101
|
Weiss C, Tursunova I, Neuschmelting V, Lockau H, Nettekoven C, Oros-Peusquens AM, Stoffels G, Rehme AK, Faymonville AM, Shah NJ, Langen KJ, Goldbrunner R, Grefkes C. Improved nTMS- and DTI-derived CST tractography through anatomical ROI seeding on anterior pontine level compared to internal capsule. NEUROIMAGE-CLINICAL 2015; 7:424-37. [PMID: 25685709 PMCID: PMC4314616 DOI: 10.1016/j.nicl.2015.01.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/16/2022]
Abstract
Imaging of the course of the corticospinal tract (CST) by diffusion tensor imaging (DTI) is useful for function-preserving tumour surgery. The integration of functional localizer data into tracking algorithms offers to establish a direct structure–function relationship in DTI data. However, alterations of MRI signals in and adjacent to brain tumours often lead to spurious tracking results. We here compared the impact of subcortical seed regions placed at different positions and the influences of the somatotopic location of the cortical seed and clinical co-factors on fibre tracking plausibility in brain tumour patients. The CST of 32 patients with intracranial tumours was investigated by means of deterministic DTI and neuronavigated transcranial magnetic stimulation (nTMS). The cortical seeds were defined by the nTMS hot spots of the primary motor area (M1) of the hand, the foot and the tongue representation. The CST originating from the contralesional M1 hand area was mapped as intra-individual reference. As subcortical region of interests (ROI), we used the posterior limb of the internal capsule (PLIC) and/or the anterior inferior pontine region (aiP). The plausibility of the fibre trajectories was assessed by a-priori defined anatomical criteria. The following potential co-factors were analysed: Karnofsky Performance Scale (KPS), resting motor threshold (RMT), T1-CE tumour volume, T2 oedema volume, presence of oedema within the PLIC, the fractional anisotropy threshold (FAT) to elicit a minimum amount of fibres and the minimal fibre length. The results showed a higher proportion of plausible fibre tracts for the aiP-ROI compared to the PLIC-ROI. Low FAT values and the presence of peritumoural oedema within the PLIC led to less plausible fibre tracking results. Most plausible results were obtained when the FAT ranged above a cut-off of 0.105. In addition, there was a strong effect of somatotopic location of the seed ROI; best plausibility was obtained for the contralateral hand CST (100%), followed by the ipsilesional hand CST (>95%), the ipsilesional foot (>85%) and tongue (>75%) CST. In summary, we found that the aiP-ROI yielded better tracking results compared to the IC-ROI when using deterministic CST tractography in brain tumour patients, especially when the M1 hand area was tracked. In case of FAT values lower than 0.10, the result of the respective CST tractography should be interpreted with caution with respect to spurious tracking results. Moreover, the presence of oedema within the internal capsule should be considered a negative predictor for plausible CST tracking. Somatotopic CST tractography was done in 32 patients with eloquent brain tumours. Seeding ROIs were defined by navigated TMS of the M1 hot spot (hand, foot, tongue). Using the anterior pons as a second ROI yielded more plausible tracts than the PLIC. Low FAT and oedema of the internal capsule were negative predictors.
Collapse
Key Words
- ANOVA, analysis of variance
- APB, abductor pollicis brevis muscle
- AUC, area under the curve
- BOLD, blood oxygenation level dependent
- CST
- CST, corticospinal tract
- DTI
- DTI, diffusion tensor imaging
- FA(T), fractional anisotropy (threshold)
- FACT, fibre assignment by continuous tracking
- FMRI, functional magnetic resonance imaging
- FOV, field-of-view
- FWE, family-wise error
- Fractional anisotropy
- KPS, Karnofsky performance scale
- LDA/C, linear discriminant analysis/coefficient
- LT, lateral tongue muscle, anterior third
- M1, primary motor cortex
- MEP, motor evoked potential
- MFL, minimal fibre length
- MPRAGE, magnetization prepared rapid acquisition gradient echo (T1 MR sequence)
- OR, odd's ratio
- PLIC, posterior limb of the internal capsule
- PM, plantar muscle
- RMT, resting motor threshold
- ROI
- ROI, region-of-interest
- SD, standard deviation
- SE, standard error
- Somatotopic
- X-sq, X-squared (Pearson's chi-square test)
- aiP, anterior inferior pons
- nTMS
- nTMS, neuronavigated transcranial magnetic stimulation
- pxsq, p-value according to Pearson's chi-square test.
Collapse
Affiliation(s)
- Carolin Weiss
- Department of Neurosurgery, University of Cologne, Cologne 50924, Germany
| | - Irada Tursunova
- Department of Neurosurgery, University of Cologne, Cologne 50924, Germany ; Department of Neurosurgery, University of Cologne, Cologne 50924, Germany
| | | | - Hannah Lockau
- Department of Radiology, University of Cologne, Cologne 50937, Germany
| | - Charlotte Nettekoven
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich 52425, Germany
| | | | - Gabriele Stoffels
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich 52425, Germany
| | - Anne K Rehme
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich 52425, Germany ; Department of Neurology, University of Cologne, Cologne 50924, Germany
| | | | - N Jon Shah
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich 52425, Germany ; Department of Neurology, University Clinic Aachen, RWTH Aachen University, Aachen 52074, Germany
| | - Karl Josef Langen
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich 52425, Germany
| | - Roland Goldbrunner
- Department of Neurosurgery, University of Cologne, Cologne 50924, Germany
| | - Christian Grefkes
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich 52425, Germany ; Department of Neurology, University of Cologne, Cologne 50924, Germany
| |
Collapse
|
102
|
Chan KC, Kancherla S, Fan SJ, Wu EX. Long-term effects of neonatal hypoxia-ischemia on structural and physiological integrity of the eye and visual pathway by multimodal MRI. Invest Ophthalmol Vis Sci 2014; 56:1-9. [PMID: 25491295 DOI: 10.1167/iovs.14-14287] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. METHODS Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. RESULTS Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. CONCLUSIONS High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury.
Collapse
Affiliation(s)
- Kevin C Chan
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Swarupa Kancherla
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shu-Juan Fan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|