biol. Chem. 258, 5804-5810). Since that time, numerous studies have been performed with the three proteins specifically required for the translation initiation of natural mRNAs, eIF4A, eIF4B, and eIF4F. These have involved enzymatic and structural studies of the proteins and a number of site-directed mutagenesis studies. The regulation of translation exhibited through the mammalian target of rapamycin (mTOR) pathway is predominately seen as the phosphorylation of 4E-BP, an inhibitor of protein synthesis that functions by binding to the cap binding subunit of eIF4F (eIF4E). A hypothesis that requires the disassembly of eIF4F during translation initiation to yield free subunits (eIF4A, eIF4E, and eIF4G) is presented.
Collapse
Affiliation(s)
- William C Merrick
- From the Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4935
| |
Collapse
|
114
|
Peter D, Weber R, Köne C, Chung MY, Ebertsch L, Truffault V, Weichenrieder O, Igreja C, Izaurralde E. Mextli proteins use both canonical bipartite and novel tripartite binding modes to form eIF4E complexes that display differential sensitivity to 4E-BP regulation. Genes Dev 2015; 29:1835-49. [PMID: 26294658 PMCID: PMC4573856 DOI: 10.1101/gad.269068.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022]
Abstract
Peter et al. present the crystal structures of the eIF4E-binding regions of the Drosophila melanogaster (Dm) and Caenorhabditis elegans (Ce) Mxt proteins in complex with eIF4E in the cap-bound and cap-free states. The structures reveal unexpected diversity in the binding modes of 4E-BPs, resulting in eIF4E complexes that display differential sensitivity to 4E-BP regulation. The eIF4E-binding proteins (4E-BPs) are a diverse class of translation regulators that share a canonical eIF4E-binding motif (4E-BM) with eIF4G. Consequently, they compete with eIF4G for binding to eIF4E, thereby inhibiting translation initiation. Mextli (Mxt) is an unusual 4E-BP that promotes translation by also interacting with eIF3. Here we present the crystal structures of the eIF4E-binding regions of the Drosophila melanogaster (Dm) and Caenorhabditis elegans (Ce) Mxt proteins in complex with eIF4E in the cap-bound and cap-free states. The structures reveal unexpected evolutionary plasticity in the eIF4E-binding mode, with a classical bipartite interface for Ce Mxt and a novel tripartite interface for Dm Mxt. Both interfaces comprise a canonical helix and a noncanonical helix that engage the dorsal and lateral surfaces of eIF4E, respectively. Remarkably, Dm Mxt contains a C-terminal auxiliary helix that lies anti-parallel to the canonical helix on the eIF4E dorsal surface. In contrast to the eIF4G and Ce Mxt complexes, the Dm eIF4E–Mxt complexes are resistant to competition by bipartite 4E-BPs, suggesting that Dm Mxt can bind eIF4E when eIF4G binding is inhibited. Our results uncovered unexpected diversity in the binding modes of 4E-BPs, resulting in eIF4E complexes that display differential sensitivity to 4E-BP regulation.
Collapse
Affiliation(s)
- Daniel Peter
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Carolin Köne
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Min-Yi Chung
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Linda Ebertsch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Vincent Truffault
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
115
|
Sekiyama N, Arthanari H, Papadopoulos E, Rodriguez-Mias RA, Wagner G, Léger-Abraham M. Molecular mechanism of the dual activity of 4EGI-1: Dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1. Proc Natl Acad Sci U S A 2015; 112:E4036-45. [PMID: 26170285 PMCID: PMC4522750 DOI: 10.1073/pnas.1512118112] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The eIF4E-binding protein (4E-BP) is a phosphorylation-dependent regulator of protein synthesis. The nonphosphorylated or minimally phosphorylated form binds translation initiation factor 4E (eIF4E), preventing binding of eIF4G and the recruitment of the small ribosomal subunit. Signaling events stimulate serial phosphorylation of 4E-BP, primarily by mammalian target of rapamycin complex 1 (mTORC1) at residues T37/T46, followed by T70 and S65. Hyperphosphorylated 4E-BP dissociates from eIF4E, allowing eIF4E to interact with eIF4G and translation initiation to resume. Because overexpression of eIF4E is linked to cellular transformation, 4E-BP is a tumor suppressor, and up-regulation of its activity is a goal of interest for cancer therapy. A recently discovered small molecule, eIF4E/eIF4G interaction inhibitor 1 (4EGI-1), disrupts the eIF4E/eIF4G interaction and promotes binding of 4E-BP1 to eIF4E. Structures of 14- to 16-residue 4E-BP fragments bound to eIF4E contain the eIF4E consensus binding motif, (54)YXXXXLΦ(60) (motif 1) but lack known phosphorylation sites. We report here a 2.1-Å crystal structure of mouse eIF4E in complex with m(7)GTP and with a fragment of human 4E-BP1, extended C-terminally from the consensus-binding motif (4E-BP150-84). The extension, which includes a proline-turn-helix segment (motif 2) followed by a loop of irregular structure, reveals the location of two phosphorylation sites (S65 and T70). Our major finding is that the C-terminal extension (motif 3) is critical to 4E-BP1-mediated cell cycle arrest and that it partially overlaps with the binding site of 4EGI-1. The binding of 4E-BP1 and 4EGI-1 to eIF4E is therefore not mutually exclusive, and both ligands contribute to shift the equilibrium toward the inhibition of translation initiation.
Collapse
Affiliation(s)
- Naotaka Sekiyama
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Evangelos Papadopoulos
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Ricard A Rodriguez-Mias
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Mélissa Léger-Abraham
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|