101
|
Yu W, Huang W, Yang Y, Qiu R, Zeng Y, Hou Y, Sun G, Shi H, Leng S, Feng D, Chen Y, Wang S, Teng X, Yu H, Wang Y. GATA3 recruits UTX for gene transcriptional activation to suppress metastasis of breast cancer. Cell Death Dis 2019; 10:832. [PMID: 31685800 PMCID: PMC6828764 DOI: 10.1038/s41419-019-2062-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
GATA3 has emerged as a prominent transcription factor required for maintaining mammary-gland homeostasis. GATA3 loss is associated with aggressive breast cancer development, but the mechanism by which breast cancer is affected by the loss of GATA3 function remains unclear. Here, we report that GATA3 expression is positively correlated with the expression of UTX, a histone H3K27 demethylase contained in the MLL4 methyltransferase complex, and that GATA3 recruits the chromatin-remodeling MLL4 complex and interacts directly with UTX, ASH2L, and RBBP5. Using RNA sequencing and chromatin immunoprecipitation and sequencing, we demonstrate that the GATA3/UTX complex synergistically regulates a cohort of genes including Dicer and UTX, which are critically involved in the epithelial-to-mesenchymal transition (EMT). Our results further show that the GATA3-UTX-Dicer axis inhibits EMT, invasion, and metastasis of breast cancer cells in vitro and the dissemination of breast cancer in vivo. Our study implicates the GATA3-UTX-Dicer axis in breast cancer metastasis and provides new mechanistic insights into the pathophysiological function of GATA3.
Collapse
Affiliation(s)
- Wenqian Yu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China.,Cardiovascular surgery center, Shandong Provincial ENT Hospital affiliated to Shandong University, 250022, Jinan, P.R. China
| | - Wei Huang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, P.R. China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Yi Zeng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Gancheng Sun
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Hang Shi
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Shuai Leng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Dandan Feng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Yang Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China
| | - Shuang Wang
- Cardiovascular surgery center, Shandong Provincial ENT Hospital affiliated to Shandong University, 250022, Jinan, P.R. China
| | - Xu Teng
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, P.R. China
| | - Hefen Yu
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, P.R. China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P.R. China. .,Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, P.R. China.
| |
Collapse
|
102
|
Li Y, Chen L, Feng L, Zhu M, Shen Q, Fang Y, Liu X, Zhang X. NEK2 promotes proliferation, migration and tumor growth of gastric cancer cells via regulating KDM5B/H3K4me3. Am J Cancer Res 2019; 9:2364-2378. [PMID: 31815040 PMCID: PMC6895449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023] Open
Abstract
The mechanisms of how Never in Mitosis (NIMA) Related Kinase 2 (NEK2) coordinates altered signaling to malignant gastric cancer (GC) transformation remain unclear. Overexpression of NEK2 and KDM5B were observed in GC cell lines with high sensitivity to NEK2 inhibitors. Here we investigated the biological behaviors of NEK2 and the possible mechanisms of regulative effects of NEK2 on KDM5B in GC cell lines both in vitro and in vivo. The results showed that NEK2 and KDM5B were highly expressed in most of the 10 GC cell lines. NEK2 knockdown in MGC-803 cells led to suppression of cell proliferation and migration in vitro and tumor growth in vivo, while NEK2 overexpression in BGC-823 cells exhibited the reverse biological effect. When NEK2 was inhibited by NEK2 inhibitors or shNEK2, cellular KDM5B level decreased and H3K4me3 level increased, while overexpression of NEK2 resulted in enhanced KDM5B expression and decreased H3K4me3 level. Though direct interaction between NEK2 and KDM5B was excluded, NEK2 could regulate KDM5B/H3K4me3 expression through β-catenin/Myc both in vitro and in vivo, which was double confirmed by c-myc and KDM5B inhibitor experiments. Taken together, our study showed that NEK2 was highly expressed in GC cell lines and related to promoting cell proliferation, migration and tumor growth. A NEK2/β-catenin/Myc/KDM5B/H3K4me3 signaling pathway may contribute to the important carcinogenic role of NEK2-mediated malignant behaviors in GC.
Collapse
Affiliation(s)
- Yiwei Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Lijuan Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Lixing Feng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Mengli Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Qiang Shen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Yanfen Fang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| |
Collapse
|
103
|
Cildir G, Toubia J, Yip KH, Zhou M, Pant H, Hissaria P, Zhang J, Hong W, Robinson N, Grimbaldeston MA, Lopez AF, Tergaonkar V. Genome-wide Analyses of Chromatin State in Human Mast Cells Reveal Molecular Drivers and Mediators of Allergic and Inflammatory Diseases. Immunity 2019; 51:949-965.e6. [PMID: 31653482 DOI: 10.1016/j.immuni.2019.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 02/18/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
Mast cells (MCs) are versatile immune cells capable of rapidly responding to a diverse range of extracellular cues. Here, we mapped the genomic and transcriptomic changes in human MCs upon diverse stimuli. Our analyses revealed broad H3K4me3 domains and enhancers associated with activation. Notably, the rise of intracellular calcium concentration upon immunoglobulin E (IgE)-mediated crosslinking of the high-affinity IgE receptor (FcεRI) resulted in genome-wide reorganization of the chromatin landscape and was associated with a specific chromatin signature, which we term Ca2+-dependent open chromatin (COC) domains. Examination of differentially expressed genes revealed potential effectors of MC function, and we provide evidence for fibrinogen-like protein 2 (FGL2) as an MC mediator with potential relevance in chronic spontaneous urticaria. Disease-associated single-nucleotide polymorphisms mapped onto cis-regulatory regions of human MCs suggest that MC function may impact a broad range of pathologies. The datasets presented here constitute a resource for the further study of MC function.
Collapse
Affiliation(s)
- Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - John Toubia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; ACRF Cancer Genomics Facility, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Mingyan Zhou
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Harshita Pant
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | | | - Jingxian Zhang
- Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Vinay Tergaonkar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.
| |
Collapse
|
104
|
Tong Q, Ouyang S, Chen R, Huang J, Guo L. MYCN-mediated regulation of the HES1 promoter enhances the chemoresistance of small-cell lung cancer by modulating apoptosis. Am J Cancer Res 2019; 9:1938-1956. [PMID: 31598396 PMCID: PMC6780666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023] Open
Abstract
MYCN, a member of the MYC family, is correlated with tumorigenesis, metastasis and therapy in many malignancies; however, its role in small-cell lung cancer (SCLC) remains unclear. In this study, we sought to identify the function of MYCN in SCLC chemoresistance and found that MYCN is overexpressed in chemoresistant SCLC cells. We used MYCN gain- and loss-of- function experiments to demonstrate that MYCN promotes in vitro and in vivo chemoresistance in SCLC by inhibiting apoptosis. Mechanistic investigations showed that MYCN binds to the HES1 promoter and exhibits transcriptional activity. Furthermore, MYCN mediated SCLC chemoresistance through HES1. Accordingly, the NOTCH inhibitor FLI-60 derepressed HES1 and diminished MYCN-induced chemoresistance in SCLC. Finally, the positive correlation between HES1 and MYCN was confirmed in SCLC patients. Chemoresistant SCLC patients had higher expression levels of MYCN and HES1 than patients without chemoresistant SCLC. MYCN overexpression was related to advanced clinical stage and shorter survival in SCLC. In conclusion, our study revealed that MYCN and HES1 may be potential therapeutic targets and promising predictors for SCLC.
Collapse
Affiliation(s)
- Qin Tong
- Department of Pathology, Zhujiang Hospital, Southern Medical University253 Gongye Road, Guangzhou 510282, People’s Republic of China
- Department of Radiation Oncology, The First Affiliated Hospital of University of South ChinaHengyang 421001, People’s Republic of China
| | - Shuming Ouyang
- Department of Reproductive Medicine, The First Affiliated Hospital of University of South ChinaHengyang 421001, People’s Republic of China
| | - Rui Chen
- Department of Pathology, Zhujiang Hospital, Southern Medical University253 Gongye Road, Guangzhou 510282, People’s Republic of China
| | - Jie Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical SciencesGuangzhou 510080, People’s Republic of China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University253 Gongye Road, Guangzhou 510282, People’s Republic of China
| |
Collapse
|
105
|
Li SS, Jiang WL, Xiao WQ, Li K, Zhang YF, Guo XY, Dai YQ, Zhao QY, Jiang MJ, Lu ZJ, Wan R. KMT2D deficiency enhances the anti-cancer activity of L48H37 in pancreatic ductal adenocarcinoma. World J Gastrointest Oncol 2019; 11:599-621. [PMID: 31435462 PMCID: PMC6700028 DOI: 10.4251/wjgo.v11.i8.599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/23/2019] [Accepted: 02/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Novel therapeutic strategies are urgently needed for patients with a delayed diagnosis of pancreatic ductal adenocarcinoma (PDAC) in order to improve their chances of survival. Recent studies have shown potent anti-neoplastic effects of curcumin and its analogues. In addition, the role of histone methyltransferases on cancer therapeutics has also been elucidated. However, the relationship between these two factors in the treatment of pancreatic cancer remains unknown. Our working hypothesis was that L48H37, a novel curcumin analog, has better efficacy in pancreatic cancer cell growth inhibition in the absence of histone-lysine N-methyltransferase 2D (KMT2D).
AIM To determine the anti-cancer effects of L48H37 in PDAC, and the role of KMT2D on its therapeutic efficacy.
METHODS The viability and proliferation of primary (PANC-1 and MIA PaCa-2) and metastatic (SW1990 and ASPC-1) PDAC cell lines treated with L48H37 was determined by CCK8 and colony formation assay. Apoptosis, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) levels, and cell cycle profile were determined by staining the cells with Annexin-V/7-AAD, JC-1, DCFH-DA, and PI respectively, as well as flow cytometric acquisition. In vitro migration was assessed by the wound healing assay. The protein and mRNA levels of relevant factors were analyzed using Western blotting, immunofluorescence and real time-quantitative PCR. The in situ expression of KMT2D in both human PDAC and paired adjacent normal tissues was determined by immunohistochemistry. In vivo tumor xenografts were established by injecting nude mice with PDAC cells. Bioinformatics analyses were also conducted using gene expression databases and TCGA.
RESULTS L48H37 inhibited the proliferation and induced apoptosis in SW1990 and ASPC-1 cells in a dose- and time-dependent manner, while also reducing MMP, increasing ROS levels, arresting cell cycle at the G2/M stages and activating the endoplasmic reticulum (ER) stress-associated protein kinase RNA-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/activating transcription factor 4 (ATF4)/CHOP signaling pathway. Knocking down ATF4 significantly upregulated KMT2D in PDAC cells, and also decreased L48H37-induced apoptosis. Furthermore, silencing KMT2D in L48H37-treated cells significantly augmented apoptosis and the ER stress pathway, indicating that KMT2D depletion is essential for the anti-neoplastic effects of L48H37. Administering L48H37 to mice bearing tumors derived from control or KMT2D-knockdown PDAC cells significantly decreased the tumor burden. We also identified several differentially expressed genes in PDAC cell lines expressing very low levels of KMT2D that were functionally categorized into the extrinsic apoptotic signaling pathway. The KMT2D high- and low-expressing PDAC patients from the TCGA database showed similar survival rates,but higher KMT2D expression was associated with poor tumor grade in clinical and pathological analyses.
CONCLUSION L48H37 exerts a potent anti-cancer effect in PDAC, which is augmented by KMT2D deficiency.
Collapse
Affiliation(s)
- Si-Si Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Wei-Liang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Wen-Qin Xiao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Kai Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ye-Fei Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xing-Ya Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yi-Qi Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qiu-Yan Zhao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ming-Jie Jiang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhan-Jun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
106
|
Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019; 20:625-641. [PMID: 31267065 DOI: 10.1038/s41580-019-0151-1] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 12/26/2022]
Abstract
Histone methylation can occur at various sites in histone proteins, primarily on lysine and arginine residues, and it can be governed by multiple positive and negative regulators, even at a single site, to either activate or repress transcription. It is now apparent that histone methylation is critical for almost all stages of development, and its proper regulation is essential for ensuring the coordinated expression of gene networks that govern pluripotency, body patterning and differentiation along appropriate lineages and organogenesis. Notably, developmental histone methylation is highly dynamic. Early embryonic systems display unique histone methylation patterns, prominently including the presence of bivalent (both gene-activating and gene-repressive) marks at lineage-specific genes that resolve to monovalent marks during differentiation, which ensures that appropriate genes are expressed in each tissue type. Studies of the effects of methylation on embryonic stem cell pluripotency and differentiation have helped to elucidate the developmental roles of histone methylation. It has been revealed that methylation and demethylation of both activating and repressive marks are essential for establishing embryonic and extra-embryonic lineages, for ensuring gene dosage compensation via genomic imprinting and for establishing body patterning via HOX gene regulation. Not surprisingly, aberrant methylation during embryogenesis can lead to defects in body patterning and in the development of specific organs. Human genetic disorders arising from mutations in histone methylation regulators have revealed their important roles in the developing skeletal and nervous systems, and they highlight the overlapping and unique roles of different patterns of methylation in ensuring proper development.
Collapse
|
107
|
Guo W, Liang X, Liu L, Guo Y, Shen S, Liang J, Dong Z. MiR-6872 host gene SEMA3B and its antisense lncRNA SEMA3B-AS1 function synergistically to suppress gastric cardia adenocarcinoma progression. Gastric Cancer 2019; 22:705-722. [PMID: 30656427 DOI: 10.1007/s10120-019-00924-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Semaphorin 3B (SEMA3B) is frequently inactivated in several carcinomas. However, as the host gene of miR-6872, the roles of SEMA3B, antisense lncRNA SEMA3B-AS1, and miR-6872 in gastric cardia adenocarcinoma (GCA) tumorigenesis have not been clarified. METHODS The expression levels of SEMA3B, SEMA3B-AS1, and miR-6872 were respectively detected by qRT-PCR, western blot, or immunohistochemical staining assays. The methylation status was determined by BGS and BS-MSP methods. In vitro assays were preformed to explore the biological effects of SEMA3B, SEMA3B-AS1, and miR-6872-5p in gastric cancer cells. Chromatin immunoprecipitation assay was used to detect the binding of protein to DNA. The interaction of SEMA3B-AS1 with MLL4 was identified by RNA immunoprecipitation and RNA pull-down assays. RESULTS Frequent downregulation of SEMA3B, SEMA3B-AS1, and miR-6872 was detected in GCA tissues and gastric cancer cells. Aberrant hypermethylation of the promoter region was more tumor specific and was negatively correlated with the expression level of SEMA3B, SEMA3B-AS1, and miR-6872-5p. Transcription factor Sp1 activated SEMA3B or SEMA3B-AS1 transcription and CpG sites hypermethylation within promoter region eliminated Sp1 binding ability. Overexpression of SEMA3B and SEMA3B-AS1 inhibited gastric cancer cell proliferation, migration, and invasion in vitro. SEMA3B-AS1 induced the expression of SEMA3B by interacting with MLL4. ZNF143 might be the target gene of miR-6872-5p and miR-6872-5p functioning synergistically with SEMA3B to suppress cell invasion. Furthermore, SEMA3B, SEMA3B-AS1, and miR-6872-5p expression levels were associated with GCA patients' survival. CONCLUSIONS SEMA3B, SEMA3B-AS1, and miR-6872 may act as tumor suppressors and may serve as potential targets for antitumor therapy.
Collapse
Affiliation(s)
- Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Xiaoliang Liang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Lei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanli Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Supeng Shen
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Jia Liang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Zhiming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
108
|
Stratton MS, Farina FM, Elia L. Epigenetics and vascular diseases. J Mol Cell Cardiol 2019; 133:148-163. [PMID: 31211956 DOI: 10.1016/j.yjmcc.2019.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease remains the number one cause of death and disability worldwide despite significant improvements in diagnosis, prevention, and early intervention efforts. There is an urgent need for improved understanding of cardiovascular processes responsible for disease development in order to develop more effective therapeutic strategies. Recent knowledge gleaned from the study of epigenetic mechanisms in the vasculature has uncovered new potential targets for intervention. Herein, we provide an overview of epigenetic mechanism, and review recent findings related to epigenetics in vascular diseases, highlighting classical epigenetic mechanism such as DNA methylation and histone modification as well as the newly discovered non-coding RNA mechanisms.
Collapse
Affiliation(s)
- Matthew S Stratton
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210, United States of America.
| | - Floriana Maria Farina
- Humanitas Clinical and Research Center, Via Manzoni 113, 20089 Rozzano, MI, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Leonardo Elia
- Humanitas Clinical and Research Center, Via Manzoni 113, 20089 Rozzano, MI, Italy; Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
109
|
Loss of KDM6A confers drug resistance in acute myeloid leukemia. Leukemia 2019; 34:50-62. [PMID: 31201358 PMCID: PMC7214274 DOI: 10.1038/s41375-019-0497-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 01/19/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm resulting from the malignant transformation of myeloid progenitors. Despite intensive chemotherapy leading to initial treatment responses, relapse caused by intrinsic or acquired drug resistance represents a major challenge. Here, we report that histone 3 lysine 27 demethylase KDM6A (UTX) is targeted by inactivating mutations and mutation-independent regulation in relapsed AML. Analyses of matched diagnosis and relapse specimens from individuals with KDM6A mutations showed an outgrowth of the KDM6A mutated tumor population at relapse. KDM6A expression is heterogeneously regulated and relapse-specific loss of KDM6A was observed in 45.7% of CN-AML patients. KDM6A-null myeloid leukemia cells were more resistant to treatment with the chemotherapeutic agents cytarabine (AraC) and daunorubicin. Inducible re-expression of KDM6A in KDM6A-null cell lines suppressed proliferation and sensitized cells again to AraC treatment. RNA expression analysis and functional studies revealed that resistance to AraC was conferred by downregulation of the nucleoside membrane transporter ENT1 (SLC29A1) by reduced H3K27 acetylation at the ENT1 locus. Our results show that loss of KDM6A provides cells with a selective advantage during chemotherapy, which ultimately leads to the observed outgrowth of clones with KDM6A mutations or reduced KDM6A expression at relapse.
Collapse
|
110
|
Wang B, Zhao L, Chi W, Cao H, Cui W, Meng W. Aberrant methylation-mediated downregulation of lncRNA SSTR5-AS1 promotes progression and metastasis of laryngeal squamous cell carcinoma. Epigenetics Chromatin 2019; 12:35. [PMID: 31196171 PMCID: PMC6563380 DOI: 10.1186/s13072-019-0283-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/31/2019] [Indexed: 01/15/2023] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is among the most common malignant tumors with poor prognosis. Accumulating evidences have identified the important roles of long noncoding RNAs (lncRNAs) in the initiation and progression of various cancer types; however, the global lncRNAs expression profile for metastatic LSCC is limited. Results In the present study, we screen expression profiles of lncRNAs in advanced LSCC patients with paired tumor tissues and corresponding normal tissues by microarrays. We identify numerous differentially expressed transcripts, and after the necessary verification of the transcripts expression in expanded samples, we experimentally validate the expression patterns of the remarkable low expressed gene,
SSTR5, and its antisense lncRNA, SSTR5-AS1. Downregulation of SSTR5 is detected in LSCC tissues and laryngeal carcinoma cells. Aberrant DNA hypermethylation of the CpG sites clustered in the exon 1 and accumulation of inactive histone modifications at SSTR5 promoter region may be epigenetic mechanisms for its inactivation in LSCC. SSTR5-AS1 may play antitumor role in LSCC and may be regulated by the hypermethylation of the same CpG sites with SSTR5. SSTR5-AS1 inhibits laryngeal carcinoma cells proliferation, migration, and invasion. SSTR5-AS1 increases the enrichment of MLL3 and H3K4me3 at the promoter region of SSTR5 by interacting with MLL3 and further induces the transcription of SSTR5. Furthermore, SSTR5-AS1 interacts with and recruits TET1 to its target gene E-cadherin to activate its expression. Conclusion These findings suggest that the identified lncRNAs and mRNAs may be potential biomarkers in metastatic LSCC, and SSTR5-AS1 may act as a tumor suppressor as well as a potential biomarker for antitumor therapy. Electronic supplementary material The online version of this article (10.1186/s13072-019-0283-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baoshan Wang
- Otolaryngology Head and Neck Surgery Department, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, 050005, Hebei, China.
| | - Lei Zhao
- Otolaryngology Head and Neck Surgery Department, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, 050005, Hebei, China
| | - Weiwei Chi
- Otolaryngology Head and Neck Surgery Department, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huan Cao
- Otolaryngology Head and Neck Surgery Department, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, 050005, Hebei, China
| | - Weina Cui
- Otolaryngology Head and Neck Surgery Department, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, 050005, Hebei, China
| | - Wenxia Meng
- Otolaryngology Head and Neck Surgery Department, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, 050005, Hebei, China
| |
Collapse
|
111
|
Meng X, Peng H, Ding Y, Zhang L, Yang J, Han X. A transcriptomic regulatory network among miRNAs, piRNAs, circRNAs, lncRNAs and mRNAs regulates microcystin-leucine arginine (MC-LR)-induced male reproductive toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:563-577. [PMID: 30833255 DOI: 10.1016/j.scitotenv.2019.02.393] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Microcystin-leucine arginine (MC-LR) which is produced by cyanobacteria is a potent toxin for the reproductive system. Our previous work has demonstrated that both acute and chronic reproductive toxicity engendered by MC-LR can result in the decline of sperm quality and damage of testicular structures in male mice. The present study was designed to investigate the impact of chronic low-dose exposure to MC-LR on the regulation of RNA networks including mRNA, microRNA (miRNA), piwi-associated RNA (piRNA), covalently closed circular RNA (circRNA) and long non-coding RNA (lncRNA) in testicular tissues. By high-throughput sequencing analysis, 1091 mRNAs, 21 miRNAs, 644 piRNAs, 278 circRNAs and 324 lncRNAs were identified to be significantly altered in testicular tissues treated with MC-LR. We performed gene ontology (GO) analysis to ascertain the biological functions of differentially expressed genes. Among the altered 21 miRNAs and 644 piRNAs, the miRNA chr13_8977, which is a newly discovered species, and the piRNA mmu_piR_027558 were dramatically down-regulated after exposure to MC-LR. Consistently, both mRNA levels and protein expression levels of their predicted targets were increased significantly when chr13_8977 and mmu_piR_027558 were each down-regulated. Testicular structures, germ cell apoptosis and sperm quality were also affected by the altered expression of chr13_8977 and mmu_piR_027558 severally. We further investigated the differential expression of circRNAs and lncRNAs and their biological functions in testicular tissues following treatment with chronic low-dose exposure to MC-LR. We also constructed a competing endogenous RNA (ceRNA) network to predict the functions of the altered expressed RNAs using MiRanda. Our study suggested a crucial role for the potential network regulation of miRNAs, piRNAs, circRNAs, lncRNAs and mRNAs impacting the cytotoxicity of MC-LR in testicular tissues, which provides new perspectives in the development of diagnosis and treatment strategies for MC-LR-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Haoran Peng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuanzhen Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ling Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jingping Yang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
112
|
Fagan RJ, Dingwall AK. COMPASS Ascending: Emerging clues regarding the roles of MLL3/KMT2C and MLL2/KMT2D proteins in cancer. Cancer Lett 2019; 458:56-65. [PMID: 31128216 DOI: 10.1016/j.canlet.2019.05.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022]
Abstract
The KMT2 (lysine methyltransferase) family of histone modifying proteins play essential roles in regulating developmental pathways, and mutations in the genes encoding these proteins have been strongly linked to many blood and solid tumor cancers. The KMT2A-D proteins are histone 3 lysine 4 (H3K4) methyltransferases embedded in large COMPASS-like complexes important for RNA Polymerase II-dependent transcription. KMT2 mutations were initially associated with pediatric Mixed Lineage Leukemias (MLL) and found to be the result of rearrangements of the MLL1/KMT2A gene at 11q23. Over the past several years, large-scale tumor DNA sequencing studies have revealed the potential involvement of other KMT2 family genes, including heterozygous somatic mutations in the paralogous MLL3/KMT2C and MLL2(4)/KMT2D genes that are now among the most frequently associated with human cancer. Recent studies have provided a better understanding of the potential roles of disrupted KMT2C and KMT2D family proteins in cell growth aberrancy. These findings, together with an examination of cancer genomics databases provide new insights into the contribution of KMT2C/D proteins in epigenetic gene regulation and links to carcinogenesis.
Collapse
Affiliation(s)
- Richard J Fagan
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60521, USA
| | - Andrew K Dingwall
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60521, USA; Department of Cancer Biology and Pathology & Laboratory Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60521, USA.
| |
Collapse
|
113
|
Sun P, Wu T, Sun X, Cui Z, Zhang H, Xia Q, Zhang D. KMT2D inhibits the growth and metastasis of bladder Cancer cells by maintaining the tumor suppressor genes. Biomed Pharmacother 2019; 115:108924. [PMID: 31100540 DOI: 10.1016/j.biopha.2019.108924] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023] Open
Abstract
KMT2D, a kind of histone H3 lysine 4 (H3K4) methyltransferase, its abnormal expression confirmed to be associated with diverse tumors, but is lack of defined role in bladder cancer (BC). KMT2D mutation was analyzed using several databases. Immunohistochemistry and clinicopathological analysis of KMT2D in 51 paired of BC tissues and corresponding normal tissues were used to evaluate the relationship between KMT2D and BC. The effects of silencing or over-expressing KMT2D on HTB-9 and T24 cell viability, migration and invasion were performed using MTT, wound scratch and Transwell, respectively. Also, bladder cancer mouse model was established by hypodermic injection of the BC cells. Associated expressions of methylation genes, oncogenes and tumor suppressors were assessed by western blot and quantitative real-time PCR. KMT2D was frequent mutation in various tumors, including BC. It was negative expression in BC tissues and cells, also implicated with tumor stages and lymph node metastasis. In silencing KMT2D HTB-9 and T24 cells, cell viability, migration and invasion were notably promoted. Meanwhile, knockdown of KMT2D benefited to solid tumor formation in vivo. However, over-expressing KMT2D represented contrary results. Especially, KMT2D over-expression induced the activity of H3K4 monomethylation (me1), and effectively enhanced PTEN and p53 expressions as well as repressed STAG2 expression. Meanwhile, KMT2D had no obvious effect on Survivin. This work suggested an anti-tumor role for KMT2D in vitro and in vivo, as well as provided a possible tumor inhibition mechanism in which KMT2D enhanced H3K4me1 activity to support the expressions of tumor suppressors.
Collapse
Affiliation(s)
- Peng Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Tong Wu
- Department of Chinese Medicine, Shandong Provincial Western Hospital, China
| | - Xiaoliang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Zilian Cui
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Haiyang Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Dong Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, China.
| |
Collapse
|
114
|
Collins BE, Sweatt JD, Greer CB. Broad domains of histone 3 lysine 4 trimethylation are associated with transcriptional activation in CA1 neurons of the hippocampus during memory formation. Neurobiol Learn Mem 2019; 161:149-157. [PMID: 31002880 DOI: 10.1016/j.nlm.2019.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
Abstract
Transcriptional changes in the hippocampus are required for memory formation, and these changes are regulated by numerous post-translational modifications of chromatin-associated proteins. One of the epigenetic marks that has been implicated in memory formation is histone 3 lysine 4 trimethylation (H3K4me3), and this modification is found at the promoters of actively transcribed genes. The total levels of H3K4me3 are increased in the CA1 region of the hippocampus during memory formation, and genetic perturbation of the K4 methyltransferases and demethylases interferes with forming memories. Previous chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses failed to detect changes in H3K4me3 levels at the promoters of memory-linked genes. Since the breadth of H3K4me3 marks was recently reported to be associated with the transcriptional outcome of a gene, we re-analyzed H3K4me3 ChIP-seq data sets to identify the role of H3K4me3 broad domains in CA1 neurons, as well as identify differences in breadth that occur during contextual fear conditioning. We found that, under baseline conditions, broad H3K4me3 peaks mark important learning and memory genes and are often regulated by super-enhancers. The peaks at many learning-associated genes become broader during novel environment exposure and memory formation. Furthermore, the important learning- and memory-associated lysine methyltransferases, Kmt2a and Kmt2b, are involved in maintaining H3K4me3 peak width. Our findings highlight the importance of analyzing H3K4me3 peak shape, and demonstrate that breadth of H3K4me3 marks in neurons of the hippocampus is regulated during memory formation.
Collapse
Affiliation(s)
- Bridget E Collins
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - J David Sweatt
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Celeste B Greer
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
115
|
He Y, Long W, Liu Q. Targeting Super-Enhancers as a Therapeutic Strategy for Cancer Treatment. Front Pharmacol 2019; 10:361. [PMID: 31105558 PMCID: PMC6499164 DOI: 10.3389/fphar.2019.00361] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/22/2019] [Indexed: 01/09/2023] Open
Abstract
Super-enhancers (SEs) refer to large clusters of enhancers that drive gene expressions. Recent data has provided novel insights in elucidating the roles of SEs in many diseases, including cancer. Many mechanisms involved in tumorigenesis and progression, ranging from internal gene mutation and rearrangement to external damage and inducement, have been demonstrated to be highly associated with SEs. Moreover, translocation, formation, deletion, or duplication of SEs themselves could lead to tumor development. It has been reported that various oncogenic molecules and pathways are tightly regulated by SEs. Moreover, several clinical trials on novel SEs blockers, such as BET inhibitor and CDK7i, have indicated the potential roles of SEs in cancer therapy. In this review, we highlighted the underlying mechanism of action of SEs in cancer development and the corresponding novel potential therapeutic strategies. It is speculated that targeting SEs could complement the traditional approaches and lead to more effective treatment for cancer patients.
Collapse
Affiliation(s)
- Yi He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wenyong Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
116
|
Han K, Ren R, Cao J, Zhao S, Yu M. Genome-Wide Identification of Histone Modifications Involved in Placental Development in Pigs. Front Genet 2019; 10:277. [PMID: 30984246 PMCID: PMC6449610 DOI: 10.3389/fgene.2019.00277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/12/2019] [Indexed: 12/25/2022] Open
Abstract
Development of placental folds is a critical event affecting placental function in pigs because it can increase surface area for improvement in capillary density as gestation advances. However, the molecular mechanisms of the event are not well defined. Histone modifications have important roles in gene regulation. To investigate their effects on regulation of genes controlling porcine placental development, RNA-seq and ChIP-seq of porcine placental tissues from gestational days 50 (establishment stage of placental folds) and 95 (expanding stage of placental folds) were carried out in this study. The differentially expressed genes were identified and of which the down- and up-regulated genes are related to endoplasmic reticulum (ER) stress and angiogenesis, respectively. In addition, we mapped the genome-wide profiles of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 acetylation (H3K27ac), which are associated with transcriptional activation. A number of differential modification regions between the 2 gestational stages were identified and majority of them are those with increased signals of H3K4me3 (14,576 out of 16,931). Furthermore, we observed that the increase of H3K4me3 is significantly correlated with the elevated expression levels of the neighboring genes, and notably, these genes were enriched in pathways related to blood vessel formation and microvascular permeability. Taken together, the findings suggest important roles of histone modifications on placental remolding in response to developmental changes.
Collapse
Affiliation(s)
- Kun Han
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruimin Ren
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianhua Cao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
117
|
Rampias T, Karagiannis D, Avgeris M, Polyzos A, Kokkalis A, Kanaki Z, Kousidou E, Tzetis M, Kanavakis E, Stravodimos K, Manola KN, Pantelias GE, Scorilas A, Klinakis A. The lysine-specific methyltransferase KMT2C/MLL3 regulates DNA repair components in cancer. EMBO Rep 2019; 20:embr.201846821. [PMID: 30665945 PMCID: PMC6399616 DOI: 10.15252/embr.201846821] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Genome‐wide studies in tumor cells have indicated that chromatin‐modifying proteins are commonly mutated in human cancers. The lysine‐specific methyltransferase 2C (KMT2C/MLL3) is a putative tumor suppressor in several epithelia and in myeloid cells. Here, we show that downregulation of KMT2C in bladder cancer cells leads to extensive changes in the epigenetic status and the expression of DNA damage response and DNA repair genes. More specifically, cells with low KMT2C activity are deficient in homologous recombination‐mediated double‐strand break DNA repair. Consequently, these cells suffer from substantially higher endogenous DNA damage and genomic instability. Finally, these cells seem to rely heavily on PARP1/2 for DNA repair, and treatment with the PARP1/2 inhibitor olaparib leads to synthetic lethality, suggesting that cancer cells with low KMT2C expression are attractive targets for therapies with PARP1/2 inhibitors.
Collapse
Affiliation(s)
| | | | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Antonis Kokkalis
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Zoi Kanaki
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Evgenia Kousidou
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Kanavakis
- Department of Medical Genetics, Medical School, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece.,University Research Institute for the Study and Treatment of Childhood Genetic and Malignant Diseases, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stravodimos
- First Department of Urology, "Laiko" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kalliopi N Manola
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) "Demokritos", Athens, Greece
| | - Gabriel E Pantelias
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) "Demokritos", Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
118
|
Collins BE, Greer CB, Coleman BC, Sweatt JD. Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics Chromatin 2019; 12:7. [PMID: 30616667 PMCID: PMC6322263 DOI: 10.1186/s13072-018-0251-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023] Open
Abstract
Epigenetic modifications such as histone methylation permit change in chromatin structure without accompanying change in the underlying genomic sequence. A number of studies in animal models have shown that dysregulation of various components of the epigenetic machinery causes cognitive deficits at the behavioral level, suggesting that proper epigenetic control is necessary for the fundamental processes of learning and memory. Histone H3 lysine K4 (H3K4) methylation comprises one component of such epigenetic control, and global levels of this mark are increased in the hippocampus during memory formation. Modifiers of H3K4 methylation are needed for memory formation, shown through animal studies, and many of the same modifiers are mutated in human cognitive diseases. Indeed, all of the known H3K4 methyltransferases and four of the known six H3K4 demethylases have been associated with impaired cognition in a neurologic or psychiatric disorder. Cognitive impairment in such patients often manifests as intellectual disability, consistent with a role for H3K4 methylation in learning and memory. As a modification quintessentially, but not exclusively, associated with transcriptional activity, H3K4 methylation provides unique insights into the regulatory complexity of writing, reading, and erasing chromatin marks within an activated neuron. The following review will discuss H3K4 methylation and connect it to transcriptional events required for learning and memory within the developed nervous system. This will include an initial discussion of the most recent advances in the developing methodology to analyze H3K4 methylation, namely mass spectrometry and deep sequencing, as well as how these methods can be applied to more deeply understand the biology of this mark in the brain. We will then introduce the core enzymatic machinery mediating addition and removal of H3K4 methylation marks and the resulting epigenetic signatures of these marks throughout the neuronal genome. We next foray into the brain, discussing changes in H3K4 methylation marks within the hippocampus during memory formation and retrieval, as well as the behavioral correlates of H3K4 methyltransferase deficiency in this region. Finally, we discuss the human cognitive diseases connected to each H3K4 methylation modulator and summarize advances in developing drugs to target them.
Collapse
Affiliation(s)
- Bridget E Collins
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Celeste B Greer
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Benjamin C Coleman
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - J David Sweatt
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
119
|
Abstract
Complexity in genome architecture determines how gene expression programs are established, maintained, and modified from early developmental stages to normal adult phenotypes. Large scale and hierarchical organization of the genome impacts various aspects of cell functions, ranging from X-chromosome inactivation, stem-cell fate determination to transcription, DNA replication, and cellular repair. While chromatin loops and topologically-associated domains represent a basic structural or fundamental unit of chromatin organization, spatio-temporal organization of the genome further creates a complex network of interacting genome patterns, forming chromosomal compartments and chromosome territories. The understanding of human diseases, including cancers, auto-immune disorders, Alzheimer's, and cardiovascular diseases, relies on the associated molecular and epigenetic mechanisms. There is a growing interest in the impact of three-dimensional chromatin folding upon the genome structure and function, which gives rise to the question "What's in the fold?" and is the main focus of this review. Here we discuss the principles determining the spatial and regulatory relationships between gene regulation and three-dimensional chromatin landscapes, and how changes in chromatin-folding could influence the outcome of genome function in healthy and disease states.
Collapse
|
120
|
Sun Y, Zhou B, Mao F, Xu J, Miao H, Zou Z, Phuc Khoa LT, Jang Y, Cai S, Witkin M, Koche R, Ge K, Dressler GR, Levine RL, Armstrong SA, Dou Y, Hess JL. HOXA9 Reprograms the Enhancer Landscape to Promote Leukemogenesis. Cancer Cell 2018; 34:643-658.e5. [PMID: 30270123 PMCID: PMC6179449 DOI: 10.1016/j.ccell.2018.08.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/07/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Abstract
Aberrant expression of HOXA9 is a prominent feature of acute leukemia driven by diverse oncogenes. Here we show that HOXA9 overexpression in myeloid and B progenitor cells leads to significant enhancer reorganizations with prominent emergence of leukemia-specific de novo enhancers. Alterations in the enhancer landscape lead to activation of an ectopic embryonic gene program. We show that HOXA9 functions as a pioneer factor at de novo enhancers and recruits CEBPα and the MLL3/MLL4 complex. Genetic deletion of MLL3/MLL4 blocks histone H3K4 methylation at de novo enhancers and inhibits HOXA9/MEIS1-mediated leukemogenesis in vivo. These results suggest that therapeutic targeting of HOXA9-dependent enhancer reorganization can be an effective therapeutic strategy in acute leukemia with HOXA9 overexpression.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bo Zhou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fengbiao Mao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jing Xu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hongzhi Miao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhenhua Zou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Le Tran Phuc Khoa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Younghoon Jang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheng Cai
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Witkin
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Koche
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory R Dressler
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ross L Levine
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Scott A Armstrong
- Dana Farber Cancer Institute, Boston Children's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Jay L Hess
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|