101
|
Guo X, Tian Z, Wang X, Pan S, Huang W, Shen Y, Gui Y, Duan X, Cai Z. Regulation of histone demethylase KDM6B by hypoxia-inducible factor-2α. Acta Biochim Biophys Sin (Shanghai) 2015; 47:106-13. [PMID: 25520177 DOI: 10.1093/abbs/gmu122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lysine (K)-specific demethylase 6B (KDM6B) is a histone H3K27 demethylase, which specifically catalyzes the demethylation of H3 lysine-27 tri/dimethylation (H3K27me3/2). KDM6B can activate gene transcription by promoting transcriptional elongation which is associated with RNA polymerase II and related elongation factors. So KDM6B is important for the regulation of gene expression. Previous studies have indicated that several histone demethylases such as KDM3A, KDM4B, and KDM4C are regulated by hypoxia-inducible factor (HIF). But, the effect of hypoxia on KDM6B is not fully understood. In this study, we found that the expression levels of KDM6B mRNA and protein are modestly up-regulated under hypoxia (1% O2) or mimic hypoxia (desferrioxamine mesylate or CoCl2 treatment) (P<0.05). The result of RNAi shows that the up-regulation of KDM6B is dependent on HIF-2α, but not on HIF-1α. The result of chromatin immunoprecipitation assay indicates that there is a hypoxia response element in KDM6B promoter (-4041 to -4037). The result of Co-IP assay indicates that KDM6B can form complex with HIF-2α or HIF-1α. The knockdown experiment implies that KDM6B is a potential regulator for HIF-2α target genes. These data demonstrate that KDM6B is a new hypoxia response gene regulated by HIF-2α. Our results also show that KDM6B is a potential co-activator of HIF-α, which is important for the activation of hypoxia response genes.
Collapse
Affiliation(s)
- Xiaoqiang Guo
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhantao Tian
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Xuliang Wang
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Shuhong Pan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Weiren Huang
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Yongqing Shen
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Xianglin Duan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhiming Cai
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
102
|
Vieira-Coimbra M, Henrique R, Jerónimo C. New insights on chromatin modifiers and histone post-translational modifications in renal cell tumours. Eur J Clin Invest 2015; 45 Suppl 1:16-24. [PMID: 25524582 DOI: 10.1111/eci.12360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Renal cell tumours (RCTs) are the most common neoplasms affecting the kidney. They are clinically, pathologically and genetically heterogeneous, comprises four major histological subtypes [clear cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC) and chromophobe renal cell carcinoma (chRCC), which are malignant tumours, and oncocytoma, a benign tumour], as well as an increasing number of less common entities. Epigenetics has emerged as an important field in oncology due to the critical role it plays in neoplastic transformation and progression. Among epigenetic mechanisms, the modulation of chromatin packaging through covalent modifications is fundamental for gene transcription regulation and its deregulation is involved in carcinogenesis. Recently, deregulation of chromatin machinery in RCTs has increasingly acknowledged as an important mechanism for renal neoplastic transformation. The aim of this review is to summarize the most relevant alterations in histone post-translational modifications and chromatin modifiers, which have been implicated in renal tumorigenesis. The recognition of those modifications might provide new biomarkers for diagnosis and prognostication as well as novel targets for personalized therapeutic intervention.
Collapse
Affiliation(s)
- Márcia Vieira-Coimbra
- Cancer Biology & Epigenetics Group - Research Center, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal; Department of Pathology, Portuguese Oncology Institute, Porto, Portugal
| | | | | |
Collapse
|
103
|
Bishop T, Ratcliffe PJ. Signaling hypoxia by hypoxia-inducible factor protein hydroxylases: a historical overview and future perspectives. HYPOXIA 2014; 2:197-213. [PMID: 27774477 PMCID: PMC5045067 DOI: 10.2147/hp.s47598] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By the early 1900s, the close matching of oxygen supply with demand was recognized to be a fundamental requirement for physiological function, and multiple adaptive responses to environment hypoxia had been described. Nevertheless, the widespread operation of mechanisms that directly sense and respond to levels of oxygen in animal cells was not appreciated for most of the twentieth century with investigators generally stressing the regulatory importance of metabolic products. Work over the last 25 years has overturned that paradigm. It has revealed the existence of a set of “oxygen-sensing” 2-oxoglutarate dependent dioxygenases that catalyze the hydroxylation of specific amino acid residues and thereby control the stability and activity of hypoxia-inducible factor. The hypoxia-inducible factor hydroxylase pathway regulates a massive transcriptional cascade that is operative in essentially all animal cells. It transduces a wide range of responses to hypoxia, extending well beyond the classical boundaries of hypoxia physiology. Here we review the discovery and elucidation of these pathways, and consider the opportunities and challenges that have been brought into focus by the findings, including new implications for the integrated physiology of hypoxia and therapeutic approaches to ischemic/hypoxic disease.
Collapse
Affiliation(s)
- Tammie Bishop
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
104
|
Tsai YP, Chen HF, Chen SY, Cheng WC, Wang HW, Shen ZJ, Song C, Teng SC, He C, Wu KJ. TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. Genome Biol 2014; 15:513. [PMID: 25517638 PMCID: PMC4253621 DOI: 10.1186/s13059-014-0513-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/28/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hypoxia induces the epithelial-mesenchymal transition, EMT, to promote cancer metastasis. In addition to transcriptional regulation mediated by hypoxia-inducible factors, HIFs, other epigenetic mechanisms of gene regulation, such as histone modifications and DNA methylation, are utilized under hypoxia. However, whether DNA demethylation mediated by TET1, a DNA dioxygenase converting 5-methylcytosine, 5mC, into 5-hydroxymethylcytosine, 5hmC, plays a role in hypoxia-induced EMT is largely unknown. RESULTS We show that TET1 regulates hypoxia-responsive gene expression. Hypoxia/HIF-2α regulates the expression of TET1. Knockdown of TET1 mitigates hypoxia-induced EMT. RNA sequencing and 5hmC sequencing identified the set of TET1-regulated genes. Cholesterol metabolic process genes are among the genes that showed high prevalence and statistical significance. We characterize one of the genes, INSIG1 (insulin induced gene 1), to confirm its expression and the 5hmC levels in its promoter. Knockdown of INSIG1 also mitigates hypoxia-induced EMT. Finally, TET1 is shown to be a transcriptional co-activator that interacts with HIF-1α and HIF-2α to enhance their transactivation activity independent of its enzymatic activity. TET1 acts as a co-activator to further enhance the expression of INSIG1 together with HIF-2α. We define the domain in HIF-1α that interacts with TET1 and map the domain in TET1 that confers transactivation to a 200 amino acid region that contains a CXXC domain. The TET1 catalytically inactive mutant is capable of rescuing hypoxia-induced EMT in TET1 knockdown cells. CONCLUSIONS These findings demonstrate that TET1 serves as a transcription co-activator to regulate hypoxia-responsive gene expression and EMT, in addition to its role in demethylating 5mC.
Collapse
|
105
|
Yang Q, Wu X, Sun J, Cui J, Li L. Epigenetic Features Induced by Ischemia-Hypoxia in Cultured Rat Astrocytes. Mol Neurobiol 2014; 53:436-445. [DOI: 10.1007/s12035-014-9027-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/21/2014] [Indexed: 11/25/2022]
|
106
|
Ma Q, Zhang L. Epigenetic programming of hypoxic-ischemic encephalopathy in response to fetal hypoxia. Prog Neurobiol 2014; 124:28-48. [PMID: 25450949 DOI: 10.1016/j.pneurobio.2014.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/14/2014] [Accepted: 11/02/2014] [Indexed: 12/13/2022]
Abstract
Hypoxia is a major stress to the fetal development and may result in irreversible injury in the developing brain, increased risk of central nervous system (CNS) malformations in the neonatal brain and long-term neurological complications in offspring. Current evidence indicates that epigenetic mechanisms may contribute to the development of hypoxic/ischemic-sensitive phenotype in the developing brain in response to fetal stress. However, the causative cellular and molecular mechanisms remain elusive. In the present review, we summarize the recent findings of epigenetic mechanisms in the development of the brain and their roles in fetal hypoxia-induced brain developmental malformations. Specifically, we focus on DNA methylation and active demethylation, histone modifications and microRNAs in the regulation of neuronal and vascular developmental plasticity, which may play a role in fetal stress-induced epigenetic programming of hypoxic/ischemic-sensitive phenotype in the developing brain.
Collapse
Affiliation(s)
- Qingyi Ma
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
107
|
Koltsova SV, Shilov B, Birulina JG, Akimova OA, Haloui M, Kapilevich LV, Gusakova SV, Tremblay J, Hamet P, Orlov SN. Transcriptomic changes triggered by hypoxia: evidence for HIF-1α-independent, [Na+]i/[K+]i-mediated, excitation-transcription coupling. PLoS One 2014; 9:e110597. [PMID: 25375852 PMCID: PMC4222758 DOI: 10.1371/journal.pone.0110597] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/16/2014] [Indexed: 11/19/2022] Open
Abstract
This study examines the relative impact of canonical hypoxia-inducible factor-1alpha- (HIF-1α and Na+i/K+i-mediated signaling on transcriptomic changes evoked by hypoxia and glucose deprivation. Incubation of RASMC in ischemic conditions resulted in ∼3-fold elevation of [Na+]i and 2-fold reduction of [K+]i. Using global gene expression profiling we found that Na+,K+-ATPase inhibition by ouabain or K+-free medium in rat aortic vascular smooth muscle cells (RASMC) led to the differential expression of dozens of genes whose altered expression was previously detected in cells subjected to hypoxia and ischemia/reperfusion. For further investigations, we selected Cyp1a1, Fos, Atf3, Klf10, Ptgs2, Nr4a1, Per2 and Hes1, i.e. genes possessing the highest increments of expression under sustained Na+,K+-ATPase inhibition and whose implication in the pathogenesis of hypoxia was proved in previous studies. In ouabain-treated RASMC, low-Na+, high-K+ medium abolished amplification of the [Na+]i/[K+]i ratio as well as the increased expression of all tested genes. In cells subjected to hypoxia and glucose deprivation, dissipation of the transmembrane gradient of Na+ and K+ completely eliminated increment of Fos, Atf3, Ptgs2 and Per2 mRNAs and sharply diminished augmentation expression of Klf10, Edn1, Nr4a1 and Hes1. In contrast to low-Na+, high-K+ medium, RASMC transfection with Hif-1a siRNA attenuated increments of Vegfa, Edn1, Klf10 and Nr4a1 mRNAs triggered by hypoxia but did not impact Fos, Atf3, Ptgs2 and Per2 expression. Thus, our investigation demonstrates, for the first time, that Na+i/K+i-mediated, Hif-1α- -independent excitation-transcription coupling contributes to transcriptomic changes evoked in RASMC by hypoxia and glucose deprivation.
Collapse
MESH Headings
- Animals
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Ouabain/pharmacology
- Rats
- Signal Transduction/drug effects
- Sodium-Potassium-Exchanging ATPase/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Svetlana V. Koltsova
- Department of Biology, Moscow State University, Moscow, Russia
- Department of Medicine, Centre de recherche, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Boris Shilov
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Julia G. Birulina
- Department of Medical Biology, Siberian State Medical University, Tomsk, Russia
| | - Olga A. Akimova
- Department of Biology, Moscow State University, Moscow, Russia
| | - Mounsif Haloui
- Department of Medicine, Centre de recherche, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Leonid V. Kapilevich
- Department of Medical Biology, Siberian State Medical University, Tomsk, Russia
- Department of Physical Education, Tomsk State University, Tomsk, Russia
| | | | - Johanne Tremblay
- Department of Medicine, Centre de recherche, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Pavel Hamet
- Department of Medicine, Centre de recherche, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Sergei N. Orlov
- Department of Biology, Moscow State University, Moscow, Russia
- Department of Medicine, Centre de recherche, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Department of Medical Biology, Siberian State Medical University, Tomsk, Russia
- * E-mail:
| |
Collapse
|
108
|
Zhan L, Huang C, Meng XM, Song Y, Wu XQ, Yang Y, Li J. Hypoxia-inducible factor-1alpha in hepatic fibrosis: A promising therapeutic target. Biochimie 2014; 108:1-7. [PMID: 25447141 DOI: 10.1016/j.biochi.2014.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1α) is a regulated subunit of the hypoxia-inducible factor 1 (HIF1), which functions as a key transcription factor in response to hypoxic stress by regulating genes involved in maintaining oxygen homeostasis. In recent years, a growing body of studies showed that HIF-1α was significantly increased in hepatic fibrotic tissues and activated hepatic stellate cells (HSCs). Furthermore, knockdown of HIF-1α expression inhibited the proliferation and activation of HSCs. In addition, HIF-1α-dependent genes and the extensive network of signaling cascades focus on HIF-1α have been reported to associate with the development of hepatic fibrosis, suggesting that HIF-1α might play a crucial role in hepatic fibrosis. However, the mechanisms by which HIF-1α regulates hepatic fibrosis are still undefined. In this review, we concentrate on multiple signaling pathways and genes related with HIF-1α which may be involved in the development of hepatic fibrosis, further discussing its potential as a novel therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Lei Zhan
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Yang Song
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Xiao Qin Wu
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Yang Yang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China.
| |
Collapse
|
109
|
Tanaka S, Tanaka T, Nangaku M. Hypoxia as a key player in the AKI-to-CKD transition. Am J Physiol Renal Physiol 2014; 307:F1187-95. [PMID: 25350978 DOI: 10.1152/ajprenal.00425.2014] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent clinical and animal studies have shown that acute kidney injury (AKI), even if followed by complete recovery of renal function, can eventually result in chronic kidney disease (CKD). Renal hypoxia is emerging as a key player in the pathophysiology of the AKI-to-CKD transition. Capillary rarefaction after AKI episodes induces renal hypoxia, which can in turn profoundly affect tubular epithelial cells, (myo)fibroblasts, and inflammatory cells, culminating in tubulointerstitial fibrosis, i.e., progression to CKD. Damaged tubular epithelial cells that fail to redifferentiate might supply a decreased amount of vascular endothelial growth factor and contribute to capillary rarefaction, thus aggravating hypoxia and forming a vicious cycle. Mounting evidence also shows that epigenetic changes are closely related to renal hypoxia in the pathophysiology of CKD progression. Animal experiments suggest that targeting hypoxia is a promising strategy to block the transition from AKI to CKD. However, the precise mechanisms by which hypoxia induces the AKI-to-CKD transition and by which hypoxia-inducible factor activation can exert a protective effect in this context should be clarified in further studies.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
110
|
Gemenetzi M, Lotery AJ. The role of epigenetics in age-related macular degeneration. Eye (Lond) 2014; 28:1407-17. [PMID: 25233816 DOI: 10.1038/eye.2014.225] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/31/2014] [Indexed: 12/27/2022] Open
Abstract
It is becoming increasingly evident that epigenetic mechanisms influence gene expression and can explain how interactions between genetics and the environment result in particular phenotypes during development. The extent to which this epigenetic effect contributes to phenotype heritability in age-related macular degeneration (AMD) is currently ill defined. However, emerging evidence suggests that epigenetic changes are relevant to AMD and as such provide an exciting new avenue of research for AMD. This review addresses information on the impact of posttranslational modification of the genome on the pathogenesis of AMD, such as DNA methylation changes affecting antioxidant gene expression, hypoxia-regulated alterations in chromatin structure, and histone acetylation status in relation to angiogenesis and inflammation. It also contains information on the role of non-coding RNA-mediated gene regulation in AMD at a posttranscriptional (before translation) level. Our aim was to review the epigenetic mechanisms that cause heritable changes in gene activity without changing the DNA sequence. We also describe some long-term alterations in the transcriptional potential of a cell, which are not necessarily heritable but remains to be defined in the future. Increasing understanding of the significance of common and rare genetic variants and their relationship to epigenetics and environmental influences may help in establishing methods to assess the risk of AMD. This in turn may allow new therapeutic interventions for the leading cause of central vision impairment in patients over the age of 50 years in developed countries. Search strategy We searched the MEDLINE/PubMed database following MeSH suggestions for articles including the terms: 'ocular epigenetic mechanisms', 'human disease epigenetics', and 'age-related macular degeneration genetics'. The headline used to locate related articles in PubMed was 'epigenetics in ocular disease', and to restrict search, we used the headlines 'DNA methylation in age related macular degeneration', 'altered gene expression in AMD pathogenesis'. A manual search was also based on references from these articles as well as review articles.
Collapse
Affiliation(s)
- M Gemenetzi
- Southampton Eye Unit, Southampton University Hospital, Southampton, UK
| | - A J Lotery
- 1] Southampton Eye Unit, Southampton University Hospital, Southampton, UK [2] Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| |
Collapse
|
111
|
Shmakova A, Batie M, Druker J, Rocha S. Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochem J 2014; 462:385-95. [PMID: 25145438 PMCID: PMC4147966 DOI: 10.1042/bj20140754] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 01/22/2023]
Abstract
Responding appropriately to changes in oxygen availability is essential for multicellular organism survival. Molecularly, cells have evolved intricate gene expression programmes to handle this stressful condition. Although it is appreciated that gene expression is co-ordinated by changes in transcription and translation in hypoxia, much less is known about how chromatin changes allow for transcription to take place. The missing link between co-ordinating chromatin structure and the hypoxia-induced transcriptional programme could be in the form of a class of dioxygenases called JmjC (Jumonji C) enzymes, the majority of which are histone demethylases. In the present review, we will focus on the function of JmjC histone demethylases, and how these could act as oxygen sensors for chromatin in hypoxia. The current knowledge concerning the role of JmjC histone demethylases in the process of organism development and human disease will also be reviewed.
Collapse
Key Words
- chromatin
- chromatin remodeller
- histone methylation
- hypoxia
- hypoxia-inducible factor (hif)
- jumonji c (jmjc)
- transcription
- cd, chromodomain
- chd, chromodomain helicase dna binding
- crc, chromatin-remodelling complex
- fih, factor inhibiting hif
- hif, hypoxia-inducible factor
- iswi, imitation-swi protein
- jmjc, jumonji c
- kdm, lysine-specific demethylase
- lsd, lysine-specific demethylase
- nurd, nucleosome-remodelling deacetylase
- phd, plant homeodomain
- phf, phd finger protein
- rest, repressor element 1-silencing transcription factor
- vhl, von hippel–lindau protein
Collapse
Affiliation(s)
- Alena Shmakova
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Michael Batie
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Jimena Druker
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Sonia Rocha
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|
112
|
Mitić T, Caporali A, Floris I, Meloni M, Marchetti M, Urrutia R, Angelini GD, Emanueli C. EZH2 modulates angiogenesis in vitro and in a mouse model of limb ischemia. Mol Ther 2014; 23:32-42. [PMID: 25189741 PMCID: PMC4426795 DOI: 10.1038/mt.2014.163] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/23/2014] [Indexed: 12/14/2022] Open
Abstract
Epigenetic mechanisms may regulate the expression of pro-angiogenic genes, thus affecting reparative angiogenesis in ischemic limbs. The enhancer of zest homolog-2 (EZH2) induces thtrimethylation of lysine 27 on histone H3 (H3K27me3), which represses gene transcription. We explored (i) if EZH2 expression is regulated by hypoxia and ischemia; (ii) the impact of EZH2 on the expression of two pro-angiogenic genes: eNOS and BDNF; (iii) the functional effect of EZH2 inhibition on cultured endothelial cells (ECs); (iv) the therapeutic potential of EZH2 inhibition in a mouse model of limb ischemia (LI). EZH2 expression was increased in cultured ECs exposed to hypoxia (control: normoxia) and in ECs extracted from mouse ischemic limb muscles (control: absence of ischemia). EZH2 increased the H3K27me3 abundance onto regulatory regions of eNOS and BDNF promoters. In vitro RNA silencing or pharmacological inhibition by 3-deazaneplanocin (DZNep) of EZH2 increased eNOS and BDNF mRNA and protein levels and enhanced functional capacities (migration, angiogenesis) of ECs under either normoxia or hypoxia. In mice with experimentally induced LI, DZNep increased angiogenesis in ischaemic muscles, the circulating levels of pro-angiogenic hematopoietic cells and blood flow recovery. Targeting EZH2 for inhibition may open new therapeutic avenues for patients with limb ischemia.
Collapse
Affiliation(s)
- Tijana Mitić
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK
| | - Andrea Caporali
- 1] Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK [2] Center for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Scotland, UK
| | - Ilaria Floris
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK
| | - Marco Meloni
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK
| | - Micol Marchetti
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK
| | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Mayo Clinic, Rochester, Minnesota, USA
| | - Gianni D Angelini
- 1] Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK [2] National Heart and Lung Institute, Hammersmith Campus, Imperial College of London, London, England, UK
| | - Costanza Emanueli
- 1] Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK [2] National Heart and Lung Institute, Hammersmith Campus, Imperial College of London, London, England, UK
| |
Collapse
|
113
|
Abstract
Epigenetics refers to long-term modifications of gene activity that can be inherited, either somatically or transgenerationally, but that are independent of alterations in the primary base sequence of the organism's DNA. These changes can include chemical modifications of both the DNA bases and the proteins that associate with the DNA helices to form chromatin, the nucleic acid:protein complex of which the chromosomes are comprised. Epigenetic modifications can affect the accessibility of the DNA for transcription factors (the DNA-binding proteins that specify which genes are to be active or silent by modulating the recruitment of the transcriptional machinery that reads the information encoded in the sequence) and thereby regulate the expression of genes and alter the phenotype of the organism. Epigenetic marks can also be re-established following mitosis, allowing patterns of differential gene expression to be transmitted from one cell generation to the next, and can even be maintained through meiosis, allowing transgenerational transfer of regulatory cues. Unlike the information encoded in the DNA sequence, which is invariant between most cell types and over time, epigenetic information is tissue specific and can change in response to exogenous and endogenous perturbations. This responsive capacity enables a sensitive and reactive system that can optimize gene expression in relevant tissue in response to environmental change. The realization that organisms are capable of genetically 'reprograming' themselves as well as 'preprograming' future cells, and even future offspring to optimize gene expression for a given environment may have tremendous ramifications on our understanding of both acclimatization and adaptation to hypoxia.
Collapse
Affiliation(s)
- Carolyn J Brown
- 1 Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia , Vancouver, British Columbia, Canada
| | | |
Collapse
|
114
|
Dutta B, Yan R, Lim SK, Tam JP, Sze SK. Quantitative profiling of chromatome dynamics reveals a novel role for HP1BP3 in hypoxia-induced oncogenesis. Mol Cell Proteomics 2014; 13:3236-49. [PMID: 25100860 DOI: 10.1074/mcp.m114.038232] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In contrast to the intensely studied genetic and epigenetic changes that induce host cell transformation to initiate tumor development, those that promote the malignant progression of cancer remain poorly defined. As emerging evidence suggests that the hypoxic tumor microenvironment could re-model the chromatin-associated proteome (chromatome) to induce epigenetic changes and alter gene expression in cancer cells, we hypothesized that hypoxia-driven evolution of the chromatome promotes malignant changes and the development of therapy resistance in tumor cells. To test this hypothesis, we isolated chromatins from tumor cells treated with varying conditions of normoxia, hypoxia, and re-oxygenation and then partially digested them with DNase I and analyzed them for changes in euchromatin- and heterochromatin-associated proteins using an iTRAQ-based quantitative proteomic approach. We identified a total of 1446 proteins with a high level of confidence, including 819 proteins that were observed to change their chromatin association topology under hypoxic conditions. These hypoxia-sensitive proteins included key mediators of chromatin organization, transcriptional regulation, and DNA repair. Furthermore, our proteomic and functional experiments revealed a novel role for the chromatin organizer protein HP1BP3 in mediating chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance, and self-renewal. Taken together, our findings indicate that HP1BP3 is a key mediator of tumor progression and cancer cell acquisition of therapy-resistant traits, and thus might represent a novel therapeutic target in a range of human malignancies.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr., Singapore 637551
| | - Ren Yan
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr., Singapore 637551
| | - Sai Kiang Lim
- §Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, Singapore 138648
| | - James P Tam
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr., Singapore 637551
| | - Siu Kwan Sze
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr., Singapore 637551;
| |
Collapse
|
115
|
Olcina MM, Grand RJ, Hammond EM. ATM activation in hypoxia - causes and consequences. Mol Cell Oncol 2014; 1:e29903. [PMID: 27308313 PMCID: PMC4905164 DOI: 10.4161/mco.29903] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/14/2014] [Accepted: 06/30/2014] [Indexed: 01/07/2023]
Abstract
The DNA damage response is a complex signaling cascade that is triggered by cellular stress. This response is essential for the maintenance of genomic integrity and is considered to act as a barrier to the early stages of tumorigenesis. The integral role of ataxia telangiectasia mutated (ATM) kinase in the response to DNA damaging agents is well characterized; however, ATM can also be activated by non-DNA damaging agents. In fact, much has been learnt recently about the mechanism of ATM activation in response to physiologic stresses such as hypoxia that do not induce DNA damage. Regions of low oxygen concentrations that occur in solid tumors are associated with a poor prognostic outcome irrespective of treatment modality. Severe levels of hypoxia induce replication stress and trigger the activation of DNA damage response pathways including ataxia telangiectasia and Rad3-related (ATR)- and ATM-mediated signaling. In this review, we discuss hypoxia-driven ATM signaling and the possible contribution of ATM activation in this context to tumorigenesis.
Collapse
Affiliation(s)
- Monica M Olcina
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology; Department of Oncology; University of Oxford; Oxford, UK
| | - Roger Ja Grand
- School of Cancer Sciences; College of Medical and Dental Sciences; University of Birmingham; Birmingham, UK
| | - Ester M Hammond
- Cancer Research UK/MRC Oxford Institute for Radiation Oncology; Department of Oncology; University of Oxford; Oxford, UK
| |
Collapse
|
116
|
Silencing of the DNA mismatch repair gene MLH1 induced by hypoxic stress in a pathway dependent on the histone demethylase LSD1. Cell Rep 2014; 8:501-13. [PMID: 25043185 DOI: 10.1016/j.celrep.2014.06.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 04/21/2014] [Accepted: 06/19/2014] [Indexed: 02/04/2023] Open
Abstract
Silencing of MLH1 is frequently seen in sporadic colorectal cancers. We show here that hypoxia causes decreased histone H3 lysine 4 (H3K4) methylation at the MLH1 promoter via the action of the H3K4 demethylases LSD1 and PLU-1 and promotes durable long-term silencing in a pathway that requires LSD1. Knockdown of LSD1 or its corepressor, CoREST, also prevents the resilencing (and associated cytosine DNA methylation) of the endogenous MLH1 promoter in RKO colon cancer cells following transient reactivation by treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dC). The results demonstrate that hypoxia is a driving force for silencing of MLH1 and that the LSD1/CoREST complex is necessary for this process. The results reveal a mechanism by which hypoxia promotes cancer cell evolution to drive malignant progression through epigenetic modulation. Our findings suggest that LSD1/CoREST acts as a colon cancer oncogene by epigenetically silencing MLH1 and also identify the LSD1/CoREST complex as a potential target for therapy.
Collapse
|
117
|
Mariani CJ, Vasanthakumar A, Madzo J, Yesilkanal A, Bhagat T, Yu Y, Bhattacharyya S, Wenger RH, Cohn SL, Nanduri J, Verma A, Prabhakar NR, Godley LA. TET1-mediated hydroxymethylation facilitates hypoxic gene induction in neuroblastoma. Cell Rep 2014; 7:1343-1352. [PMID: 24835990 PMCID: PMC4516227 DOI: 10.1016/j.celrep.2014.04.040] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/14/2014] [Accepted: 04/25/2014] [Indexed: 12/25/2022] Open
Abstract
The ten-eleven-translocation 5-methylcytosine dioxygenase (TET) family of enzymes catalyzes the conversion of 5-methylcytosine (5-mC) to 5-hydroxyme-thylcytosine (5-hmC), a modified cytosine base that facilitates gene expression. Cells respond to hypoxia by inducing a transcriptional program regulated in part by oxygen-dependent dioxygenases that require Fe(II) and α-ketoglutarate. Given that the TET enzymes also require these cofactors, we hypothesized that the TETs regulate the hypoxia-induced transcriptional program. Here, we demonstrate that hypoxia increases global 5-hmC levels, with accumulation of 5-hmC density at canonical hypoxia response genes. A subset of 5-hmC gains colocalize with hypoxia response elements facilitating DNA demethylation and HIF binding. Hypoxia results in transcriptional activation of TET1, and full induction of hypoxia-responsive genes and global 5-hmC increases require TET1. Finally, we show that 5-hmC increases and TET1 upregulation in hypoxia are HIF-1 dependent. These findings establish TET1-mediated 5-hmC changes as an important epigenetic component of the hypoxic response.
Collapse
Affiliation(s)
- Christopher J Mariani
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Aparna Vasanthakumar
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jozef Madzo
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ali Yesilkanal
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tushar Bhagat
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yiting Yu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Roland H Wenger
- Institute of Physiology and Zurich Center for Human Physiology (ZIHP), Zurich 8057, Switzerland
| | - Susan L Cohn
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O(2) Sensing, University of Chicago, Chicago, IL 60637, USA
| | - Amit Verma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O(2) Sensing, University of Chicago, Chicago, IL 60637, USA
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
118
|
Smits KM, Melotte V, Niessen HE, Dubois L, Oberije C, Troost EG, Starmans MH, Boutros PC, Vooijs M, van Engeland M, Lambin P. Epigenetics in radiotherapy: Where are we heading? Radiother Oncol 2014; 111:168-77. [DOI: 10.1016/j.radonc.2014.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 03/17/2014] [Accepted: 05/01/2014] [Indexed: 12/20/2022]
|
119
|
Altorok N, Almeshal N, Wang Y, Kahaleh B. Epigenetics, the holy grail in the pathogenesis of systemic sclerosis. Rheumatology (Oxford) 2014; 54:1759-70. [DOI: 10.1093/rheumatology/keu155] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 11/14/2022] Open
|
120
|
Drela K, Sarnowska A, Siedlecka P, Szablowska-Gadomska I, Wielgos M, Jurga M, Lukomska B, Domanska-Janik K. Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner. Cytotherapy 2014; 16:881-92. [PMID: 24726658 DOI: 10.1016/j.jcyt.2014.02.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/05/2014] [Accepted: 02/26/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND AIMS As we approach the era of mesenchymal stem cell (MSC) application in the medical clinic, the standarization of their culture conditions are of the particular importance. We re-evaluated the influences of oxygens concentration on proliferation, stemness and differentiation of human umbilical cord Wharton Jelly-derived MSCs (WJ-MSCs). METHODS Primary cultures growing in 21% oxygen were either transferred into 5% O2 or continued to grow under standard 21% oxygen conditions. Cell expansion was estimated by WST1/enzyme-linked immunosorbent assay or cell counting. After 2 or 4 weeks of culture, cell phenotypes were evaluated using microscopic, immunocytochemical, fluorescence-activated cell-sorting and molecular methods. Genes and proteins typical of mesenchymal cells, committed neural cells or more primitive stem/progenitors (Oct4A, Nanog, Rex1, Sox2) and hypoxia inducible factor (HIF)-1α-3α were evaluated. RESULTS Lowering O2 concentration from 21% to the physiologically relevant 5% level substantially affected cell characteristics, with induction of stemness-related-transcription-factor and stimulation of cell proliferative capacity, with increased colony-forming unit fibroblasts (CFU-F) centers exerting OCT4A, NANOG and HIF-1α and HIF-2α immunoreactivity. Moreover, the spontaneous and time-dependent ability of WJ-MSCs to differentiate into neural lineage under 21% O2 culture was blocked in the reduced oxygen condition. Importantly, treatment with trichostatin A (TSA, a histone deacetylase inhibitor) suppressed HIF-1α and HIF-2α expression, in addition to blockading the cellular effects of reduced oxygen concentration. CONCLUSIONS A physiologically relevant microenvironment of 5% O2 rejuvenates WJ-MSC culture toward less-differentiated, more primitive and faster-growing phenotypes with involvement of HIF-1α and HIF-2α-mediated and TSA-sensitive chromatin modification mechanisms. These observations add to the understanding of MSC responses to defined culture conditions, which is the most critical issue for adult stem cells translational applications.
Collapse
Affiliation(s)
- Katarzyna Drela
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sarnowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Siedlecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Ilona Szablowska-Gadomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Wielgos
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Jurga
- Cryo-Save Labs NV (The Cell Factory), Niel, Belgium
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Domanska-Janik
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
121
|
Wu X, Sun J, Zhang X, Li X, Liu Z, Yang Q, Li L. Epigenetic Signature of Chronic Cerebral Hypoperfusion and Beneficial Effects of S-adenosylmethionine in Rats. Mol Neurobiol 2014; 50:839-51. [DOI: 10.1007/s12035-014-8698-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/24/2014] [Indexed: 11/27/2022]
|
122
|
van de Schootbrugge C, Schults EMJ, Bussink J, Span PN, Grénman R, Pruijn GJM, Kaanders JHAM, Boelens WC. Effect of hypoxia on the expression of αB-crystallin in head and neck squamous cell carcinoma. BMC Cancer 2014; 14:252. [PMID: 24725344 PMCID: PMC3990244 DOI: 10.1186/1471-2407-14-252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/04/2014] [Indexed: 11/27/2022] Open
Abstract
Background The presence of hypoxia in head and neck squamous cell carcinoma (HNSCC) is associated with therapeutic resistance and increased risk of metastasis formation. αB-crystallin (HspB5) is a small heat shock protein, which is also associated with metastasis formation in HNSCC. In this study, we investigated whether αB-crystallin protein expression is increased in hypoxic areas of HNSCC biopsies and analyzed whether hypoxia induces αB-crystallin expression in vitro and in this way may confer hypoxic cell survival. Methods In 38 HNSCC biopsies, the overlap between immunohistochemically stained αB-crystallin and pimonidazole-adducts (hypoxiamarker) was determined. Moreover, expression levels of αB-crystallin were analyzed in HNSCC cell lines under hypoxia and reoxygenation conditions and after exposure to reactive oxygen species (ROS) and the ROS scavenger N-acetylcysteine (NAC). siRNA-mediated knockdown was used to determine the influence of αB-crystallin on cell survival under hypoxic conditions. Results In all biopsies αB-crystallin was more abundantly present in hypoxic areas than in normoxic areas. Remarkably, hypoxia decreased αB-crystallin mRNA expression in the HNSCC cell lines. Only after reoxygenation, a condition that stimulates ROS formation, αB-crystallin expression was increased. αB-crystallin mRNA levels were also increased by extracellular ROS, and NAC abolished the reoxygenation-induced αB-crystallin upregulation. Moreover, it was found that decreased αB-crystallin levels reduced cell survival under hypoxic conditions. Conclusions We provide the first evidence that hypoxia stimulates upregulation of αB-crystallin in HNSCC. This upregulation was not caused by the low oxygen pressure, but more likely by ROS formation. The higher expression of αB-crystallin may lead to prolonged survival of these cells under hypoxic conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wilbert C Boelens
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 271, RIMLS, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
123
|
The role of epigenetics in the fibrotic processes associated with glaucoma. J Ophthalmol 2014; 2014:750459. [PMID: 24800062 PMCID: PMC3988735 DOI: 10.1155/2014/750459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/16/2014] [Indexed: 12/23/2022] Open
Abstract
Glaucoma is an optic neuropathy that affects 60 million people worldwide. The main risk factor for glaucoma is increased intraocular pressure (IOP), this is currently the only target for treatment of glaucoma. However, some patients show disease progression despite well-controlled IOP. Another possible therapeutic target is the extracellular matrix (ECM) changes in glaucoma. There is an accumulation of ECM in the lamina cribrosa (LC) and trabecular meshwork (TM) and upregulation of profibrotic factors such as transforming growth factor β (TGFβ), collagen1α1 (COL1A1), and α-smooth muscle actin (αSMA). One method of regulating fibrosis is through epigenetics; the study of heritable changes in gene function caused by mechanisms other than changes in the underlying DNA sequence. Epigenetic mechanisms have been shown to drive renal and pulmonary fibrosis by upregulating profibrotic factors. Hypoxia alters epigenetic mechanisms through regulating the cell's response and there is a hypoxic environment in the LC and TM in glaucoma. This review looks at the role that hypoxia plays in inducing aberrant epigenetic mechanisms and the role these mechanisms play in inducing fibrosis. Evidence suggests that a hypoxic environment in glaucoma may induce aberrant epigenetic mechanisms that contribute to disease fibrosis. These may prove to be relevant therapeutic targets in glaucoma.
Collapse
|
124
|
Glazer PM, Hegan DC, Lu Y, Czochor J, Scanlon SE. Hypoxia and DNA repair. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2013; 86:443-51. [PMID: 24348208 PMCID: PMC3848098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hypoxia is a characteristic feature of solid tumors and occurs very early in neoplastic development. Hypoxia transforms cell physiology in multiple ways, with profound changes in cell metabolism, cell growth, susceptibility to apoptosis, induction of angiogenesis, and increased motility. Over the past 20 years, our lab has determined that hypoxia also induces genetic instability. We have conducted a large series of experiments revealing that this instability occurs through the alteration of DNA repair pathways, including nucleotide excision repair, DNA mismatch repair, and homology dependent repair. Our work suggests that hypoxia, as a key component of solid tumors, can drive cancer progression through its impact on genomic integrity. However, the acquired changes in DNA repair that are induced by hypoxia may also render hypoxic cancer cells vulnerable to tailored strategies designed to exploit these changes.
Collapse
Affiliation(s)
- Peter M. Glazer
- Department of Therapeutic Radiology, Yale School of
Medicine, New Haven, Connecticut,Department of Genetics, Yale School of Medicine, New
Haven, Connecticut,To whom all correspondence should be
addressed: Peter M. Glazer, Department of Therapeutic Radiology, Yale
University, 333 Cedar St., New Haven, CT 06520-8040; Tele: 203-737-2788; Fax:
203-737-1467;
| | - Denise C. Hegan
- Department of Therapeutic Radiology, Yale School of
Medicine, New Haven, Connecticut
| | - Yuhong Lu
- Department of Therapeutic Radiology, Yale School of
Medicine, New Haven, Connecticut
| | - Jennifer Czochor
- Department of Therapeutic Radiology, Yale School of
Medicine, New Haven, Connecticut,Department of Genetics, Yale School of Medicine, New
Haven, Connecticut
| | - Susan E. Scanlon
- Department of Therapeutic Radiology, Yale School of
Medicine, New Haven, Connecticut,Department of Genetics, Yale School of Medicine, New
Haven, Connecticut
| |
Collapse
|
125
|
Olcina MM, Foskolou IP, Anbalagan S, Senra JM, Pires IM, Jiang Y, Ryan AJ, Hammond EM. Replication stress and chromatin context link ATM activation to a role in DNA replication. Mol Cell 2013; 52:758-66. [PMID: 24268576 PMCID: PMC3898930 DOI: 10.1016/j.molcel.2013.10.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/28/2013] [Accepted: 10/07/2013] [Indexed: 01/08/2023]
Abstract
ATM-mediated signaling in response to DNA damage is a barrier to tumorigenesis. Here we asked whether replication stress could also contribute to ATM signaling. We demonstrate that, in the absence of DNA damage, ATM responds to replication stress in a hypoxia-induced heterochromatin-like context. In certain hypoxic conditions, replication stress occurs in the absence of detectable DNA damage. Hypoxia also induces H3K9me3, a histone modification associated with gene repression and heterochromatin. Hypoxia-induced replication stress together with increased H3K9me3 leads to ATM activation. Importantly, ATM prevents the accumulation of DNA damage in hypoxia. Most significantly, we describe a stress-specific role for ATM in maintaining DNA replication rates in a background of increased H3K9me3. Furthermore, the ATM-mediated response to oncogene-induced replication stress is enhanced in hypoxic conditions. Together, these data indicate that hypoxia plays a critical role in the activation of the DNA damage response, therefore contributing to this barrier to tumorigenesis.
Collapse
Affiliation(s)
- Monica M Olcina
- The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Iosifina P Foskolou
- The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Selvakumar Anbalagan
- The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Joana M Senra
- The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Isabel M Pires
- The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Yanyan Jiang
- The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Anderson J Ryan
- The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Ester M Hammond
- The Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
126
|
Central role for MCP-1/CCL2 in injury-induced inflammation revealed by in vitro, in silico, and clinical studies. PLoS One 2013; 8:e79804. [PMID: 24312451 PMCID: PMC3849193 DOI: 10.1371/journal.pone.0079804] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
The translation of in vitro findings to clinical outcomes is often elusive. Trauma/hemorrhagic shock (T/HS) results in hepatic hypoxia that drives inflammation. We hypothesize that in silico methods would help bridge in vitro hepatocyte data and clinical T/HS, in which the liver is a primary site of inflammation. Primary mouse hepatocytes were cultured under hypoxia (1% O2) or normoxia (21% O2) for 1-72 h, and both the cell supernatants and protein lysates were assayed for 18 inflammatory mediators by Luminex™ technology. Statistical analysis and data-driven modeling were employed to characterize the main components of the cellular response. Statistical analyses, hierarchical and k-means clustering, Principal Component Analysis, and Dynamic Network Analysis suggested MCP-1/CCL2 and IL-1α as central coordinators of hepatocyte-mediated inflammation in C57BL/6 mouse hepatocytes. Hepatocytes from MCP-1-null mice had altered dynamic inflammatory networks. Circulating MCP-1 levels segregated human T/HS survivors from non-survivors. Furthermore, T/HS survivors with elevated early levels of plasma MCP-1 post-injury had longer total lengths of stay, longer intensive care unit lengths of stay, and prolonged requirement for mechanical ventilation vs. those with low plasma MCP-1. This study identifies MCP-1 as a main driver of the response of hepatocytes in vitro and as a biomarker for clinical outcomes in T/HS, and suggests an experimental and computational framework for discovery of novel clinical biomarkers in inflammatory diseases.
Collapse
|
127
|
mRNA Expression Profiles for Prostate Cancer following Fractionated Irradiation Are Influenced by p53 Status. Transl Oncol 2013; 6:573-85. [PMID: 24151538 DOI: 10.1593/tlo.13241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/20/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022] Open
Abstract
We assessed changes in cell lines of varying p53 status after various fractionation regimens to determine if p53 influences gene expression and if multifractionated (MF) irradiation can induce molecular pathway changes. LNCaP (p53 wild-type), PC3 (p53 null), and DU145 (p53 mutant) prostate carcinoma cells received 5 and 10 Gy as single-dose (SD) or MF (0.5 Gy x 10, 1 Gy x 10, and 2 Gy x 5) irradiation to simulate hypofractionated and conventionally fractionated prostate radiotherapies, respectively. mRNA analysis revealed 978 LNCaP genes differentially expressed (greater than two-fold change, P < .05) after irradiation. Most were altered with SD (69%) and downregulated (75%). Fewer PC3 (343) and DU145 (116) genes were induced, with most upregulated (87%, 89%) and altered with MF irradiation. Gene ontology revealed immune response and interferon genes most prominently expressed after irradiation in PC3 and DU145. Cell cycle regulatory (P = 9.23 x 10(-73), 14.2% of altered genes, nearly universally downregulated) and DNA replication/repair (P = 6.86 x 10(-30)) genes were most prominent in LNCaP. Stress response and proliferation genes were altered in all cell lines. p53-activated genes were only induced in LNCaP. Differences in gene expression exist between cell lines and after varying irradiation regimens that are p53 dependent. As the duration of changes is ≥24 hours, it may be possible to use radiation-inducible targeted therapy to enhance the efficacy of molecular targeted agents.
Collapse
|
128
|
Muscari C, Giordano E, Bonafè F, Govoni M, Pasini A, Guarnieri C. Priming adult stem cells by hypoxic pretreatments for applications in regenerative medicine. J Biomed Sci 2013; 20:63. [PMID: 23985033 PMCID: PMC3765890 DOI: 10.1186/1423-0127-20-63] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/24/2013] [Indexed: 12/16/2022] Open
Abstract
The efficiency of regenerative medicine can be ameliorated by improving the biological performances of stem cells before their transplantation. Several ex-vivo protocols of non-damaging cell hypoxia have been demonstrated to significantly increase survival, proliferation and post-engraftment differentiation potential of stem cells. The best results for priming cultured stem cells against a following, otherwise lethal, ischemic stress have been obtained with brief intermittent episodes of hypoxia, or anoxia, and reoxygenation in accordance with the extraordinary protection afforded by the conventional maneuver of ischemic preconditioning in severely ischemic organs. These protocols of hypoxic preconditioning can be rather easily reproduced in a laboratory; however, more suitable pharmacological interventions inducing stem cell responses similar to those activated in hypoxia are considered among the most promising solutions for future applications in cell therapy. Here we want to offer an up-to-date review of the molecular mechanisms translating hypoxia into beneficial events for regenerative medicine. To this aim the involvement of epigenetic modifications, microRNAs, and oxidative stress, mainly activated by hypoxia inducible factors, will be discussed. Stem cell adaptation to their natural hypoxic microenvironments (niche) in healthy and neoplastic tissues will be also considered.
Collapse
Affiliation(s)
- Claudio Muscari
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
129
|
Lee HY, Yang EG, Park H. Hypoxia enhances the expression of prostate-specific antigen by modifying the quantity and catalytic activity of Jumonji C domain-containing histone demethylases. Carcinogenesis 2013; 34:2706-15. [PMID: 23884959 DOI: 10.1093/carcin/bgt256] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxygen concentration in prostate cancer tissue is significantly low, i.e. ~0.3% O2. This study showed that pathological hypoxia (<0.5% O2) increased the expression of androgen receptor (AR) target genes such as prostate-specific antigen (PSA) and kallikrein-related peptidase 2 in LNCaP human prostate cancer cells by modifying the quantity and activity of related Jumonji C domain-containing histone demethylases (JMJDs). Under pathological hypoxia, the catalytic activities of JMJD2A, JMJD2C and Jumonji/ARID domain-containing protein 1B (JARID1B) were blocked due to the lack of their substrate, i.e. oxygen. Chromatin immunoprecipitation analyses showed that hypoxia increased the appearance of H3K9me3 and H3K4me3, substrates of JMJD2s and JARID1B, respectively, in the PSA enhancer. In contrast, JMJD1A, which demethylates both H3K9me2 and H3K9me1, maintained its catalytic activity even under severe hypoxia. Furthermore, hypoxia increased the expression of JMJD1A. Hypoxia and androgen additively increased the recruitment of JMJD1A and p300 on the enhancer region of PSA through interaction with the hypoxia-inducible factor-1α and AR, both of which bind the PSA enhancer. Thus, hypoxia enhanced the demethylation of H3K9me2 and H3K9me1, leading to provide unmethylated H3K9 residues that are substrates for histone acetyltransferase, p300. Consequently, hypoxia increased the acetylation of histones of the PSA enhancer, which facilitates its transcription.
Collapse
Affiliation(s)
- Ho-Youl Lee
- Department of Life Science, University of Seoul, Siripdae-gil 13, Dongdaemun-gu, Seoul 130-743, Korea and
| | | | | |
Collapse
|
130
|
Tsai YP, Wu KJ. Epigenetic regulation of hypoxia-responsive gene expression: focusing on chromatin and DNA modifications. Int J Cancer 2013; 134:249-56. [PMID: 23564219 DOI: 10.1002/ijc.28190] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/28/2013] [Indexed: 12/20/2022]
Abstract
Mammalian cells constantly encounter hypoxia, which is a stress condition occurring during development and physiological processes. To adapt to this inevitable condition, cells develop various mechanisms to cope with this stress and survive. In addition to the activation/stabilization of transcriptional regulators (hypoxia-inducible factors), other epigenetic mechanisms of gene regulation are used. These mechanisms are mediated by various players including transcriptional coregulators, chromatin-modifying complexes, histone modification enzymes and changes in DNA methylation status. Recent progress in all the fields mentioned above has greatly improved the knowledge of how gene regulation contributes to the hypoxic response. This review should shed light on the molecular epigenetic mechanisms of hypoxia-induced gene regulation and help understand the processes adapted by cells to cope with hypoxia.
Collapse
Affiliation(s)
- Ya-Ping Tsai
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
131
|
Milagro F, Mansego M, De Miguel C, Martínez J. Dietary factors, epigenetic modifications and obesity outcomes: Progresses and perspectives. Mol Aspects Med 2013; 34:782-812. [DOI: 10.1016/j.mam.2012.06.010] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/27/2012] [Indexed: 12/31/2022]
|
132
|
Wu X, Sun J, Li L. Chronic cerebrovascular hypoperfusion affects global DNA methylation and histone acetylation in rat brain. Neurosci Bull 2013; 29:685-92. [PMID: 23716065 DOI: 10.1007/s12264-013-1345-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/07/2012] [Indexed: 01/12/2023] Open
Abstract
DNA methylation and histone acetylation can be modified by various pathological or physiological factors such as hypoxia, thus influencing gene expression. In this study, we investigated the changes of global DNA methylation and histone acetylation and the related enzymes in rat brain after chronic cerebrovascular hypoperfusion by bilateral common carotid occlusion (2-VO) surgery. Colorimetric and immunohistochemistry staining were used to evaluate the global DNA methylation and histone acetylation levels, respectively. The expressions of DNA methyltransferase 1/3a (DNMT1/3a), methyl-CpG binding domain protein 2 (MBD2), histone deacetylase 3 (HDAC3) and acetyltransferase (HAT) were assessed by Western blot. We found that the level of global DNA methylation was decreased to 31.7% (P <0.01) of the sham-operated group at 10 days and increased by 30% (P <0.01) compared with the sham group at 90 days after 2-VO surgery. DNMT3a expression was down-regulated to 75.7% of the sham group, while MBD2 expression was up-regulated by 95% compared with sham group at 90 days after 2-VO. The histone H3 acetylation level was markedly decreased to 75.3% of the sham group at 10 days and 73.5% at 90 days after 2-VO, while no significant change was found for histone H4 acetylation. HDAC3 expression was markedly down-regulated to 36% of the sham group, whereas cAMP-response element binding protein expression was up-regulated by 33.6% compared with the sham group at 90 days after 2-VO. These results suggest that chronic cerebrovascular hypoperfusion influences global DNA methylation and histone acetylation levels through the related enzymes, and therefore might contribute to several neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiangmei Wu
- Department of Pathology, Capital Medical University, Beijing, 100069, China
| | | | | |
Collapse
|
133
|
Kim GH, Ryan JJ, Archer SL. The role of redox signaling in epigenetics and cardiovascular disease. Antioxid Redox Signal 2013; 18:1920-36. [PMID: 23480168 PMCID: PMC3624767 DOI: 10.1089/ars.2012.4926] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/24/2012] [Accepted: 01/15/2013] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The term epigenetics refers to the changes in the phenotype and gene expression that occur without alterations in the DNA sequence. There is a rapidly growing body of evidence that epigenetic modifications are involved in the pathological mechanisms of many cardiovascular diseases (CVDs), which intersect with many of the pathways involved in oxidative stress. RECENT ADVANCES Most studies relating epigenetics and human pathologies have focused on cancer. There has been a limited study of epigenetic mechanisms in CVDs. Although CVDs have multiple established genetic and environmental risk factors, these explain only a portion of the total CVD risk. The epigenetic perspective is beginning to shed new light on how the environment influences gene expression and disease susceptibility in CVDs. Known epigenetic changes contributing to CVD include hypomethylation in proliferating vascular smooth muscle cells in atherosclerosis, changes in estrogen receptor-α (ER-α) and ER-β methylation in vascular disease, decreased superoxide dismutase 2 expression in pulmonary hypertension (PH), as well as trimethylation of histones H3K4 and H3K9 in congestive heart failure. CRITICAL ISSUES In this review, we discuss the epigenetic modifications in CVDs, including atherosclerosis, congestive heart failure, hypertension, and PH, with a focus on altered redox signaling. FUTURE DIRECTIONS As advances in both the methodology and technology accelerate the study of epigenetic modifications, the critical role they play in CVD is beginning to emerge. A fundamental question in the field of epigenetics is to understand the biochemical mechanisms underlying reactive oxygen species-dependent regulation of epigenetic modification.
Collapse
Affiliation(s)
- Gene H Kim
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
134
|
Chiacchiera F, Piunti A, Pasini D. Epigenetic methylations and their connections with metabolism. Cell Mol Life Sci 2013; 70:1495-508. [PMID: 23456257 PMCID: PMC11113834 DOI: 10.1007/s00018-013-1293-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 01/22/2023]
Abstract
Metabolic pathways play fundamental roles in several processes that regulate cell physiology and adaptation to environmental changes. Altered metabolic pathways predispose to several different pathologies ranging from diabetes to cancer. Specific transcriptional programs tightly regulate the enzymes involved in cell metabolism and dictate cell fate regulating the differentiation into specialized cell types that contribute to metabolic adaptation in higher organisms. For these reasons, it is of extreme importance to identify signaling pathways and transcription factors that positively and negatively regulate metabolism. Genomic organization allows a plethora of different strategies to regulate transcription. Importantly, large evidence suggests that the quality of diet and the caloric regimen can influence the epigenetic state of our genome and that certain metabolic pathways are also epigenetically controlled reveling a tight crosstalk between metabolism and epigenomes. Here we focus our attention on methylation-based epigenetic reactions, on how different metabolic pathways control these activities, and how these can influence metabolism. Altogether, the recent discoveries linking these apparent distant areas reveal that an exciting field of research is emerging.
Collapse
Affiliation(s)
- Fulvio Chiacchiera
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| | - Andrea Piunti
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
135
|
Park SJ, Kim JG, Son TG, Yi JM, Kim ND, Yang K, Heo K. The histone demethylase JMJD1A regulates adrenomedullin-mediated cell proliferation in hepatocellular carcinoma under hypoxia. Biochem Biophys Res Commun 2013; 434:722-7. [PMID: 23583388 DOI: 10.1016/j.bbrc.2013.03.091] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022]
Abstract
We studied the roles of JMJD1A and its target gene ADM in the growth of hepatocellular carcinomas (HCCs) and breast cancer cells under hypoxic conditions. Hypoxia stimulated HepG2 and Hep3B cell proliferation but had no effect on MDA-MB-231 cell proliferation. Interestingly, the JMJD1A and ADM expressions were enhanced by hypoxia only in HepG2 and Hep3B cells. Our ChIP results showed that hypoxia-induced HepG2 and Hep3B cell proliferation is mediated by JMJD1A upregulation and subsequent decrease in methylation in the ADM promoter region. Furthermore, JMJD1A gene silencing abrogated the hypoxia-induced ADM expression and inhibited HepG2 and Hep3B cell growth. These data suggest that JMJD1A might function as a proliferation regulator in some cancer cell types.
Collapse
Affiliation(s)
- Seong-Joon Park
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan 619-953, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
Chemical modifications of histones and DNA, such as histone methylation, histone acetylation, and DNA methylation, play critical roles in epigenetic gene regulation. Many of the enzymes that add or remove such chemical modifications are known, or might be suspected, to be sensitive to changes in intracellular metabolism. This knowledge provides a conceptual foundation for understanding how mutations in the metabolic enzymes SDH, FH, and IDH can result in cancer and, more broadly, for how alterations in metabolism and nutrition might contribute to disease. Here, we review literature pertinent to hypothetical connections between metabolic and epigenetic states in eukaryotic cells.
Collapse
Affiliation(s)
- William G. Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Steven L. McKnight
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
137
|
Role of epigenetic regulatory mechanisms in neonatal hypoxic-ischemic brain injury. Early Hum Dev 2013; 89:165-73. [PMID: 23046993 DOI: 10.1016/j.earlhumdev.2012.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/18/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND DNA methylation and histone modifications are the most identified modifications that selectively activate or inactivate genes that control cell growth, proliferation, and apoptosis. AIM We hypothesized that alterations in gene expression due to hypoxic-ischemic brain damage was regulated by epigenetic mechanisms including DNA methylation and histone methylation. STUDY DESIGN To test this hypothesis, we established a rat model of HIE. Three groups were defined as hypoxic-ischemic, sham-operated, and control group. OUTCOME MEASUREMENTS The validity of the HIE model used in this study was confirmed by histological and immunohistochemical tests. Gene expressions related with apoptosis and angiogenesis were studied at 0.5, 3, 6 and 24h after HI or sham operation. DNA and histone methylation status was studied in the genes showing significant change in expression. RESULTS AND CONCLUSIONS Most of the genes related with apoptosis and angiogenesis (Epo, Epor, Hif 1α, Hif3α, VEGFa, VEGFc, Casp1, Casp9, and Casp8ap2) induced early after HI (30min). All of these genes were unmethylated at the beginning of the insult and in the control group. DNA methylation percentage and histone methylation (H3K36) levels were not correlated with gen expression levels. To our knowledge this is the first study evaluating the role of epigenetic mechanisms in HIE model, therefore the absence of similar studies don't allow us to compare the present results. Further studies investigating different epigenetic mechanisms are needed.
Collapse
|
138
|
Isaacs JT, Antony L, Dalrymple SL, Brennen WN, Gerber S, Hammers H, Wissing M, Kachhap S, Luo J, Xing L, Björk P, Olsson A, Björk A, Leanderson T. Tasquinimod Is an Allosteric Modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res 2012; 73:1386-99. [PMID: 23149916 DOI: 10.1158/0008-5472.can-12-2730] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tasquinimod is an orally active antiangiogenic drug that is currently in phase III clinical trials for the treatment of castration-resistant prostate cancer. However, the target of this drug has remained unclear. In this study, we applied diverse strategies to identify the histone deacetylase HDAC4 as a target for the antiangiogenic activity of tasquinimod. Our comprehensive analysis revealed allosteric binding (Kd 10-30 nmol/L) to the regulatory Zn(2+) binding domain of HDAC4 that locks the protein in a conformation preventing HDAC4/N-CoR/HDAC3 complex formation. This binding inhibited colocalization of N-CoR/HDAC3, thereby inhibiting deacetylation of histones and HDAC4 client transcription factors, such as HIF-1α, which are bound at promoter/enhancers where epigenetic reprogramming is required for cancer cell survival and angiogenic response. Through this mechanism, tasquinimod is effective as a monotherapeutic agent against human prostate, breast, bladder, and colon tumor xenografts, where its efficacy could be further enhanced in combination with a targeted thapsigargin prodrug (G202) that selectively kills tumor endothelial cells. Together, our findings define a mechanism of action of tasquinimod and offer a perspective on how its clinical activity might be leveraged in combination with other drugs that target the tumor microenvironment. Cancer Res; 73(4); 1386-99. ©2012 AACR.
Collapse
Affiliation(s)
- John T Isaacs
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Histone demethylase JMJD2B-mediated cell proliferation regulated by hypoxia and radiation in gastric cancer cell. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1200-7. [PMID: 23046878 DOI: 10.1016/j.bbagrm.2012.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/12/2012] [Accepted: 10/01/2012] [Indexed: 02/06/2023]
Abstract
Histone modifying factors are functional components of chromatin and play a role in gene regulation. The expression level of JMJD2B, a histone demethylase, is notably up-regulated in cancer tissues. Upregulation of JMJD2B promotes cancer cell proliferation under hypoxic conditions through target gene expression. Here, we describe the patterns of histone methylation and JMJD2B expression under various stressed conditions, such as hypoxia and radiation, in a gastric cancer cell line. JMJD2B expression in AGS cells was actively regulated by hypoxia and radiation. Chromatin immunoprecipitation experiments demonstrated that binding of JMJD2B on the cyclin A1 (CCNA1) promoter resulted in CCNA1 upregulation under hypoxic conditions. Furthermore, we confirmed that AGS cell proliferation was directly affected by JMJD2B and CCNA1 expression by performing experiments with JMJD2B depleted cells. Interestingly, the effects of JMJD2B on cell growth under hypoxia were remarkably repressed after gamma-ray irradiation. These results suggest that JMJD2B may play a central role in gastric cancer cell growth and might constitute a novel therapeutic target to overcome hypoxia-induced radio-resistance, thereby improving the efficiency of radiation therapy.
Collapse
|
140
|
Bernier NJ, Gorissen M, Flik G. Differential effects of chronic hypoxia and feed restriction on the expression of leptin and its receptor, food intake regulation and the endocrine stress response in common carp. J Exp Biol 2012; 215:2273-82. [DOI: 10.1242/jeb.066183] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Appetite suppression is a common response to hypoxia in fish that confers significant energy savings. Yet little is known about the endocrine signals involved in the regulation of food intake during chronic hypoxia. Thus, we assessed the impact of chronic hypoxia on food intake, the expression of the potent anorexigenic signal leptin and its receptor (lepr), the mRNA levels of key hypothalamic appetite-regulating genes, and the activity of the hypothalamic–pituitary–interrenal (HPI) axis in common carp, Cyprinus carpio. Fish exposed to 10% O2 saturation for 8 days were chronically anorexic and consumed on average 79% less food than normoxic controls. Hypoxia also elicited gradual and parallel increases in the expression of liver leptin-a-I, leptin-a-II, lepr and erythropoietin, a known hypoxia-responsive gene. In contrast, the liver mRNA levels of all four genes remained unchanged in normoxic fish pair-fed to the hypoxia treatment. In the hypothalamus, expression of the appetite-regulating genes were consistent with an inhibition and stimulation of hunger in the hypoxic and pair-fed fish, respectively, and reduced feed intake led to a decrease in lepr. Although both treatments elicited similar delayed increases in plasma cortisol, they were characterized by distinct HPI axis effector transcript levels and a marked differential increase in pituitary lepr expression. Together, these results show that a reduction in O2 availability, and not feed intake, stimulates liver leptin-a expression in common carp and suggest that this pleiotropic cytokine is involved in the regulation of appetite and the endocrine stress response during chronic hypoxia.
Collapse
Affiliation(s)
- Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Marnix Gorissen
- Department of Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Gert Flik
- Department of Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
141
|
Henrique R, Luís AS, Jerónimo C. The epigenetics of renal cell tumors: from biology to biomarkers. Front Genet 2012; 3:94. [PMID: 22666228 PMCID: PMC3364466 DOI: 10.3389/fgene.2012.00094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/09/2012] [Indexed: 12/22/2022] Open
Abstract
Renal cell tumors (RCT) collectively constitute the third most common type of genitourinary neoplasms, only surpassed by prostate and bladder cancer. They comprise a heterogeneous group of neoplasms with distinctive clinical, morphological, and genetic features. Epigenetic alterations are a hallmark of cancer cells and their role in renal tumorigenesis is starting to emerge. Aberrant DNA methylation, altered chromatin remodeling/histone onco-modifications and deregulated microRNA expression not only contribute to the emergence and progression of RCTs, but owing to their ubiquity, they also constitute a promising class of biomarkers tailored for disease detection, diagnosis, assessment of prognosis, and prediction of response to therapy. Moreover, due to their dynamic and reversible properties, those alterations represent a target for epigenetic-directed therapies. In this review, the current knowledge about epigenetic mechanisms and their altered status in RCT is summarized and their envisaged use in a clinical setting is also provided.
Collapse
Affiliation(s)
- Rui Henrique
- Cancer Epigenetics Group, Research Center of the Portuguese Oncology Institute - Porto, Rua Dr. António Bernardino de Almeida Porto, Portugal
| | | | | |
Collapse
|
142
|
Schleithoff C, Voelter-Mahlknecht S, Dahmke IN, Mahlknecht U. On the epigenetics of vascular regulation and disease. Clin Epigenetics 2012; 4:7. [PMID: 22621747 PMCID: PMC3438017 DOI: 10.1186/1868-7083-4-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/09/2012] [Indexed: 12/16/2022] Open
Abstract
Consolidated knowledge is accumulating as to the role of epigenetic regulatory mechanisms in the physiology of vascular development and vascular tone as well as in the pathogenesis of cardiovascular disease. The modulation of gene expression through modification of the epigenome by structural changes of the chromatin architecture without alterations of the associated genomic DNA sequence is part of the cellular response to environmental changes. Such environmental conditions, which are finally being translated into adaptations of the cardiovascular system, also comprise pathological conditions such as atherosclerosis or myocardial infarction. This review summarizes recent findings on the epigenetics of vascular regulation and disease and presents nutritional and pharmacological approaches as novel epigenetic strategies in the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Christina Schleithoff
- Saarland University Medical Center, Department of Internal Medicine, Division of Immunotherapy and Gene Therapy, Homburg, Saar, D-66421, Germany
| | - Susanne Voelter-Mahlknecht
- Institute of Occupational and Social Medicine and Health Services Research, University of Tuebingen, Wilhelmstrasse 27, D-72074, Tuebingen, Germany
| | - Indra Navina Dahmke
- Saarland University Medical Center, Department of Internal Medicine, Division of Immunotherapy and Gene Therapy, Homburg, Saar, D-66421, Germany
| | - Ulrich Mahlknecht
- Saarland University Medical Center, Department of Internal Medicine, Division of Immunotherapy and Gene Therapy, Homburg, Saar, D-66421, Germany
| |
Collapse
|
143
|
Bapat SA. Modulation of gene expression in ovarian cancer by active and repressive histone marks. Epigenomics 2012; 2:39-51. [PMID: 22122747 DOI: 10.2217/epi.09.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA methylation and histone modifications often function concomitantly to drive an aberrant program of gene expression in most cancers. Consequently, they have also been identified as being associated with ovarian cancer. However, several basic issues remain unclear - are these marks established early during normal ovarian functioning, or at a preneoplastic stage, or through a gradual accumulation, or do they arise de novo during transformation? Such issues have been difficult to address in ovarian cancer wherein preneoplastic lesions and progression models have not yet been established and drug-refractive disease progression is rapid and aggressive. The review presents an overview of the known involvement of histone modifications in various cellular states that might contribute to our understanding of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Sharmila A Bapat
- National Centre for Cell Science, NCCS complex, Pune University Campus, Ganeshkhind, Pune, India.
| |
Collapse
|
144
|
Rodríguez-Jiménez FJ, Moreno-Manzano V. Modulation of hypoxia-inducible factors (HIF) from an integrative pharmacological perspective. Cell Mol Life Sci 2012; 69:519-34. [PMID: 21984597 PMCID: PMC11115032 DOI: 10.1007/s00018-011-0813-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/17/2011] [Accepted: 09/01/2011] [Indexed: 12/11/2022]
Abstract
Oxygen homeostasis determines the activity and expression of a multitude of cellular proteins and the interplay of pathways that affect crucial cellular processes for development, physiology, and pathophysiology. Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in available oxygen in the cellular environment and drives cellular adaptation to such conditions. Selective gene expression under hypoxic conditions is the result of an exquisite regulation of HIF, from the pre-transcriptional stage of the HIF gene to the final transcriptional activity of HIF protein. We provide a dissected analysis of HIF modulation with special focus on hypoxic conditions and HIF pharmacological interventions that can guide the application of any future HIF-mediated therapy.
Collapse
|
145
|
Melvin A, Rocha S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 2012; 24:35-43. [PMID: 21924352 PMCID: PMC3476533 DOI: 10.1016/j.cellsig.2011.08.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/29/2011] [Indexed: 12/28/2022]
Abstract
Changes in the availability or demand for oxygen induce dramatic changes at the cellular level. Primarily, activation of a family of oxygen labile transcription factors, Hypoxia Inducible Factor (HIF), initiates a variety of cellular processes required to re-instate oxygen homeostasis. Oxygen is sensed by molecular dioxygenases in cells, such as the prolyl-hydroxylases (PHDs), enzymes which are responsible for the oxygen-dependent regulation of HIF. As HIF is a transcription factor it must bind DNA sequences of its target genes possibly in the context of a complex chromatin structure. How chromatin structure changes in response to hypoxia is currently unknown. However, the identification of a novel class of histone demethylases as true dioxygenases suggests that chromatin can act as an oxygen sensor and plays an active role in the coordination of the cellular response to hypoxia. This review will discuss the current knowledge on how hypoxia engages with different proteins involved in chromatin organisation and dynamics.
Collapse
Key Words
- hif, hypoxia inducible factor
- arnt, aryl hydrocarbon nuclear translocator
- vhl, von hippel lindau
- phd, prolyl-hydroxylase
- fih, factor inhibiting hif
- chip, chromatin immunoprecipitation
- swi/snf, switch/sucrose nonfermentable
- iswi, imitation switch
- chd, chromodomain helicase dna-binding
- nurf, nucleosome remodelling factor
- chrac, chromatin remodelling and assembly complex
- acf, atp-utilising chromatin remodelling and assembly factor
- norc, nucleolar remodelling complex
- rsf, remodelling and spacing factor
- wich, wstf–iswi chromatin remodelling complex
- nurd, nucleosome remodelling and histone deacetylase
- srcap, snf2-related cbp activator protein
- trrap, transformation/transcription domain-associated protein/tip60
- hat, histone acetyl transferase
- hdac, histone deacetylase
- lsd1, lysine-specific demethylase-1
- jmjc, jumonji c domain
- hypoxia
- chromatin
- hif
- transcription
- chromatin remodellers
- jmjc demethylases
Collapse
Affiliation(s)
| | - Sonia Rocha
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
146
|
Schnabel RB, Baccarelli A, Lin H, Ellinor PT, Benjamin EJ. Next steps in cardiovascular disease genomic research--sequencing, epigenetics, and transcriptomics. Clin Chem 2012; 58:113-26. [PMID: 22100807 PMCID: PMC3650722 DOI: 10.1373/clinchem.2011.170423] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Genomic research in cardiovascular disease (CVD) has progressed rapidly over the last 5 years. In most cases, however, these groundbreaking observations have not yet been accompanied by clinically applicable tools for risk prediction, diagnosis, or therapeutic interventions. CONTENT We reviewed the scientific literature published in English for novel methods and promising genomic targets that would permit large-scale screening and follow-up of recent genomic findings for CVD. We anticipate that advances in 3 key areas will be critical for the success of these projects. First, exome-centered and whole-genome next-generation sequencing will identify rare and novel genetic variants associated with CVD and its risk factors. Improvements in methods will also greatly advance the field of epigenetics and gene expression in humans. Second, research is increasingly acknowledging that static DNA sequence variation explains only a fraction of the inherited phenotype. Therefore, we expect that multiple epigenetic and gene expression signatures will be related to CVD in experimental and clinical settings. Leveraging existing large-scale consortia and clinical biobanks in combination with electronic health records holds promise for integrating epidemiological and clinical genomics data. Finally, a systems biology approach will be needed to integrate the accumulated multidimensional data. SUMMARY Novel methods in sequencing, epigenetics, and transcriptomics, plus unprecedented large-scale cooperative efforts, promise to generate insights into the complexity of CVD. The rapid accumulation and integration of knowledge will shed light on a considerable proportion of the missing heritability for CVD.
Collapse
Affiliation(s)
- Renate B Schnabel
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
147
|
Thirlwell C, Schulz L, Dibra H, Beck S. Suffocating cancer: hypoxia-associated epimutations as targets for cancer therapy. Clin Epigenetics 2011; 3:9. [PMID: 22414300 PMCID: PMC3303469 DOI: 10.1186/1868-7083-3-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/05/2011] [Indexed: 12/31/2022] Open
Abstract
Lower than normal levels of oxygen (hypoxia) is a hallmark of all solid tumours rendering them frequently resistant to both radiotherapy and chemotherapy regimes. Furthermore, tumour hypoxia and activation of the hypoxia inducible factor (HIF) transcriptional pathway is associated with poorer prognosis. Driven by both genetic and epigenetic changes, cancer cells do not only survive but thrive in hypoxic conditions. Detailed knowledge of these changes and their functional consequences is of great clinical utility and is already helping to determine phenotypic plasticity, histological tumour grading and overall prognosis and survival stratification in several cancer types. As epigenetic changes - contrary to genetic changes - are potentially reversible, they may prove to be potent therapeutic targets to add to the cancer physicians' armorarium in the future.Here, we review the therapeutic potential of epigenetic modifications (including DNA methylation, histone modifications and miRNAs) occurring in hypoxia with particular reference to cancer and tumourigenesis.
Collapse
Affiliation(s)
- C Thirlwell
- Medical Genomics Laboratory, UCL Cancer Institute, 72, Huntley Street, WC1E 6BT, London.
| | | | | | | |
Collapse
|
148
|
Hundahl CA, Luuk H, Ilmjärv S, Falktoft B, Raida Z, Vikesaa J, Friis-Hansen L, Hay-Schmidt A. Neuroglobin-deficiency exacerbates Hif1A and c-FOS response, but does not affect neuronal survival during severe hypoxia in vivo. PLoS One 2011; 6:e28160. [PMID: 22164238 PMCID: PMC3229544 DOI: 10.1371/journal.pone.0028160] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/02/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Neuroglobin (Ngb), a neuron-specific globin that binds oxygen in vitro, has been proposed to play a key role in neuronal survival following hypoxic and ischemic insults in the brain. Here we address whether Ngb is required for neuronal survival following acute and prolonged hypoxia in mice genetically Ngb-deficient (Ngb-null). Further, to evaluate whether the lack of Ngb has an effect on hypoxia-dependent gene regulation, we performed a transcriptome-wide analysis of differential gene expression using Affymetrix Mouse Gene 1.0 ST arrays. Differential expression was estimated by a novel data analysis approach, which applies non-parametric statistical inference directly to probe level measurements. PRINCIPAL FINDINGS Ngb-null mice were born in expected ratios and were normal in overt appearance, home-cage behavior, reproduction and longevity. Ngb deficiency had no effect on the number of neurons, which stained positive for surrogate markers of endogenous Ngb-expressing neurons in the wild-type (wt) and Ngb-null mice after 48 hours hypoxia. However, an exacerbated hypoxia-dependent increase in the expression of c-FOS protein, an immediate early transcription factor reflecting neuronal activation, and increased expression of Hif1A mRNA were observed in Ngb-null mice. Large-scale gene expression analysis identified differential expression of the glycolytic pathway genes after acute hypoxia in Ngb-null mice, but not in the wts. Extensive hypoxia-dependent regulation of chromatin remodeling, mRNA processing and energy metabolism pathways was apparent in both genotypes. SIGNIFICANCE According to these results, it appears unlikely that the loss of Ngb affects neuronal viability during hypoxia in vivo. Instead, Ngb-deficiency appears to enhance the hypoxia-dependent response of Hif1A and c-FOS protein while also altering the transcriptional regulation of the glycolytic pathway. Bioinformatic analysis of differential gene expression yielded novel predictions suggesting that chromatin remodeling and mRNA metabolism are among the key regulatory mechanisms when adapting to prolonged hypoxia.
Collapse
Affiliation(s)
- Christian Ansgar Hundahl
- Department of Clinical Biochemistry, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
- * E-mail: (CAH); (HL); (AHS)
| | - Hendrik Luuk
- Department of Clinical Biochemistry, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
- Department of Physiology, University of Tartu, Tartu, Estonia
- * E-mail: (CAH); (HL); (AHS)
| | - Sten Ilmjärv
- Department of Physiology, University of Tartu, Tartu, Estonia
- Quretec Ltd, Tartu, Estonia
| | - Birgitte Falktoft
- Department of Clinical Biochemistry, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Zindy Raida
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Vikesaa
- Department of Genomic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lennart Friis-Hansen
- Department of Genomic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (CAH); (HL); (AHS)
| |
Collapse
|
149
|
Hypoxia and hypoxia mimetics inhibit TNF-dependent VCAM1 induction in the 5A32 endothelial cell line via a hypoxia inducible factor dependent mechanism. J Dermatol Sci 2011; 65:86-94. [PMID: 22093255 DOI: 10.1016/j.jdermsci.2011.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/29/2011] [Accepted: 10/06/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND We previously reported that iron chelators inhibit TNFα-mediated induction of VCAM-1 in human dermal microvascular endothelial cells. We hypothesized that iron chelators mediate inhibition of VCAM-1 via inhibition of iron-dependent enzymes such as those involved with oxygen sensing and that similar inhibition may be observed with agents which simulate hypoxia. OBJECTIVE We proposed to examine whether non-metal binding hypoxia mimetics inhibit TNFα-mediated VCAM-1 induction and define the mechanisms by which they mediate their effects on VCAM-1 expression. METHODS These studies were undertaken in vitro using immortalized dermal endothelial cells, Western blot analysis, ELISA, immunofluorescence microscopy, quantitative real-time PCR, and chromatin immunoprecipitation. RESULTS Hypoxia and the non-iron binding hypoxia mimetic dimethyl oxallyl glycine (DMOG) inhibited TNFα-mediated induction of VCAM-1. DMOG inhibition of VCAM-1 was dose-dependent, targeted VCAM-1 gene transcription independent of NF-κB nuclear translocation, and blocked TNFα-mediated chromatin modifications of relevant elements of the VCAM-1 promoter. Combined gene silencing of both HIF-1α and HIF-2α using siRNA led to a partial rescue of VCAM expression in hypoxia mimetic-treated cells. CONCLUSION Iron chelators, non-metal binding hypoxia mimetics, and hypoxia all inhibit TNFα-mediated VCAM-1 expression. Inhibition is mediated independent of nuclear translocation of NF-κB, appears to target TNFα-mediated chromatin modifications, and is at least partially dependent upon HIF expression. The absence of complete VCAM-1 expression rescue with HIF silencing implies an important regulatory role for an Fe(II)/α-ketoglutarate dioxygenase distinct from the prolyl and asparagyl hydroxylases that control HIF function. Identification of this dioxygenase may provide a valuable target for modulating inflammation in human tissues.
Collapse
|
150
|
Aoi Y, Nakahama KI, Morita I, Safronova O. The involvement of DNA and histone methylation in the repression of IL-1β-induced MCP-1 production by hypoxia. Biochem Biophys Res Commun 2011; 414:252-8. [PMID: 21951854 DOI: 10.1016/j.bbrc.2011.09.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 01/08/2023]
Abstract
Hypoxia is a microenvironmental pathophysiologic factor commonly associated with tumors and tissue inflammation. We previously reported that hypoxia repressed IL-1β-induced monocyte chemoattractant protein-1 (MCP-1) expression. The purpose of this study was to investigate the mechanisms involved in the repression of MCP-1 expression under hypoxia. Treatment of HeLa cells with 5-aza-dC, an inhibitor of DNA methylation, abolished the repression of IL-1β-induced MCP-1 expression by hypoxia. A detailed study of the methylation of CpGs sites using bisulfite-sequencing PCR and 5-methylcytosine immunoprecipitation showed that hypoxia induced DNA methylation in both the enhancer and promoter regions of MCP-1in IL-1β-treated cells. Next, we analyzed histone methylation within the MCP-1 promoter and enhancer regions. The level of H3K9 di-methylation, a mark of gene repression, in both promoter and enhancer regions was increased by hypoxia in IL-1β-treated cells. Our findings suggest that changes in the methylation status of CpGs, as well as histone 3 methylation, may represent a critical event in transcriptional repression of IL-1β-induced MCP-1 expression by hypoxia. Therefore, DNA methylation is associated with not only epigenetic gene silencing, but also with transient transcriptional repression.
Collapse
Affiliation(s)
- Yoko Aoi
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | |
Collapse
|