101
|
Sun BL, Wang LH, Yang T, Sun JY, Mao LL, Yang MF, Yuan H, Colvin RA, Yang XY. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog Neurobiol 2017; 163-164:118-143. [PMID: 28903061 DOI: 10.1016/j.pneurobio.2017.08.007] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022]
Abstract
The belief that the vertebrate brain functions normally without classical lymphatic drainage vessels has been held for many decades. On the contrary, new findings show that functional lymphatic drainage does exist in the brain. The brain lymphatic drainage system is composed of basement membrane-based perivascular pathway, a brain-wide glymphatic pathway, and cerebrospinal fluid (CSF) drainage routes including sinus-associated meningeal lymphatic vessels and olfactory/cervical lymphatic routes. The brain lymphatic systems function physiological as a route of drainage for interstitial fluid (ISF) from brain parenchyma to nearby lymph nodes. Brain lymphatic drainage helps maintain water and ion balance of the ISF, waste clearance, and reabsorption of macromolecular solutes. A second physiological function includes communication with the immune system modulating immune surveillance and responses of the brain. These physiological functions are influenced by aging, genetic phenotypes, sleep-wake cycle, and body posture. The impairment and dysfunction of the brain lymphatic system has crucial roles in age-related changes of brain function and the pathogenesis of neurovascular, neurodegenerative, and neuroinflammatory diseases, as well as brain injury and tumors. In this review, we summarize the key component elements (regions, cells, and water transporters) of the brain lymphatic system and their regulators as potential therapeutic targets in the treatment of neurologic diseases and their resulting complications. Finally, we highlight the clinical importance of ependymal route-based targeted gene therapy and intranasal drug administration in the brain by taking advantage of the unique role played by brain lymphatic pathways in the regulation of CSF flow and ISF/CSF exchange.
Collapse
Affiliation(s)
- Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China.
| | - Li-Hua Wang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, China
| | - Tuo Yang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jing-Yi Sun
- Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Gangwon 220-701, Republic of Korea
| | - Lei-Lei Mao
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Ming-Feng Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Hui Yuan
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Robert A Colvin
- Department of Biological Sciences, Interdisciplinary Graduate Program in Molecular and Cellular Biology, Neuroscience Program, Ohio University, Athens, OH 45701, USA
| | - Xiao-Yi Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China.
| |
Collapse
|
102
|
van Veluw SJ, Shih AY, Smith EE, Chen C, Schneider JA, Wardlaw JM, Greenberg SM, Biessels GJ. Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol 2017; 16:730-740. [PMID: 28716371 PMCID: PMC5861500 DOI: 10.1016/s1474-4422(17)30196-5] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/17/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023]
Abstract
Cerebral microinfarcts are small lesions that are presumed to be ischaemic. Despite the small size of these lesions, affected individuals can have hundreds to thousands of cerebral microinfarcts, which cause measurable disruption to structural brain connections, and are associated with dementia that is independent of Alzheimer's disease pathology or larger infarcts (ie, lacunar infarcts, and large cortical and non-lacunar subcortical infarcts). Substantial progress has been made with regard to understanding risk factors and functional consequences of cerebral microinfarcts, partly driven by new in-vivo detection methods and the development of animal models that closely mimic multiple aspects of cerebral microinfarcts in human beings. Evidence from these advances suggests that cerebral microinfarcts can be manifestations of both small vessel and large vessel disease, that cerebral microinfarcts are independently associated with cognitive impairment, and that these lesions are likely to cause damage to brain structure and function that extends beyond their actual lesion boundaries. Criteria for the identification of cerebral microinfarcts with in-vivo MRI are provided to support further studies of the association between these lesions and cerebrovascular disease and dementia.
Collapse
Affiliation(s)
- Susanne J van Veluw
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andy Y Shih
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Eric E Smith
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christopher Chen
- Memory Ageing and Cognition Centre, National University Health System, Singapore
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences and Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Geert Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
103
|
Kudo K, Harada T, Kameda H, Uwano I, Yamashita F, Higuchi S, Yoshioka K, Sasaki M. Indirect MRI of 17
o-labeled water using steady-state sequences: Signal simulation and preclinical experiment. J Magn Reson Imaging 2017; 47:1373-1379. [DOI: 10.1002/jmri.25848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology; Hokkaido University Hospital; Japan
- Division of Ultrahigh Field MRI; Institute for Biomedical Sciences, Iwate Medical University; Japan
| | - Taisuke Harada
- Department of Diagnostic and Interventional Radiology; Hokkaido University Hospital; Japan
| | - Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology; Hokkaido University Hospital; Japan
| | - Ikuko Uwano
- Division of Ultrahigh Field MRI; Institute for Biomedical Sciences, Iwate Medical University; Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI; Institute for Biomedical Sciences, Iwate Medical University; Japan
| | - Satomi Higuchi
- Division of Ultrahigh Field MRI; Institute for Biomedical Sciences, Iwate Medical University; Japan
| | | | - Makoto Sasaki
- Division of Ultrahigh Field MRI; Institute for Biomedical Sciences, Iwate Medical University; Japan
| |
Collapse
|
104
|
Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin Sci (Lond) 2017; 131:2257-2274. [PMID: 28798076 DOI: 10.1042/cs20160381] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 01/12/2023]
Abstract
Cerebral small vessel diseases (SVDs) range broadly in etiology but share remarkably overlapping pathology. Features of SVD including enlarged perivascular spaces (EPVS) and formation of abluminal protein deposits cannot be completely explained by the putative pathophysiology. The recently discovered glymphatic system provides a new perspective to potentially address these gaps. This work provides a comprehensive review of the known factors that regulate glymphatic function and the disease mechanisms underlying glymphatic impairment emphasizing the role that aquaporin-4 (AQP4)-lined perivascular spaces (PVSs), cerebrovascular pulsatility, and metabolite clearance play in normal CNS physiology. This review also discusses the implications that glymphatic impairment may have on SVD inception and progression with the aim of exploring novel therapeutic targets and highlighting the key questions that remain to be answered.
Collapse
|
105
|
Venkat P, Chopp M, Chen J. Blood-Brain Barrier Disruption, Vascular Impairment, and Ischemia/Reperfusion Damage in Diabetic Stroke. J Am Heart Assoc 2017; 6:e005819. [PMID: 28572280 PMCID: PMC5669184 DOI: 10.1161/jaha.117.005819] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Poornima Venkat
- Department of Neurology Research, Henry Ford Hospital, Detroit, MI
| | - Michael Chopp
- Department of Neurology Research, Henry Ford Hospital, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | - Jieli Chen
- Department of Neurology Research, Henry Ford Hospital, Detroit, MI
- Neurological & Gerontology Institute, Neurology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|